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Abstract We introduce and study the notion of the average distortion of a nonex-
panding embedding of one metric space into another. Less sensitive than the multi-
plicative metric distortion, the average distortion captures well the global picture and,
overall, is a quite interesting new measure of metric proximity, related to the concen-
tration of measure phenomenon. The paper mostly deals with embeddings into the
real line with a low (as much as it is possible) average distortion. Our main tech-
nical contribution is that the shortest-path metrics of special (e.g., planar, bounded
treewidth, etc.) undirected weighted graphs can be embedded into the line with con-
stant average distortion. This has implications, e.g., on the value of the MinCut–
MaxFlow gap in uniform-demand multicommodity flows on such graphs.

Keywords Metric embeddings · Average distortion

1 Introduction

The theory of finite metric spaces is an attractive young branch of discrete mathe-
matics and theoretical CS. An overview of some of its methods, results and striking
applications appears, e.g., in recent but already somewhat dated literature [9, 14].
Numerous more recent results appear in the Proceedings of STOC’03 and FOCS’03.
(After the appearance of this paper further spectacular results were obtained; see, e.g.,
[1, 5, 10, 12].)

The key role in these developments is played by the notion of proximity between
metric spaces or, using other words, the faithfulness of representation of one metric
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space by another. One particularly successful (but by no means unique) measure of
proximity is the multiplicative distortion. The multiplicative distortion of embedding
a given finite metric space (X,d) into the host space (H, δ) can be defined as the
minimum possible value of contraction of a nonexpanding embedding f : X → H .
The contraction of f is maxx,y∈X d(x, y)/δ(f (x), f (y)). The smaller the distortion,
the more faithful the embedding.

In this paper we introduce and study a different (yet related) measure of proximity,
which we call the average distortion. It is defined as the minimum possible value of∑

x,y d(x, y)/
∑

x,y δ(f (x), f (y)) over all nonexpanding f : X → H , i.e., the ratio
of the average distances. We are particularly interested in the case when the host
space is R, i.e., the line.

The average distortion of embedding a metric space into the line is a new metric-
theoretic parameter. We argue that there are good reasons for studying it. Here are
some of them. First, it is a very natural parameter and, without being explicitly named,
it has already been seriously studied in modern convex geometry in the context of the
concentration of measure phenomenon (see e.g., [6, 14, 16]). These studies have led
to deep and surprising findings, which can safely be called fundamental. Second, this
parameter turns out to be related to the quality of performance of the best currently
known approximation algorithm for the sparsest cut problem. The (approximately)
sparsest cut is used in countless algorithms involving graphs and networks, and is of
prime importance in the area of algorithmic design. Third, we show that this para-
meter is capable of distinguishing special metric spaces from the general ones. One
of the more interesting directions of study in the theory of finite metric spaces are
the relations between the topology of the underlying graph, and the structure of its
shortest-path metrics (under all nonnegative edge-weightings). For example, one of
the better known open questions about the shortest-path metrics of special (planar,
bounded treewidth, etc.) graphs is whether they can be embedded into �1 with a
constant multiplicative distortion. Despite some “supporting evidence”, and a pos-
itive answer for all series-parallel and k-outerplanar graphs (see [3, 7]), the general
question remains widely open. The main technical contribution of this paper can be
viewed as a “cousin” of this conjecture. We show that the shortest-path metrics of
such graphs can be embedded into the line with a constant average distortion. This
surprising result does not hold for general metric spaces, where the average distortion
can be as large as �(logn), where n = |X|. When (X,d) is a submetric of a Euclid-
ean space, which is a rather severe restriction, the average distortion can still be as
large as �(

√
logn/ log logn) (see [15]).

In general, the average distortion of embedding (X,d) into the line is bounded
from above by cdom

1 (d), the multiplicative distortion of approximating d by a convex
combination of d-dominated line metrics. The latter parameter was studied in [2, 15].
It is at most O(logn) for general metrics, and at most O(

√
logn) for the Euclidean

ones. These bounds are tight, and coincide with those for average distortion. For
planar metrics, however, cdom

1 (d) can be as large as �(
√

logn) (as implied by [17]),
whereas the average distortion is always constant.

The paper is organized as follows. We start with a short discussion of the metric
concentration of measure phenomenon, and its relations to the average distortion.
Next, we shortly discuss the main result of [11], a backbone of numerous algorithms
for planar and other special graphs, and explain that in fact it is equivalent to the claim
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that the average distortion of embedding shortest-path metrics of special graphs into
�∞

1 is constant. In the second (the main) part of the paper we focus on embeddings
into the line, establish basic general inequalities and bring some examples, and then
prove the main result of this paper, i.e., that the average distortion of embedding the
shortest-path metrics of special graphs into the line is constant. While, in view of
the above, this is a considerable strengthening of the main result of [11], our proof
is to a large extent based on the same KPR lemma, and its additional properties as
established in [18]. We conclude the paper with further sharpening the main result
for graphs of a constant treewidth, using a different proof technique.

