On automorphisms of conformally flat K-spaces

By Shun-ichi TAchibana

(Received Nov. 24, 1960)

Introduction. It is known that in a compact almost-Kählerian space an infinitesimal isometry is almost-analytic and hence an automorphism. ${ }^{11}$ On the other hand, in a compact K -space an infinitesimal isometry is not necessarily an automorphism. ${ }^{2)}$ In the 6 -dimensional unit sphere with the structure given by Fukami-Ishihara, which is an example of a compact K -space, an almostanalytic transformation is an isometry and hence is an automorphism. ${ }^{3)}$

In this paper we shall give some theorems on the automorphisms of conformally flat K -spaces.

In § 1 we shall give definitions and well known identities. In § 2 we shall deal with a conformally flat K -space and prove that the scalar curvature of such a space is non-negative constant. In $\S 3$ we shall obtain a theorem on automorphisms of compact conformally flat K -spaces. The last section will be devoted to discussions on automorphisms of K -spaces of positive constant curvature.

1. Preliminaries. Let us consider an n-dimensional K -space M^{4}) By definition, M admits a tensor field $\varphi_{i}{ }^{h}$ and a positive definite Riemannian metric tensor $g_{j i}$ such that

$$
\begin{align*}
& \varphi_{i}{ }^{r} \varphi_{r}{ }^{h}=-\delta_{i}^{h}, \tag{1.1}\\
& g_{r s} \varphi_{j}{ }^{r} \varphi_{i}^{s}=g_{j i}, \\
& \nabla_{j} \varphi_{i}{ }^{h}=-\nabla_{i} \varphi_{j}{ }^{h},
\end{align*}
$$

where ∇ denotes the operator of Riemannian covariant derivation.
(1.1) and (1.2) mean that M is an almost-Hermitian space and hence is even dimensional and orientable.

The tensor $\varphi_{j i}=\varphi_{j}{ }^{r} g_{r i}$ is skew-symmetric by virtue of (1.1) and (1.2) and so is $\nabla_{j} \varphi_{i t}$ by (1.3), $\varphi_{j i}$ is a Killing tensor of order 2 in the sense of YanoBochner [6].

[^0]From (1.1), (1.2) and (1.3) we see that tensors $\varphi_{i}{ }^{h}$ and $\nabla_{j} \varphi_{i}{ }^{h}$ are pure while $\varphi_{j i}$ and $g_{j i}$ are hybrid. ${ }^{5)}$

As $\nabla_{j} \varphi_{i \hbar}$ is pure, we have

$$
\begin{gather*}
\nabla_{r} \varphi_{i}{ }^{r}=0, \tag{1.4}\\
\varphi_{j}{ }^{r} \nabla_{r} \varphi_{i h}=\varphi_{i}{ }^{r} \nabla_{j} \varphi_{r h} . \tag{1.5}
\end{gather*}
$$

Let $R_{k j i}{ }^{h}$ and $R_{j i}=R_{r j i}{ }^{r}$ be Riemannian curvature tensor and Ricci tensor respectively and put

$$
R_{k j}^{*}=(1 / 2) \varphi^{r s} R_{r s t j} \varphi_{k}{ }^{t},
$$

then the following identities hold good ${ }^{6)}$

$$
\begin{gather*}
\nabla^{r} \nabla_{r} \varphi_{j}{ }^{h}=\left(R_{j}^{* r}-R_{j}{ }^{r}\right) \varphi_{r}{ }^{h}, \tag{1.6}\\
R_{j i}^{*}=R_{i j}^{*}, \tag{1.7}\\
\left(\nabla_{j} \varphi_{r s}\right) \nabla_{i} \varphi^{r s}=R_{j i}-R_{j i}^{*}, \tag{1.8}
\end{gather*}
$$

where $\varphi^{r s}=\varphi_{i}{ }^{s} g^{i r}$.
We know that $R_{j i}$ and $R_{j i}^{*}$ are hybrid, i.e. the following relations hold

$$
R_{j r} \varphi_{i}{ }^{r}=-R_{r i} \varphi_{j}^{r}, \quad R_{j r}^{*} \varphi_{i}{ }^{r}=-R_{r i}^{*} \varphi_{j}{ }^{r} .
$$

