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Abstract. The auxiliary problem principle introduced by Cohen is ex-
tended to a general equilibrium problem. In particular, applications to vari-
ational inequalities and to convex optimization problems are analysed.

1 Introduction

The analysis of a general equilibrium problem (for short, EP):

find y* € K s.t. f(z,y") >0, VzekK, (EP)

where f : K x K — R, with f(xz,z) = 0, for all z € K a closed convex
subset of the reflexive Banach space X, has led to a unified approach in
the development of the study of different topics in Optimization such as
constrained extremum problems and variational inequalities (for short, VI).
In particular V' I have been extensively studied since they allow to generalize
the classical optimality conditions for constrained extremum problems and to
formalize equilibrium conditions for problems of different nature as network
flow, economic and mechanical engineering equilibrium problems [7, 9].
If we define f(x,y) := (F(y),x — y) then EP collapses into the classic
VI
find y* € K s.t. (F(y"),z—y") >0, VzrekK, (VI)

where F': K — X* K C X and (-
its topological dual X*. If f(z,y) :
the optimization problem

) is the duality pairing between X and
h(z) — h(y) then EP is equivalent to

min h(z) st. 2 €K,
zeK



where h : K — R. We refer to [1] and references therein for a wide analysis
concerning the existence results for the problem F P and for further examples
of equivalent formulations obtained by means of an EP.

The aim of this paper is to show that, exploiting a suitable fixed point
formulation of E P, it is possible to define a class of iterative methods which
are a straightforward extension of those proposed by Cohen [3, 4] for solving
VI and constrained extremum problems.

In Section 2 we will introduce a suitable regularization of EP which we
will refer to as the auxiliary equilibrium problem (for short AEP).

AFEP is a further equilibrium problem which is equivalent to the original
EP. By means of the fixed point formulation of AEP we will show that it
is possible to define a sequence strongly convergent to a solution of AEP
and therefore of EP (Section 3). The proposed method collapses into the
one developed by Cohen [4] when EP represents a VI. Applications to
constrained extremum problems are considered in Section 4.

We recall the main notations and definitions that will be used in the sequel.
A function f : X x X — R is said strongly monotone on K € X, with
modulus a > 0, iff:

fl@y)+ f(y,2) < —aly —z|?, Vz,yecK.

A functional G : X — R is said to be "differentiable” (in the sense of
Gateaux) at the point z* € X iff there exists finite:

. G(z* +ty) — G(z¥)

t—0 t

= (G'(x"),y),

with G'(z*) € X* (see [5]).
A function h : X — R is said to be "directionally differentiable” (in the
sense of Dini) at the point z* € X in the direction y, iff there exists finite:
h(z* +ty) — h(z*)

li =: h'(2*;y).
Jim ; (2% )

h : K — R is said strongly convex on K with modulus a (a > 0) iff
VZEhZEQ € K,VA S [0, ]_],

h(Azy + (1 — Nag) < Mh(x1) + (1 — Nh(22) — a[M1 — N)/2]||lz1 — 22|



If h is differentiable then A is strongly convex on K, with modulus a > 0,
iff Vaq, 29 € K,

h(z1) — h(zy) > (Vh(xs), 21 — 22) + a/2||x1 — 22|
We will say that the mapping F': X — X* is monotone on K C X iff:
(Fly) = F(z),y—x) 20, Vr,y€K;

it is strictly monotone if strict inequality holds Vz # y.
We will say that the mapping F' is strongly monotone, with modulus p > 0,
on K iff:

(Fly) = F(x),y —z) > plly —z|?, Va,y€K;

F' is Lipschitz continuous with modulus L > 0 over K iff

[F(z) = Fiy)l < Lz —yll, Vo,ye K.

2 The auxiliary equilibrium problem

Most of the algorithms developed for solving E'P can be derived from equiva-
lent formulations of the equilibrium problem. We will focus our attention on
fixed-point formulations of EP: we will show that such formulations lead to a
generalization of the methods developed by Cohen for variational inequalities
and optimization problems.

Let us recall the following preliminary result which states the above men-
tioned equivalent formulation of EP.

Lemma 2.1 Suppose that f(x,z) =0, Vo € K. Then, the following state-
ments are equivalent:
i) there exists y* € K s.t. f(x,y*) >0, Vre K.
it) y* € K is a solution of the problem
min f(z,y"). (1)

If we assume that, for any y* € K, (1) has a unique solution we can define
the following general iterative method:



General Algorithm.

(i) Let k=0,19° € K;
(ii) let »*! be the solution of the problem:

min f(z,y"). (2)

rzeK

(iii) if ||y** — y*|] < p, for some fixed g > 0 , then STOP, otherwise
put £ =k + 1 and go to step (ii).