A remark on our definition of the average distortion is due. In this paper, the av-
erage distortion is the minimum of

∑
x,y d(x, y)/

∑
x,y δ(f (x), f (y)) over all non-

expanding f . This definition is by no means the only possible and, for instance, the
minimum of

∑
x,y δ(f (x), f (y))/

∑
x,y d(x, y) over all noncontracting f is as nat-

ural, and at the first glance as interesting, as the one we use. But only at the first
glance. For embeddings into the line, the first definition leads to average distortion
O(logn) in the worst case, with fine relations between the metric structure and the
corresponding value of distortion. The second definition leads to O(n), which is tight
already for the uniform metric, the simplest metric of all. The contrast is even more
striking if we consider embeddings into trees. Corollary 2.9 of the current paper im-
plies that, under the first definition, the average distortion of embedding d into a tree
(and, more generally, into any special graph) is equal up to a constant multiplicative
factor to the average distortion of embedding it into the line. Under the second defin-
ition, however, any metric can be embedded into a star so that the average distortion
is less than 2 (see, e.g. [8], Lemma 14.7.1).

1.1 Preliminaries

Metrics Throughout the paper, the metric spaces are assumed to have the same uni-
versal underlying set [n] (unless indicated otherwise). Thus, speaking of a metric d ,
we usually have in mind the metric space ([n], d). No distinction is made between
metrics and semimetrics, i.e., two different points may coincide.

The average distance of d is av(d) = 1/n2 · ∑x,y∈[n] d(x, y). Notice that the sum
is taken over the ordered pairs of points.

A nonexpanding embedding of a metric d into a host space (Y, δ) is a map
f : [n] → Y such that the induced submetric d ′ of Y is dominated by d , i.e., no dis-
tance increases. Formally, for all i, j ∈ [n], it holds d ′(i, j) = δ(f (i), f (j)) ≤ d(i, j).
The key term of this paper is avY (d), the maximum of av(d ′) over all such d ′. In par-
ticular, we shall be interested in avline(d) and av1(d), where the host spaces are R

and �∞
1 , respectively. The average distortion of embedding d into Y is defined as the

ratio av(d)/avY (d). It is always ≥1, with equality iff f is an isometry.
The median of the metric d on [n] is the point p ∈ [n] minimizing the expression

1/n
∑

x∈[n] d(p,x); it will be denoted by med. Observe that for a set of points on
a line, the order median coincides with the metric median. The following basic fact
will be frequently used:

1

n

∑

x∈[n]
d(med, x) ≤ av(d) ≤ 2

n

∑

x∈[n]
d(med, x). (1)
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The first inequality simply says that the average (with respect to p) value of
1/n · ∑x∈[n] d(p,x) is no less than its minimum value. The second inequality holds
for any p ∈ [n], since

∑

x,y∈[n]
d(x, y) ≤

∑

x,y∈[n]
d(x,p) + d(p,y) = 2n

∑

x∈[n]
d(p,x). (2)

For a set S ⊆ [n], let diam(S) = maxx,y∈S d(x, y) be the d-diameter of S. Let also
ξ(S) be the average d-distance to S, ξ(S) = 1/n · ∑

x∈[n] d(x,S), where d(x,S) =
miny∈S d(x, y). Moreover, define

diamc(d) = min
S⊆[n],|S|=
cn� diam(S); ξc(d) = max

S⊆[n],|S|=
cn� ξ(S).

The shortest-path metric (and its submetrics) of a weighted planar, bounded
treewidth, etc., graph will be called planar, bounded treewidth, etc., respectively.
The weights, of course, must be nonnegative. A cut metric δS on [n] for S ⊆ [n]
has value 1 if x, y are separated by S, and 0 otherwise. An important fact about the
�1-embeddable metrics on [n] is that they are precisely the metrics which can be
represented as a nonnegative combination of cut metrics on [n].

Graphs The graphs are assumed to be connected and undirected, with nonnegative
weights on the edges. They will often be regarded as solid one-dimensional geometric
objects, the edges being intervals of length d(e) glued at the vertices. The shortest-
path metric d of G naturally extends (in a linear manner) to the entire solid G. The
vertex set of G will usually be [n]. We shall call a graph special if it excludes a
specified fixed minor M . In particular, such are the planar graphs and the graphs of
bounded treewidth.