By Ricci's identity we have

$$
\begin{equation*}
\nabla_{r} \nabla_{s} \varphi_{j i}-\nabla_{s} \nabla_{r} \varphi_{j i}=-R_{r s}{ }^{t} \varphi_{t i}-R_{r s i}{ }^{t} \varphi_{j t}, \tag{1.9}
\end{equation*}
$$

from which we have, taking account of (1.7),

$$
\begin{equation*}
\varphi^{r s} \nabla_{r} \nabla_{s} \varphi_{j i}=0 . \tag{1.10}
\end{equation*}
$$

For any vector field v^{i} we define a vector $N(v)_{h}$ by

$$
N(v)_{h}=\left(\nabla^{r} v^{s}\right)\left(\nabla_{t} \varphi_{r s}\right) \varphi_{h}{ }^{t},
$$

where $\nabla^{r}=g^{r i} \nabla_{i}$.
A vector field or an infinitesimal transformation v^{i} is called almost-analytic if it satisfies $\underset{v}{£} \varphi_{i}{ }^{h}=0$, where $\underset{v}{£}$ denotes the operator of Lie derivation with respect to v^{i}. A vector field v^{i} is called an (infinitesimal) isometry or a Killing vector if it satisfies $\underset{v}{£} g_{j i}=0$. If an isometry is almost-analytic, then it is called an (infinitesimal) automorphism.
we know the following
Lemma 1. In a K-space an almost-analytic vector field v^{i} satisfies the following equations

$$
\begin{aligned}
& \nabla^{r} \nabla_{r} v^{i}+R_{r}^{i} v^{r}=0, \\
& 2 N(v)_{h}=\left(R_{h r}^{*}-R_{h r}\right) v^{r} .
\end{aligned}
$$

5) Tachibana, S., [4],
6) Tachibana, S., [3].
2. A conformally flat K-space. In the rest of the parer we assume that our K-space M is conformally flat. Thus the conformal curvature tensor vanishes and we have

$$
\begin{align*}
(n-2) R_{k j i h}= & g_{k h} R_{j i}-g_{j h} R_{k i}+R_{k h} g_{j i}-R_{j h} g_{k i} \tag{2.1}\\
& -b\left(g_{k h} g_{j i}-g_{j h} g_{k i}\right),
\end{align*}
$$

where

$$
b=R /(n-1), \quad R=R_{j i} g^{j i} .
$$

From (2.1) we have

$$
\begin{gather*}
(n-2) R_{j i}^{*}=2 R_{j i}-b g_{j i} \tag{2.2}\\
(n-2)\left(R_{j i}-R_{j i}^{*}\right)=(n-4) R_{j i}+b g_{j i} . \tag{2.3}
\end{gather*}
$$

If we put $R^{*}=R_{j i}^{*} g^{j i}$, then from (2.2) we get $R^{*}=b$ and hence

$$
\begin{equation*}
R-R^{*}=(n-2) b . \tag{2.4}
\end{equation*}
$$

On the other hand we have, by virtue of (1.8),

$$
R-R^{*}=\left(\nabla_{i} \varphi_{r s}\right) \nabla^{i} \varphi^{r s} .
$$

From (2.4) and the last equation we get

$$
\begin{equation*}
(n-2) b=\left(\nabla_{i} \varphi_{r s}\right) \nabla^{i} \varphi^{r s} . \tag{2.5}
\end{equation*}
$$

Since the right hand member of (2.5) is non-negative, we see that $R \geqq 0$.
Now let $P^{k j i}$ be an arbitrary pure tensor, then we have from (2.1)

$$
P^{k j i} R_{k j i h}=0
$$

because of the fact that $g_{j i}$ and $R_{j i}$ are both hybrid. ${ }^{7)}$ As the tensors $\nabla^{k} \varphi^{j i}$ and $\varphi_{s}{ }^{i} \nabla^{k} \varphi^{j s}$ are pure, we have

$$
\begin{align*}
\left(\nabla^{k} \varphi^{j i}\right) R_{k j i h} & =0, \tag{2.6}\\
\varphi_{s}^{i}\left(\nabla^{k} \varphi^{j s}\right) R_{k j i h} & =0 . \tag{2.7}
\end{align*}
$$

We shall now prove a theorem which will play an essential role in the next section.