Unfortunately, in most of the cases, it is not possible (or not convenient)
to apply the previous algorithm directly to the problem EP. It is necessary
to introduce an auxiliary equilibrium problem, equivalent to the given one,
for which the above procedure leads to a solution of EP.

Proposition 2.1 Let f(z,y) be a convex differentiable function with respect
tox aty=y* € K and e > 0. Let H(z,y) : K x K — R be non negative,
differentiable on the convex set K with respect to x and such that

i) H(y,y) =0, VyeK;

ii) H.(y,y) =0, Vye K.

Then y* is a solution of EP iff it is a solution of the auxiliary equilibrium
problem (AEP):

findy* € K s.t. ef(z,y")+ H(z,y") >0 Vre K.

Proof. It is obvious that if y* is a solution of EP then it is also a
solution of AEP.
Vice versa let y* be a solution of AEP. Then y* is a minimum point of the
problem

min [ef (z,y") + H(z,y")]. (3)

zeK

Since K is convex then y* is an optimal solution for (3) iff

(efely" ")+ Hy(y* y"),x —y") >0, Vo € K,
so that

(efsly"sy"),z—y") 20, Vo € K. (4)
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Dividing by €, we obtain that (4) implies, by the convexity of f(-,4*), that
flx,y*) > f(y*,y*) =0, VzeK.
U

Corollary 2.1 y* is a solution of EP iff y* is an optimal solution of the
extremum problem

min [ef (z,y") + H(z,y")].

In the next section we will see that applying the General Algorithm to
the auxiliary equilibrium problem AFE P, for a suitable choice of the function
H, it will be possible to define a sequence {y;} convergent to a solution of

EP.

3 The auxiliary problem principle

Following the approach of Cohen [3, 4] we will extend the auxiliary problem
principle to the equilibrium problem EP. Given G : K — IR, a strongly
convex differentiable functional, € > 0, let us introduce the auxiliary problem
AEP obtained putting H(x,y) := G(x) — G(y) — (G'(y),z — y) :

find y* € K such that
ef(x,y?) — (G'y) 2 —y)+G) -Gy) =0, VreK.

Lemma 3.1 Let f(x,y) be a convez differentiable function with respect to x
aty =y* € K. Then y* is a solution of EP iff it is a solution of AEP.

Proof. It follows from the Proposition 2.1 noticing that the function
H(z,y) := G(z) — G(y) — (G'(y),z — y) fulfils the hypotheses i) and ii) of
the Proposition. O

Taking into account Corollary 2.1 we have that y* is a solution of EP iff
y* is an optimal solution of the extremum problem

min [ef(z,5") — (G'(y),2) + G()].
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Applying the General Algorithm to the problem AE P we obtain the following
iterative method:

Algorithm 3.1.

(i) Let k=0,19° € K;
(ii) let y**1 be the solution of the problem P(k):

min [ef(z,y") — (G'(y"),x) + G(2));
(iii) if ||Jy*™ — y*|| < p, for some fixed g > 0 , then STOP, otherwise put
k =k + 1 and go to step (ii).

Remark 3.1 We observe that P(k) has a unique solution since G is a
strongly convex function.

Theorem 3.1 Suppose that the following conditions hold:

(i) f(z,y) is a convex l.s.c. function with respect to x, Yy € K;

(ii) f(x,y) is continuous with respect to y, on every finite dimensional
subspace of X, Vo € K;

(iii) f is strongly monotone on K with modulus a;

(iv) G is strongly convexr on K with modulus b;

(v) there exist constants v, 3 > 0 such that Vx,y,z € K:

fle,y)+ [y, 2) > flx,2) —allz =yl = Blly — =%

Then, if € < % and 3 < a, the sequence {y*}, defined in the Algorithm

3.1,strongly converges towards the solution y* of EP.

Proof. In our hypotheses the solution y* of FP exists and it is unique
(see e.g. [1] Theorem 1), as well as the solution of P(k). Consider the
functional

A(@) = Gly) — Bla) — (@ @)y —2) > e~ I%, (6)
and the difference
Ay*) = AWY) = G = GF) — (G'(YF), " — ") + (G'(y" !

Y = (G(), ") + (G (W), )



v+ (G = Gyt =yt = Sl = R () -
Fy,yh).

The previous inequality is due to the strong convexity of G and from the
fact that, since y**! solves P(k), we have

(efe(y" 0" =G () + G () e~y 20 Ve K.
Computing the previous inequality for z = y*, we obtain
(G =Gy =y = (el )y =y >

e(f(y* L y*) — f(y*,y*)), recalling that f(-,y*) is convex.
Therefore

AP =A@y ) > leyk+1—ykll2+€(f(yk“,yk)+f(y’“,y*))—e(f(y*,yk)+f(y’“,y*))-

Exploiting (iv) and (v), we obtain

b . )
A=Ay > §Hy’““—y’“|!2+6(f(y’““,y )—ally* =y P =By =y 1P+

* b *
eally® —y*|I> > (5 - ea)lly* — " P+ ela — B)|ly* — y* |

Therefore the sequence A(yk)_is strictly decreasing and bounded from be-
low,by (5), so that A(y*) — A and y* — y*. O

In the next section we will see that the Algorithm 3.1, if applied to a

variational inequality problem, collapses into the one proposed by Cohen in
[4].