The vertex expansion �v of G is defined as

�v = min
S⊂V,|S|≤n/2

|∂vS|/|S|,

where ∂vS is the vertex boundary of S, i.e., the set of all vertices in S̄ which are
adjacent to S.

In addition to the weights, edges may have nonnegative capacities C = {ce}e∈E[G].
For S ⊆ [n], denote by |∂CS| the sum of the C-values of all the edges crossing from
S to S̄. The sparsest cut is defined as

TC = min
S⊂[n]

|∂CS|
|S| · |S̄| .

1.2 Average Distortion and the Metric Concentration of Measure

When a metric space (X,d) is embedded into a poorer metric space (H, δ) in a non-
expanding manner, it often happens that X collapses, i.e., that all but an insignificant
portion of its image (necessarily) lies in a ball of a (relatively) tiny radius. Moreover,
the density of the image is rapidly declining as one gets away from this ball. This
phenomenon is called the concentration of measure; it is of fundamental importance
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in modern convex geometry and probability theory (see, e.g., [6, 14, 16]). As an il-
lustration, consider a nonexpanding embedding f of Cn, the n-cube {0,1}n equipped
with the Hamming metric, into R. Let med(f ) be the median of the multiset f (Cn).
Paul Levy’s inequality for Cn (see, e.g., [14], Theorems 14.2.3, 14.3.2) claims that for
any c > 0 it holds (with respect to the uniform probability measure on the vertices):

Pr
[
f (x) − med(f ) ≥ cn0.5] ≤ e−c2/2. (3)

The same, of course, applies to the distribution of med(f ) − f (x). This means that
almost the entire image of Cn must lie in an interval of length O(n0.5), and that
the rate of density drop is e−c2/2, where the distance from the median is measured
in units of n0.5. Thus, the n-cube collapses, and the “typical” distance drops from
n/2 to O(n0.5). Notice that for a particular nonexpanding function f (x) = ∑n

i=1 xi ,
(3) becomes the familiar Chernoff bound.

What is the “typical” distance? In this paper, rather than looking at the radius
of the minimal ball containing a significant part of the image of (X,d), we look at
the average distance in the image, and compare it to the original average distance.
While gaining in simplicity and in applicability, we lose little in the original flavour.
The average distortion can thus be viewed as an attempt to quantify the measure
concentration.

The drop rate, the other important parameter associated with concentration of mea-
sure, is closely related to the isoperimetrical properties of the metric. Its definition is
meaningful for homogeneous (in particular, vertex-transitive) metric spaces; it is not
entirely clear how to extend it to nonhomogeneous ones. Perhaps the drop rate should
be considered locally. In the present paper we shall not attempt to study it. Let us just
remark that when it is well defined, it is extremely useful, and demonstrate this by an
example.

Claim 1.1 A lower bound on the dimension r = r(γ ) so that the Hamming metric on
the n-cube can be embedded into �r∞ with average distortion γ , is r = (2m)�(1/γ 2).

Proof Let d be the Hamming metric, let f be a nonexpanding embedding of d

into �r∞, and let d ′ be the resulting d-dominated induced submetric of f . Finally,
let {d ′

i}ri=1 be the d-dominated line metrics induced by the corresponding coordinate
functions {fi}ri=1.

Let z > 0 be a value to be specified later. Interpreting av(d ′) as the expectation
with respect to the uniform distribution on the unordered pairs of vertices, we get

av(d ′) = E
[
d ′(x, y)

] =
∫ ∞

0
Pr

[
d ′(x, y) ≥ u

]
du

≤ z · m0.5 +
∫ ∞

z·m0.5
Pr

[
d ′(x, y) ≥ u

]
du

≤ z · m0.5 +
r∑

i=0

∫ ∞

z·m0.5
Pr

[
d ′
i (x, y) ≥ u

]
du

= z · m0.5 + m0.5 ·
r∑

i=0

∫ ∞

z

Pr
[
d ′
i (x, y) ≥ tm0.5]dt.
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Now, if d ′
i (x, y) ≥ tm0.5, then at least one of x, y is at least 0.5 · tm0.5 away from the

corresponding med(fi). Plugging in the bound from (3), and setting z = √
8 ln r , we

conclude that

av(d ′) ≤ m0.5 ·
(

z + r

∫ ∞

z

4e−t2/8 dt

)

≤ (
√

8 ln r + 4) · m0.5.