Theorem 1. In an $n(>2)$ dimensional conformally flat K -space, the scalar curvature R is a non-negative constant. Especially if the space is non-Kählerian, then R is a positive constant.

Proof. On account of (2.5), it is sufficient to prove that the following vector u_{j} vanishes,

$$
u_{j}=\left(\nabla^{i} \varphi^{r s}\right) \nabla_{j} \nabla_{i} \varphi_{r s} .
$$

Since we have by Ricci's identity
7) Tachibana, S., [4].

$$
\nabla_{j} \nabla_{i} \varphi_{r s}=\nabla_{i} \nabla_{j} \varphi_{r s}-R_{j i r}{ }^{t} \varphi_{t s}-R_{j i s}{ }^{t} \varphi_{r t},
$$

we get by virtue of (2.7)

$$
\begin{aligned}
u_{j} & =\left(\nabla^{i} \varphi^{r s}\right) \nabla_{i} \nabla_{j} \varphi_{r s}+\varphi_{s}^{t}\left(\nabla^{i} \varphi^{r s}\right) R_{j i r t}-\varphi_{r}^{t}\left(\nabla^{i} \varphi^{r s}\right) R_{j i s t} \\
& =\left(\nabla^{i} \varphi^{r s}\right) \nabla_{i} \nabla_{j} \varphi_{r s} .
\end{aligned}
$$

As $\nabla^{i} \varphi^{r s}$ is skew-symmetric, we have

$$
\begin{aligned}
u_{j} & =-\left(\nabla^{i} \varphi^{r s}\right) \nabla_{i} \nabla_{r} \varphi_{j s}=-(1 / 2)\left(\nabla^{i} \varphi^{r s}\right)\left(\nabla_{i} \nabla_{r} \varphi_{j s}-\nabla_{r} \nabla_{i} \varphi_{j s}\right) \\
& =(1 / 2)\left(\nabla^{i} \varphi^{r s}\right)\left(R_{i r j}{ }^{t} \varphi_{t s}+R_{i r s}{ }^{t} \varphi_{j t}\right)=0
\end{aligned}
$$

by virtue of (2.6) and (2.7), Thus u_{j} vanishes and hence R is a constant. If $R=0$, then from (2.5) we have $\nabla_{i} \varphi_{r s}=0$ which means that the space is Kählerian. Thus Theorem 1 is proved.
3. Automorphisms of a conformally flat K-space. Let us consider a vector field v^{h} in an n-dimensional conformally flat K -space M. If we operate $\nabla^{h}=g^{h i} \nabla_{i}$ to

$$
N(v)_{h}=\left(\nabla^{r} v^{s}\right)\left(\nabla_{t} \varphi_{r s}\right) \varphi_{h}{ }^{t},
$$

we have

$$
\nabla^{h} N(v)_{h}=\left(\nabla^{h} \nabla^{r} v^{s}\right)\left(\nabla_{t} \varphi_{r s}\right) \varphi_{h}{ }^{t}+\left(\nabla^{r} v^{s}\right)\left(\nabla^{h} \nabla_{t} \varphi_{r s}\right) \varphi_{h}{ }^{t} .
$$