4 Applications to variational inequalities and
optimization problems

Consider the generalized variational inequality (for short GVI):
find y* € K st. (F(y"),z—y") > o(y*) — p(x) VreK, (GVI)
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where F': K — X* ¢ : K — R is a l.s.c. proper convex function. Put

f(@,y) = (F(y),r —y) — oy) + d(z),

then GV I is equivalent to E'P so that we can apply the Algorithm 3.1 to the
problem GVI.

Algorithm 4.1.

(i) Let k=0,1° € K;
(ii) let y**1 be the solution of the problem :

min [(eF(y*) — G'(y) 2) + G(z) + ep(2)].

zeK

(iii) if ||y**! — y*|| < p, for some fixed > 0 , then STOP, otherwise put
k =k + 1 and go to step (ii).

Algorithm 4.1 coincides with the one proposed by Cohen [4].

Theorem 4.1 Under the hypotheses

(i) F is a strongly monotone operator on K (with modulus a) which is
weakly continuous over every finite-dimensional subspace of X;

(ii) G is differentiable and strongly convex on K with modulus b;

(iii) there exist constants a, § > 0 such that Vx,y,z € K:

(F(y) = F(2),2 —y) > —allz —y|* = Blly — =|*

Then, if € < % and B < a, the sequence {y*}, defined in the Algorithm 4.1,
strongly converges towards the solution y* of GV'I.

Proof. It follows from Theorem 3.1, putting

f(zy) = (Fly),z —y) — o(y) + ¢(x).
O
Theorem 4.1 is a slight generalization of Theorem 2.2 of [4] since it is

possible to show that, if F' is Lipschitz continuous over K, then iii) holds for
a suitable choice of the costants a and (3.



Proposition 4.1 Assume that F is Lipschitz continuous with modulus L
over K, then condition iii) of Theorem 4.1 holds provided that /a3 > L\2.

Proof. Since F' is Lipschitz continuous, we have

(Fly) = F(z),2 —y) = =[|F(y) — F)lllz =yl = =Llly = 2|z = yll =

—2vaBlly - zlllz — yll = —allx —ylI* = Blly — =%, Vz,y,2 € K.
O

Remark 4.1 In order to apply Theorem 4.1 it is sufficient to choose o and
[ that fulfil the following system:

JaB > 1\2, B <a,a>0, >0,

The analysis of the variational inequality GVI allows to define a further
algorithm for a constrained extremum problem of the form

min [¢(x) + ¢(z)] (P)

rzeK

where ¢ : K — R is a (Gateaux) differentiable strongly convex functional,
¢ : K — R is convex with finite directional derivative ¢'(z; z), Vz,z € K.
As already mentioned, (P) is equivalent to the equilibrium problem

flz,y*) >0, VrekK,

provided that f(z,y) = ¥ (x)+¢(z) —¥(y) — P(y). We observe that condition
iii) of Theorem 3.1 cannot be fulfilled whatever ¥ and ¢ may be. An equiv-
alent equilibrium problem can be stated as a first order optimality condition
for (P).

Proposition 4.2 y* is a solution of P iff it a solution of the GVI

W), r—y)+olx)—oy") >0, VrekK. (6)

Proof. We observe that, since P is a convex problem, y* is a solution of P
if and only if

Wy, e —y)+ (e —y*) >0, VreK. (7)
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Suppose that (7) holds. Since ¢ is convex we have (see [13])
¢x) = o(y") = ¢y 2 —y"), VreK,

so that (¢'(y), x —y*) > =¢' (Y12 —y*) = ¢(y) — ¢(x), Vr € K.
Vice versa if (6) holds then y* is minimum point of the problem
min [(V'(y"), 2 = y") + ¢(x) = o(y"));

which first order optimality condition is given by (7) and the proof is com-
plete. O

The variational inequality (6) can be solved by means of the Algorithm
4.1 which, in this setting, turns out to be a particular case of Algorithm 2.1
stated in [3] by Cohen.

5 Concluding remarks

We have considered a fixed point algorithm for solving a general equilibrium
problem. We have shown that this method, that could be stated directly for
the original problem, must be applied to an equivalent auxiliary equilibrium
problem in order to achieve the convergence.

Many are the possible developments of the analysis: t he connections
with the proximal methods for equilibrium problems [12]; the applications
to decomposition algorithms [3, 6, 2]; the extensions to vector equilibrium
problems (see e.g. [8]); the applications of the epiconvergence theory in the
analysis of the auxiliary problem principle [14].
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