Thus, in order for γ · av(d ′) ≥ av(d) to hold, it must hold γ · (8 ln r0.5 + 4) · m0.5 ≥
m/2, and the lower bound on r follows. �

A similar analysis applied to the shortest-path metric of a constant-degree ex-
pander of size n yields an even stronger bound: r(γ ) = n�(1/γ ). Instead of (3), one
should use

Pr
[
f (x) − med(f ) > c

] ≤ 0.5 · (1 + �v)−c�, (4)

where �v is the vertex expansion of the graph. This bound follows from the following
simple argument. Observe that for any c ∈ N, and any subset R of the vertices of size
≥ n/2, it holds, by definition of �v,

∣
∣
{
x, d(x,R) > c

}∣
∣ · (1 + �v) ≤ ∣

∣
{
x, d(x,R) > c − 1

}∣
∣,

implying that for any c ≥ 0,
∣
∣
{
x, d(x,R) > c

}∣
∣ · (1 + �v)c� ≤ |R̄| ≤ 0.5n.

Defining R = {x|f (x) ≤ med(f )}, and using the fact that f is nonexpansive, we
arrive at (4).

1.3 Average Distortion and the Main Result of [11]

Let G be a graph with nonnegative capacities C = {ce} on the edges. Consider the
form

F(D) =
∑

E ceD(e)
∑

x,y D(x, y)
.

As observed in [13], minδ∈�1 F(δ) is attained at some cut metric δS , and therefore is
equal to a half of TC , the sparsest cut of G. On the other hand, mind F (d), where
the minimum ranges over all metrics on [n], is attained at a shortest-path metric of G

with some edge weights, which can be efficiently computed. The main result of [11]
is a polynomial-time constant-factor approximation algorithm for the sparsest cut of
special graphs, based on the following statement:

Theorem 1.2 For any shortest-path metric d of G with a forbidden minor of size r

there exists, and can be found in polynomial time, a subset of vertices S ⊂ [n], for
which F(δS)/F (d) is at most O(r3).

This theorem turns out to be completely equivalent to the following statement
about the average distortion of embedding such d into �1:
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Theorem 1.3 There exists, and can be found in polynomial time, a d-dominated
nonnegative combination d ′ of cut-metrics {δS}, such that av(d ′) ≥ �(r−3) · av(d).
In particular, the average distortion of embedding d into �1 is O(r3).

The implication Theorem 1.3 ⇒ Theorem 1.2 is quite simple; it follows from a
standard argument first employed in [13]. Representing d ′ as a nonnegative combi-
nation of polynomially many cut metrics {δS}, and trying them all, one finds δS for
which F(δS) ≤ F(d ′). The corresponding S satisfies the desired requirements, since

F(δS) ≤ F(d ′) =
∑

E ced
′(e)

∑
x,y d ′(x, y)

≤
∑

E ced(e)
∑

x,y d ′(x, y)

≤ av(d)

av(d ′)
·

∑
E ced(e)

∑
x,y d(x, y)

= O(r3) · F(d).

The other direction, Theorem 1.2 ⇒ Theorem 1.3, is based on the strong LP duality,
and is somewhat technical. Since Theorem 1.3 is considerably weaker than the central
result of this paper, Theorem 2.5 (as �∞

1 is considerably richer than the line), we
prefer to omit here the proof of the former.1

2 Embeddings into the Line

2.1 Basic Inequalities and Examples

In order to bring some interesting examples of the behaviour of avline(d), let us first
show the approximate identity between ξc(d), c ∈ (0,0.5], and avline(d):

Proposition 2.1 4ξc(d) ≥ avline(d) ≥ 2cξc(d).

Proof We start with the first inequality. Observe that ξc(d) is monotone nonincreas-
ing in c, and thus it suffices to deal with c = 0.5. Consider the d-dominated line
metric (X,d ′) for which av(d ′) = avline(d), and let med′ be the median of X. Let L

and R be the subsets of the underlying set of d ′ lying (strictly) to the left and to the
right of med′, respectively, and let M denote the remaining points (i.e., those coincid-
ing with med′). Assuming w.l.o.g., that

∑
x∈L d ′(med′, x) ≤ ∑

x∈R d ′(med′, x), we
augment R with a subset of points from M to get a set S of size 
n/2�. In particular,
med′ ∈ S. By (2) from Sect. 1.1,

avline(d) = av(d ′) ≤ 2

n

∑
d ′(med′, x) ≤ 2 · 2

n

∑

x∈S

d ′(med′, x)

= 4

n

∑

x∈S

d(x,S) ≤ 4ξ1/2(d).