In the right hand side, the last term vanishes because of (1.10) and the first term vanishes too because we have

$$
\begin{aligned}
\varphi_{h}{ }^{t}\left(\nabla_{t} \varphi_{r s}\right) \nabla^{h} \nabla^{r} v^{s} & =\varphi_{t}^{h}\left(\nabla^{t} \varphi_{s}^{r}\right) \nabla_{h} \nabla_{r} v^{s} \\
& =(1 / 2) \varphi_{t}^{h}\left(\nabla^{t} \varphi_{s}^{r}\right)\left(\nabla_{h} \nabla_{r} v^{s}-\nabla_{r} \nabla_{h} v^{s}\right) \\
& =(1 / 2) \varphi_{t}^{h}\left(\nabla^{t} \varphi_{s}^{r}\right) R_{h r i} v^{s}=0 .
\end{aligned}
$$

Thus we get the following
Lemma 2. In a conformally flat K -space, any vector field v^{i} satisfies $\nabla^{i} N(v)_{i}$ $=0$.

In the rest of this section we prove the following
Theorem 2. In a compact $n(>4)$ dimensional conformally flat K -space, an almost-analytic transformation is an automorphism.

Let v^{i} be almost-analytic, then from Lemma 1 and (2.3) we have

$$
\begin{gather*}
\nabla^{r} \nabla_{r} v^{i}+R_{r}^{i} v^{r}=0, \tag{3.1}\\
(n-4) R_{i}^{r} v_{r}+b v_{i}=-2(n-2) N(v)_{i} . \tag{3.2}
\end{gather*}
$$

As R is a constant by virtue of Theorem 1, we have $\nabla_{i} R=0$ and hence $\nabla_{i} R_{r}{ }^{i}=0$. Taking account of this fact and of Lemma 2 we have from (3.2)

$$
\begin{equation*}
(n-4) R_{r i} \nabla^{r} v^{i}+b f=0, \tag{3.3}
\end{equation*}
$$

where

$$
f=\nabla_{i} v^{i} .
$$

On the other hand we have from (3.1)

$$
\begin{equation*}
\nabla^{r} \nabla_{r} f+2 R_{r i} \nabla^{r} v^{i}=0 \tag{3.4}
\end{equation*}
$$

because of

$$
\begin{aligned}
\nabla_{i} \nabla^{r} \nabla_{r} v^{i} & =\nabla_{i} \nabla_{r} \nabla^{r} v^{i}=\nabla_{r} \nabla_{i} \nabla^{r} v^{i} \\
& =\nabla^{r} \nabla_{r} \nabla_{i} v^{i}+R_{r i} \nabla^{r} v^{i} .
\end{aligned}
$$

Thus from (3.3) and (3.4) we get $\nabla^{r} \nabla_{r} f=2 b f /(n-4), b \geqq 0$. Hence the theorem is proved.

Remark. In case $n=4$, Theorem 2 is also true for compact conformally flat non-Kählerian K-spaces, for, in this case, we have $f=0$ by virtue of (3.3).
4. Automorphisms of a K-space of constant curvature. In this section we consider a K-space of positive constant curvature. In this case the Riemannian curvature tensor takes the form

$$
\begin{equation*}
R_{k j i h}=a\left(g_{k h} g_{j i}-g_{j h} g_{k i}\right), \tag{4.1}
\end{equation*}
$$

where

$$
a=R / n(n-1)
$$

Transvecting (4.1) with $g^{k h}$ we have

$$
R_{j i}=c g_{j i}, \quad c=R / n
$$

From (4.1) we have also

$$
\begin{gather*}
\varphi^{r s} R_{r s i h}=-2 a \varphi_{i h}, \quad R_{j i}^{*}=a g_{j i} \tag{4.2}\\
R_{j i}-R_{j i}^{*}=(c-a) g_{j i} \tag{4.3}
\end{gather*}
$$

Next we suppose that our space admits a non-trivial automorphism v^{i}. Then as v^{i} is a Killing vector, it satisfies

