
Almirantis et al. Algorithms Mol Biol (2017) 12:5

DOI 10.1186/s13015-017-0094-z

RESEARCH

On avoided words, absent words,
and their application to biological sequence
analysis
Yannis Almirantis1, Panagiotis Charalampopoulos2, Jia Gao2, Costas S. Iliopoulos2, Manal Mohamed2,

Solon P. Pissis2* and Dimitris Polychronopoulos3

Abstract

Background: The deviation of the observed frequency of a word w from its expected frequency in a given sequence

x is used to determine whether or not the word is avoided. This concept is particularly useful in DNA linguistic analysis.

The value of the deviation of w, denoted by dev(w), effectively characterises the extent of a word by its edge contrast

in the context in which it occurs. A word w of length k > 2 is a ρ-avoided word in x if dev(w) ≤ ρ, for a given thresh-

old ρ < 0. Notice that such a word may be completely absent from x. Hence, computing all such words naïvely can be

a very time-consuming procedure, in particular for large k.

Results: In this article, we propose an O(n)-time and O(n)-space algorithm to compute all ρ-avoided words of

length k in a given sequence of length n over a fixed-sized alphabet. We also present a time-optimal O(σn)-time

algorithm to compute all ρ-avoided words (of any length) in a sequence of length n over an integer alphabet of size σ .

In addition, we provide a tight asymptotic upper bound for the number of ρ-avoided words over an integer alphabet

and the expected length of the longest one. We make available an implementation of our algorithm. Experimental

results, using both real and synthetic data, show the efficiency and applicability of our implementation in biological

sequence analysis.

Conclusions: The systematic search for avoided words is particularly useful for biological sequence analysis. We pre-

sent a linear-time and linear-space algorithm for the computation of avoided words of length k in a given sequence

x. We suggest a modification to this algorithm so that it computes all avoided words of x, irrespective of their length,

within the same time complexity. We also present combinatorial results with regards to avoided words and absent

words.

Keywords: Avoided words, Underrepresented words, Absent words, Suffix tree, Conserved non-coding elements,

Ultraconserved elements

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background

Introduction

�e one-to-one mapping of a DNA molecule to a

sequence of letters suggests that DNA analysis can be

modelled within the framework of formal language the-

ory [1]. For example, a region within a DNA sequence

can be considered as a “word” on a fixed-sized alphabet

in which some of its natural aspects can be described by

means of certain types of automata or grammars. How-

ever, a linguistic analysis of the DNA needs to take into

account many distinctive physical and biological charac-

teristics of such sequences: �e genome consists of cod-

ing regions that encode for polypeptide chains associated

with biological functions as well as a plethora of regula-

tory and potentially functional non-coding regions, iden-

tified through multiple alignment of genomes of several

organisms, and termed conserved non-coding elements

(CNEs). In addition, it contains large non-coding regions

Open Access

Algorithms for
Molecular Biology

*Correspondence: solon.pissis@kcl.ac.uk
2 Department of Informatics, King’s College London, The Strand,

London WC2R 2LS, UK

Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-017-0094-z&domain=pdf

Page 2 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

most of which are not linked to any particular function.

All these genomic components appear to have many sta-

tistical features in common with natural languages [2].

A computational tool oriented towards the system-

atic search for avoided words is particularly useful for in

silico genomic research analyses. �e search for absent

words is already undertaken in the recent past and sev-

eral results exist on the application and computation of

such words [3–6]. However, words which may be present

in a genome or in genomic sequences of a specific role

(e.g., protein coding segments, regulatory elements, con-

served non-coding elements etc.) but they are strongly

underrepresented—as we can estimate on the basis of the

frequency of occurrence of their longest proper factors—

may be of particular importance. �ey can be words of

nucleotides which are hardly tolerated because they neg-

atively influence the stability of the chromatin or, more

generally, the functional genomic conformation; they can

represent targets of restriction endonucleases which may

be found in bacterial and viral genomes; or, more gener-

ally, they may be short genomic regions whose presence

in wide parts of the genome are not tolerated for less

known reasons. �e understanding of such avoidances is

becoming an interesting line of research (for recent stud-

ies, see [7, 8]).