1The interested reader can find an outline of the equivalence proof and a discussion of the original proof
of Theorem 1.2 in the preliminary version of this paper, in Proceedings of STOC’03.
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For the second inequality, let R ⊂ [n] be the set on which ξc(d) is attained. Consider
the following embedding f of d into the line: f : x → d(x,R), the induced line
metric d ′. This is clearly a nonexpanding embedding, and

avline(d) ≥ av(d ′) ≥ 1

n2
· 2 ·

∑

x∈R,y /∈R

d ′(x, y) ≥ 2 · |R| · n
n2

· ξc(d) = 2cξc(d). �

Proposition 2.1 can be used for deriving upper bounds on avline(d) in the following
manner. Observe that

ξ1/2(d) = 1

n

∫ ∞

0

∣
∣
{
x, d(x,R) ≥ t

}∣
∣dt,

where R is the set on which ξ1/2(d) is attained. Therefore, if d has nice isoperimetrical
properties, they can be used to obtain a nontrivial bound on ξ1/2(d), and hence on
avline(d). In particular,

Claim 2.2 Let G be a unit-weighted graph on [n] with vertex expansion �v, and let
d be its shortest-path metric. Then, avline(d) = O(1/�v).

Proof Let R be as before. By the discussion following (4), for any t ≥ 0,

∣
∣
{
x, d(x,R) ≥ t

}∣
∣ · (1 + �v)t� ≤ |R̄|.

Hence,

ξ1/2(d) ≤ |R̄|/n

∫ ∞

0
(1 + �v)−t� dt = O

(
1/�v). �

Claim 2.2 implies that for the shortest-path metric of a unit-weighted constant-
degree expander, avline(d) = O(1), while av(d) = 	(logn). This well-known yet
amazing fact remains true for av1(d) as well.

As another example, consider the Hamming Cube, Cn. By Harper’s isoperimet-
ric inequality, �v(Cn) = 	(1/

√
n), implying that avline(Cn) = O(

√
n), whereas

av1(d) = av(d) = n/2.
The following simple but important inequality allows us to establish the relation-

ship between avline(d), diamc(d) and av(d).

Proposition 2.3 For any R ⊆ [n],

diam(R) + n

|R| · avline(d) ≥ av(d).

Proof Observe first that

∑

x,y

d(x, y) ≤
∑

x,y

[
d(x,R) + d(y,R) + diam(R)

] = 2n
∑

x

d(x,R) + n2diam(R).
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Consider now a nonexpanding embedding f of d into the line, where f : x →
d(x,R), and let d ′ be the corresponding d-dominated line metric. Then,

∑

x,y

d ′(x, y) =
∑

x,y

∣
∣d ′(x,R) − d ′(y,R)

∣
∣ ≥ 2 ·

∑

x �∈R,y∈R

∣
∣d ′(x,R) − d ′(y,R)

∣
∣

= 2|R| ·
∑

x

d(x,R).

This, together with the first inequality, implies the proposition. �

Corollary 2.4 diamc(d) + 1/c · avline(d) ≥ av(d).

2.2 Special Metrics: General Case

As mentioned in the Introduction, the construction of Bourgain implies that the gap
between av(d) and avline(d) never exceeds O(logn), and is attained, e.g., at the
shortest-path metric of a constant degree expander. It is also known that for Euclidean
metrics the gap is smaller: at most O(

√
logn), with an almost matching lower bound

of �(
√

logn/ log logn) (see [15]). In this section we present the main technical result
of this paper, and show that for a shortest-path metric of a special graph, the gap is
constant!

Theorem 2.5 Let G be a weighted graph lacking a minor M of size r , and let d be
its shortest-path metric. Then,

avline(d) ≥ �(r−3) · av(d).

Proof The key ingredient of the proof is the following construction, known as the
Klein–Plotkin–Rao Lemma [11]. Let G be a solid graph lacking the minor Kr,r , and
let 
 > 0 be a parameter.

In the first round, choose an arbitrary point p in the solid G, and choose a value
t randomly and uniformly from [0,
). Remove from G all the points q for which
d(p,q) ≡ t mod 
. As a result, the graph falls apart into connected components
(regions). In the second round, do the same independently for each region obtained
in the previous round. Continue in the same manner for r rounds. Output the obtained
regions.

Lemma 2.6 The construction has the following properties:

1. The d-diameter of each output region is ≤ 4r2
.
2. For each edge e, Pr[e is cut] ≤ r · d(e)/
.
3. Let Q be set of all the removed points (equivalently, the boundary of the output

regions). Call a point x ∈ G good if d(x,Q) ≥ 1
2(r+1)


. Then, for each x ∈ G,
the probability that x is good is ≥ 1/e.

Properties 1 and 2 are from [11]; property 3 is from [18]. In this paper, we shall
need only properties 1 and 3. Let A be the set of all good vertices. By property 3 of
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construction, E[|A|] ≥ n/e. Assume that A is indeed that large. The lemma is stated
for graphs with forbidden minor Kr,r , however, since Kr,r contains Kr as a minor, it
applies to graphs lacking an arbitrary minor M of size r .