Now we define a scalar function g by

$$
\begin{equation*}
g=\varphi_{s}^{r} \nabla_{r} v^{s} \tag{4.5}
\end{equation*}
$$

so we have

$$
\nabla_{i} g=-\left(\nabla^{r} v^{s}\right) \nabla_{i} \varphi_{r s}+2 a \varphi_{i}^{r} v_{r}
$$

by virtue of (4.2) and (4.4). Let us put

$$
u_{j}=\varphi_{j}{ }^{i} \nabla_{i} g
$$

then the vector u_{j} thus defined satisfies

$$
\begin{equation*}
u_{j}=-N(v)_{j}-2 a v_{j} \tag{4.6}
\end{equation*}
$$

On the other hand, as v^{i} is almost-analytic, we have

$$
\begin{equation*}
2 N(v)_{j}=-(c-a) v_{j} \tag{4.7}
\end{equation*}
$$

by virtue of Lemma 1 and of (4.3). From (4.6) and (4.7) we get

$$
\begin{equation*}
2 u_{j}=(c-5 a) v_{j} . \tag{4.8}
\end{equation*}
$$

From (4.8) and the definition of $N(u)_{h}$ we have

$$
2 N(u)_{h}=(c-5 a) N(v)_{h} .
$$

Substituting (4.7) into the right hand side and taking account of (4.8), we have

$$
\begin{equation*}
2 N(u)_{h}=-(c-a) u_{h} . \tag{4.9}
\end{equation*}
$$

On the other hand we have from the definition of $N(u)_{h}$

$$
\begin{equation*}
N(u)_{h}=\left(\nabla^{r} u^{s}\right)\left(\nabla_{t} \varphi_{r s}\right) \varphi_{h}{ }^{t} . \tag{4.10}
\end{equation*}
$$

From (4.5) we have

$$
\nabla^{r} u^{s}=\nabla^{r}\left(\varphi^{s i} \nabla_{i} g\right)=\left(\nabla^{r} \varphi^{s i}\right) \nabla_{i} g+\varphi^{s i} \nabla^{r} \nabla_{i} g
$$

Substituting the last equation into (4.10) we have

$$
\begin{aligned}
N(u)_{h} & =\left(\nabla^{i} \varphi^{r s}\right)\left(\nabla_{t} \varphi_{r s}\right) \varphi_{h}{ }^{t} \nabla_{i} g \\
& =\left(R_{t}^{i}-R_{t}^{* i}\right) \varphi_{h}{ }^{t} \nabla_{i} g .
\end{aligned}
$$

by virtue of (1.3), (1.5) and (1.8), Thus we have

$$
\begin{equation*}
N(u)_{h}=(c-a) u_{h} . \tag{4.11}
\end{equation*}
$$

From (4.9) and (4.11) we have $(c-a) u_{n}=0$, where $c-a=(n-2) R / n(n-1)>$ 0 . Thus we get $u_{n}=0$ and from (4.8) and the non-trivialness of v^{i} we have $c-5 a=(n-6) R / n(n-1)=0$. Hence we obtain

Theorem 3. An $n(>2)$ dimensional K -space of positive constant curvature cannot admits a non-trivial automorphism provided that $n \neq 6$.

Ochanomizu University, Tokyo

Bibliography

[1] Fukami, T. and S. Ishihara, Almost Hermitian structure on S ${ }^{6}$, Tôhoku Math. J. 7(1955), 151-156.
[2] Tachibana, S., On almost-analytic vectors in almost-Kählerian manifolds, Tôhoku Math. J., 11 (1959) 247-265.
[3] Tachibana, S., On almost-analytic vectors in certain almost-Hermitian manifolds, Tôhoku Math. J., 11 (1959), 351-363.
[4] Tachibana, S., Analytic tensor and its generalization, Tôhoku Math. J., 12(1960), 208-221.
[5] Tachibana, S., On automorphisms of compact certain almost-Hermitian spaces, to appear in Tôhoku Math. J.
[6] Yano, K. and S. Bochner., Curvature and Betti numbers, Ann. of Math. Studies, 32, 1953.

[^0]: 1) Tachibana, S., [2]. The number in brackets refers to Bibliography at the end of the paper.
 2) Tachibana, S., [3].
 3) Fukami, T. and S. Ishihara., [1].
 4) As to the notations we follow Tachibana, S., [3]. Indices run over $1,2, \ldots, n$. Throughout the paper we assume that $n>2$.