On the other hand, short words of nucleotides may be

systematically avoided in large genomic regions or whole

genomes for entirely different reasons, i.e. just because

they play important signaling roles which confine

their appearance only in specific positions: consensus

sequences for the initiation of gene transcription and of

DNA replication are well-known such oligonucleotides.

Other such cases may be insulators, sequences anchoring

the chromatin on the nuclear envelope like lamina-asso-

ciated domains, short sequences like dinucleotide repeat

motifs with enhancer activity, and several other cases.

Again, we cannot exclude that this area of research could

lead to the identification of short sequences of regulatory

activities still unknown.

Brendel et al. in [9] initiated research into the linguis-

tics of nucleotide sequences that focuses on the concept

of words in continuous languages—languages devoid

of blanks—and introduced an operational definition of

words. �e authors suggested a method to measure, for

each possible word w of length k, the deviation of its

observed frequency from the expected frequency in a

given sequence. �e values of the deviation, denoted by

dev(w), were then used to identify words that are avoided

among all possible words of length k. �e typical length

of avoided (or of overabundant) words of the nucleotide

language was found to range from 3 to 5 (tri- to pentam-

ers). �e statistical significance of the avoided words

was shown to reflect their biological importance. �is

work, however, was based on the very limited sequence

data available at the time: only DNA sequences from two

viral and one bacterial genomes were considered. Also

note that k might change when considering eukaryotic

genomes, the complex dynamics and function of which

might impose a more demanding analysis. �e authors

in [10–12] have studied the concept of unusual words—

based on different definitions than the ones Brendel et al.

use for expectation and variance—focusing on the factors

of a string, whereas based on Brendel et al. definitions,

we consider here any word over the alphabet.

Our contributions

�e computational problem can be described as follows.

Given a sequence x of length n, an integer k, and a real

number ρ < 0, compute the set of ρ-avoided words of

length k, i.e. all words w of length k for which dev(w) ≤ ρ .

We call this set the ρ-avoided words of length k in x.

Brendel et al. did not provide an efficient solution for this

computation [9]. Notice that such a word may be com-

pletely absent from x. Hence the set of ρ-avoided words

can be naïvely computed by considering all possible σ k

words, where σ is the size of the alphabet.

Here we present an O(n)-time and O(n)-space algo-

rithm for computing all ρ-avoided words of length k in

a sequence of length n over a fixed-sized alphabet. For

words over an integer alphabet of size σ, the algorithm

requires time O(σn), which is optimal for sufficiently

large σ. We also present a time-optimal O(σn)-time algo-

rithm to compute all ρ-avoided words (of any length) in

a sequence of length n over an integer alphabet of size σ.

We provide a tight asymptotic upper bound for the num-

ber of ρ-avoided words over an integer alphabet and the

expected length of the longest one. We also prove that

the same asymptotic upper bound is tight for the number

of ρ-avoided words of fixed length when the alphabet is

sufficiently large.

As shown subsequently, the set of absent ρ-avoided

words is a subset of the set of minimal absent words of a

word. Hence the tight asymptotic bounds for ρ-avoided

words are based on the proof we provide for the tight-

ness of the known asymptotic bound on minimal absent

words and the tightness of this bound for minimal absent

words of fixed length over sufficiently large alphabets.

We make available an open-source implementation of

our algorithm. Experimental results, using both real and

synthetic data, show its efficiency and applicability. Spe-

cifically, using our method we confirm that restriction

endonucleases which target self-complementary sites are

not found in eukaryotic sequences [8]. In addition, we

apply our algorithm in the case of CNEs, which are classes

of sequences whose functions in our genomes remain

largely enigmatic [13, 14]. We observe interesting patterns

Page 3 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

of occurring avoided words within CNEs compared to

CNE-like sequences (surrogates) that are in accordance

with their distinct sequence characteristics which classify

them from other non-functional sequences [15, 16].

A preliminary version of this article has appeared

in [17].