Apply the KPR construction with 
 = c1 · av(d), where c1 ∈ [0,1] is a constant to
be specified later. Let c2 ∈ [0,1] be another constant, also to be specified later. There
are two cases to consider.

Case 1. No Region Si Contains More than c2n Vertices For each Si choose εi =
±1 randomly and independently from the others. Define a mapping f : V → R by
f (x) = εi · d(x,Q), where x ∈ Si , and let d ′ be the induced line metric. Observe
that d dominates d ′, as follows from the triangle inequality for x, y lying in the same
region, and from the fact that any path (and in particular the shortest one) between x

and y lying in different regions must cross Q.
We claim that the expected value of av(d ′) under the random choice of εi ’s is

sufficiently large. Indeed, if x and y are vertices lying in different regions, and at
least one of them is good, then E[d ′(x, y)] ≥ 1

2 · 1
2(r+1)

·
. Call such a pair of vertices
significant.

E
[
av(d ′)

] ≥ 


4(r + 1)
· |{(x, y)|(x, y) is a significant pair}|

n2
.

How many significant pairs are there?

∑

i

|A ∩ Si | ·
(
n − |Si |

) = |A| · n −
∑

i

|A ∩ Si | · |Si | ≥ |A| · n − |A| · max
i

|Si |.

By our assumptions there are at least n/e good vertices, and no Si contains more than
c2n vertices. Thus, there are at least e−1(1 − c2)n

2 significant pairs. Consequently,

E
[
av(d ′)

] ≥ 1 − c2

4e
· 1

(r + 1)
· 
 = c1(1 − c2)

4e
· 1

(r + 1)
· av(d).

Case 2. Some Region Si Contains More than c2n Vertices In this case, we use a
mapping f : V → R defined by f (x) = d(x,Si). By property 1 of the construction,
diam(Si) ≤ 4r2
. Arguing as in the proof of Proposition 2.3, and keeping in mind
the choice of 
,

av(d ′) ≥ c2 · (av(d) − 4r2

) = c2 · (1 − 4r2c1) · av(d).

It remains to specify the constants c1 and c2. Setting c1 ≈ θ(r−2) and c2 ≈ θ(1), we
arrive at the desired conclusion. �

The above proof can be easily turned into a deterministic polynomial-time algo-
rithm. In order to ensure that the size of A is at least n/e, one can modify each
step of [11] as follows. Instead of choosing the value t randomly, map all the ver-
tices to the interval [0,
) by v → d(v,p) mod 
, and find t for which the interval
[t − 


2(r+1)
, t + 


2(r+1)
] mod 
 contains no more than 1/(r + 1) fraction of the im-

ages. This will ensure that after r rounds there are at least n · (1 − 1
r+1 )r ≥ n/e good
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vertices. To eliminate the randomness altogether, observe that in the choice of εi ’s
it is sufficient to require only pairwise independence; therefore, applying a standard
derandomization technique, a good choice can be made deterministically.

Remark 2.7 Often the term (e.g.) planar metric is used for an induced submetric on
a subset U ⊆ V [G], rather than on the whole V [G]. We would like to point out that
Theorem 2.5 applies in this case as well; the only modification to the proof is that one
should consider only the vertices in U and, respectively, n should denote the size of
U instead that of V .

Remark 2.8 In a very recent paper of Fakcharoenphol and Talwar (see [4]), the KPR
construction is slightly altered and, while properties 2 and 3 are preserved (up to
constants), in property 1 the d-diameters become O(r
), improving the original
O(r2
). This has an immediate implication on our main result, yielding the fol-
lowing improvement:

avline(d) ≥ �(r−2) · av(d).

Let us conclude this section with the following simple, yet interesting, observation:

Corollary 2.9 Let (Y,
) be a special metric, e.g., a submetric of a shortest-path
metric of a weighted planar graph. Then, for any metric d , avY (d) ≤ O(1) · avline.

Indeed, a good embedding of d into the line can be obtained by taking a good
embedding of d into (Y,
), and then embedding the resulting d ′ into the line as in
the proof of Theorem 2.5, with only a constant loss in the average distance.

2.3 Constant Treewidth Metrics

Does the factor of O(r2) of (improved) Theorem 2.5 have the correct order of magni-
tude? In this section we address graphs of treewidth r , and show that for these graphs
the true value of this factor is O(log r). In fact, the only property of such graphs
which will be used is the existence of a balanced separator of size r . Instead of the
KPR Lemma we use more ad-hoc methods, which nevertheless are of an independent
interest.

We start with some preparatory results. Let d be the shortest-path metric of a
(weighted) graph G on n vertices. Let K ⊂ V be a subset of vertices whose removal
results in connected components {Si} of sizes {ni}, respectively. Let 
 = n2av(d)

denote the sum of all the distances, and let 
X denote the sum of distances between
the cross-pairs, i.e., all the pairs excluding those belonging to the same Vi . (A pair
with x ∈ K is never excluded!)

Lemma 2.10


 ≤ max
i

n + ni

n − ni

· 
X.
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Proof Let 
i be the sum of the distances between all the pairs of vertices in Vi .
Arguing as in (2) of Sect. 1.1, we conclude that for every point p in G it holds


i =
∑

x,y∈Si

d(x, y) ≤ 2ni

∑

x∈Si

d(p, x).

Thus,


i ≤ 2ni

n − ni

∑

p �∈Si ,x∈Si

d(p, x).

Summing over all Si ’s, we get

∑

i


i ≤ max
i

2ni

n − ni

·
∑

i

∑

p �∈Si ,x∈Si

d(p, x) ≤ max
i

2ni

n − ni

· 
X.

Therefore,


 − 
X =
∑

i


i ≤ max
i

2ni

n − ni

· 
X ,

and the lemma follows. �

Next, we need the following definition:

Definition 2.11 Let (S, d) be a finite metric space, let K ⊆ S be a subset with the
induced metric, and, finally, let f : K → R be a nonexpanding embedding. Define the
extensions f + and f − of f to the entire S (to be called, respectively, the rightmost
and the leftmost extension) by:

f +(x) = min
y∈K

f (y) + d(y, x);

f −(x) = max
y∈K

f (y) − d(y, x).

The fact that f is nonexpanding implies that both f − and f + agree with f on K .
To see that the extensions are nonexpanding, consider e.g., f +, and some two points
x1, x2 ∈ S. Let y1, y2 ∈ K be the two points in K that defined the values of f +(x1)

and f +(x2), respectively. By definition of f +,

f +(x1) − f +(x2) = [
f (y1) + d(y1, x1)

] − [
f (y2) + d(y2, x2)

]

≤ [
f (y2) + d(y2, x1)

] − [
f (y2) + d(y2, x2)

]
.

The last term is equal to d(y2, x1) − d(y2, x2), and cannot exceed d(x1, x2).
Observe that, as one would expect from the names, the rightmost extension f +

maps every point x ∈ S to its rightmost possible value among all nonexpanding ex-
tensions of f |K , while f − maps x to its leftmost possible value.

Definition 2.11 and Lemma 2.10 suggest the following plan for embedding into R

the shortest-path metric d of a graph G with a constant-size balanced separator K .
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First, produce a suitable nonexpanding embedding f : K → R, or, rather, a suit-
able distribution over such embeddings. Then, for every connected component Si of
G − K , extend f |K randomly and independently from the others either as f + or
as f −. Since K is a separator, this results in a nonexpanding embedding of the en-
tire [n]. Finally, trust your luck and try to verify that for any x, y not in the same Si ,
the expected distance E[|f ∗(x) − f ∗(y)|] is not far from the actual distance d(x, y).
The plan indeed works!

Theorem 2.12 Let d be the shortest path metric of a (weighted) graph G of tree-
width r . Then,

avline(d) ≥ �(1/ log r) · av(d).

Proof Let K ⊆ V [G] = [n] be a separator of G such that |K| ≤ r , and all the ni ’s are
at most n/2. We view K as a metric space equipped with the induced metric.

Recall that the standard construction of Bourgain [2] yields a distribution over
nonexpanding embeddings f : K → R, such that for any two vertices a, b ∈ K ,
E[d ′(a, b)] ≥ crd(a, b), where cr = �(1/ log |K|) = �(1/ log r).

The suitable distribution over the nonexpanding extensions of f |K will be defined
as follows. With probability 0.5 take (randomly) one of the Bourgain’s embeddings,
and with probability 0.5 map the whole K to a single point. Extending every such
f |K to V in a random manner according to the above plan, we obtain a distribution
over embeddings f : V → R. We claim that for any x, y not in the same connected
component of G − K , it holds that

E
[∣
∣f (x) − f (y)

∣
∣
] ≥ cr/20 · d(x, y) = �(1/ log r) · d(x, y).

In view of Lemma 2.10, this would imply the theorem.
Call x (respectively, y) remote, if d(x,K) ≥ cr/5 · d(x, y). Set δ = d(x, y).
Let us first consider the case when neither x nor y are remote. Let px ∈ K be

a vertex such that d(x,px) < (cr/5) · δ; the vertex py is defined similarly. Observe
that the distance d(px,py) is at least (1 − 2cr/5) · δ, and therefore the expected
value of |f (px) − f (py)| under Bourgain’s embeddings is at least (cr − 2c2

r /5) · δ.
Consequently, since with probability 0.5 one proceeds to choose a random Bourgain’s
embedding,

E
[∣
∣f (x) − f (y)

∣
∣
]

≥ E
[∣
∣f (px) − f (py)

∣
∣
] − E

[∣
∣f (px) − f (x)

∣
∣
] − E

[∣
∣f (py) − f (y)

∣
∣
]

≥ 0.5 · ((cr − 2c2
r /5) − cr/5 − cr/5

) · δ ≥ cr/10 · δ,

as required.
Consider now the second case, when w.l.o.g., x is remote. When K is mapped to

a single point p, it holds

∣
∣f (x) − p

∣
∣ = d(x,K) ≥ cr/5 · δ,
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and, independently, with probability 0.5 the images of x and y lie on the different
sides of p. Since K is mapped to a single point with probability 0.5, we get

E
[∣
∣f (x) − f (y)

∣
∣
] ≥ (0.5 · 0.5 · cr/5) · δ = cr/20 · δ. �

Acknowledgements I am deeply grateful to Jirka Matoušek, Nati Linial and Yuval Rabani for enlight-
ening discussions and helpful suggestions. Thanks also to Avner Magen.

References

1. Arora, S., Rao, S., Vazirani, V.: Expander flows, geometric embeddings, and graph partitioning. In:
Proceedings of STOC 2004, pp. 222–231 (2004)

2. Bourgain, J.: On Lipschitz embeddings of finite metric spaces in Hilbert space. Israel J. Math. 52(1–2),
46–52 (1985)

3. Chekuri, C., Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Embedding k-outerplanar graphs
into �1. In: Proceedings of the 14th Annual ACM Symposium on Discrete Algorithms, pp. 527–536
(2003)

4. Fakcharoenphol, J., Talwar, K.: An improved decomposition theorem for graphs excluding a fixed
minor. In: Proseedings of RANDOM-APPROX 2003, pp. 36–46 (2003)

5. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximation arbitrary metrix by tree
metrix. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

6. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser, Boston
(1999)

7. Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Cuts, trees and �1-embeddings of graphs. In:
Proceedings of the 40th Annual IEEE Symposium on Foundations of CS, pp. 399–408 (1999)

8. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, Cambridge
(1997)

9. Indyk, P.: Algorithmic aspects of geometric embeddings. In: Proceedings of the 42th Annual IEEE
Symposium on Foundations of Computer Science (2001)

10. Khot, S., Vishnoi, N.K.: The unique games conjecture, Integrality gap for cut problems and embed-
dability of negative type metrics into L1. In: Proc. FOCS 2005, pp. 53–62 (2005)

11. Klein, P., Plotkin, S.A., Rao, S.B.: Excluded minors, network decomposition, and multicommodity
flow. In: Proceedings of the 25th Annual ACM Symposium on Theory of Computing, pp. 682–690
(1993)

12. Lee, J.R., Naor, A.: Embedding the diamond graph in Lp , and dimension reduction in L1. Manuscript,
June 2003. Submitted to GAFA

13. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applica-
tions. Combinatorica 15(2), 215–245 (1995)

14. Matoušek, J.: Lectures on Discrete Geometry, vol. 212. Springer, Berlin (2002)
15. Matoušek, J., Rabinovich, Y.: On dominated l1 metrics. Israel J. Math. 123, 285–301 (2001)
16. Milman, V., Schechtman, G.: Asymptotic Theory of Finite Dimensional Spaces. Lecture Notes in

Mathematics, vol. 1200. Springer, Berlin (1986)
17. Newman, I., Rabinovich, Y.: A lower bound on the distortion of embedding planar metrics into Euclid-

ean space. Discrete Comput. Geom. 29(1), 77–81 (1998)
18. Rao, S.: Small distortion and volume preserving of planar and Euclidean metrics. Preliminary version

in: 15th Annual ACM Symposium on Computational Geometry, pp. 300–306 (1999)


	On Average Distortion of Embedding Metrics  into the Line
	Abstract
	Introduction
	Preliminaries
	Metrics
	Graphs

	Average Distortion and the Metric Concentration of Measure
	Average Distortion and the Main Result of KPR

	Embeddings into the Line
	Basic Inequalities and Examples
	Special Metrics: General Case
	Case 1. No Region Si Contains More than c2 n Vertices
	Case 2. Some Region Si Contains More than c2 n Vertices

	Constant Treewidth Metrics
	Acknowledgements


	References