Methods

Terminology and technical background

De�nitions and notation

We begin with basic definitions and notation generally

following [18]. Let x = x[0]x[1] · · · x[n − 1] be a word of

length n = |x| over a finite ordered alphabet � of fixed

size σ, i.e. σ = |�| = O(1). We also consider the case of

an integer alphabet; in this case each letter is replaced by

its rank such that the resulting string consists of integers

in the range {1, . . . , n}. For two positions i and j on x, we

denote by x[i . . . j] = x[i] · · · x[j] the factor (sometimes

called subword) of x that starts at position i and ends at

position j (it is empty if j < i), and by ε the empty word,

word of length 0. We recall that a prefix of x is a factor

that starts at position 0 (x[0 . . . j]) and a suffix is a factor

that ends at position n − 1 (x[i . . . n − 1]), and that a fac-

tor of x is a proper factor if it is not x itself. A factor of x

that is neither a prefix nor a suffix of x is called an infix

of x. We say that x is a power of a word y if there exists a

positive integer k, k > 1, such that x is expressed as k con-

secutive concatenations of y; we denote that by x = yk .

Let w = w[0]w[1] · · ·w[m − 1] be a word, 0 < m ≤ n.

We say that there exists an occurrence of w in x, or, more

simply, that w occurs in x, when w is a factor of x. Every

occurrence of w can be characterised by a starting posi-

tion in x. �us we say that w occurs at the starting posi-

tion i in x when w = x[i . . . i + m − 1]. Further let f(w)

denote the observed frequency, that is, the number of

occurrences of a non-empty word w in word x. Note that

overlapping occurrences are considered as distinct ones;

e.g. f (TT) = 2 in TTT. If f (w) = 0 for some word w, then

w is called absent, otherwise, w is called occurring.

By f (wp), f (ws), and f (wi) we denote the observed fre-

quency of the longest proper prefix wp, suffix ws, and infix

wi of w in x, respectively. We can now define the expected

frequency of word w, |w| > 2, in x as in Brendel et al. [9]:

�e above definition can be explained intuitively as fol-

lows. Suppose we are given f (wp), f (ws), and f (wi).

Given an occurrence of wi in x, the probability of it being

preceded by w[0] is
f (wp)

f (wi)
 as w[0] precedes exactly f (wp)

of the f (wi) occurrences of wi. Similarly, this occurrence

of wi is also an occurrence of ws with probability
f (ws)

f (wi)
.

(1)

E(w) =
f (wp) × f (ws)

f (wi)
, if f (wi) > 0; else E(w) = 0.

Although these two events are not always independent,

the product
f (wp)

f (wi)
×

f (ws)

f (wi)
 gives a good approximation

of the probability that an occurrence of wi at position j

implies an occurrence of w at position j − 1. It can be

seen then that by multiplying this product by the num-

ber of occurrences of wi we get the above formula for the

expected frequency of w.

Moreover, to measure the deviation of the observed

frequency of a word w from its expected frequency in x,

we define the deviation (χ2 test) of w as:

For more details on the biological justification of these

definitions see [9].

Using the above definitions and a given threshold, we

are in a position to classify a word w as either avoided or

common in x. In particular, for a given threshold ρ < 0, a

word w is called ρ-avoided if dev(w) ≤ ρ. In this article,

we consider the following computational problems.

Su�x trees

In our algorithms, suffix trees are used extensively as

computational tools. For a general introduction to suffix

trees, see [18].

�e suffix tree T (x) of a non-empty word x of length

n is a compact trie representing all suffixes of x. �e

nodes of the trie which become nodes of the suffix tree

are called explicit nodes, while the other nodes are called

implicit. Each edge of the suffix tree can be viewed as an

upward maximal path of implicit nodes starting with an

explicit node. Moreover, each node belongs to a unique

path of that kind. �en, each node of the trie can be rep-

resented in the suffix tree by the edge it belongs to and an

index within the corresponding path.

We use L(v) to denote the path-label of a node v,

i.e., the concatenation of the edge labels along the path

from the root to v. We say that v is path-labelled L(v).

Additionally, D(v) = |L(v)| is used to denote the word-

depth of node v. Node v is a terminal node, if and only

if, L(v) = x[i . . . n − 1], 0 ≤ i < n; here v is also labelled

with index i. It should be clear that each occurring

word w in x is uniquely represented by either an explicit

or an implicit node of T (x). �e suffix-link of a node v

with path-label L(v) = αy is a pointer to the node path-

labelled y, where α ∈ � is a single letter and y is a word.

�e suffix-link of v exists if v is a non-root internal node

(2)dev(w) =
f (w) − E(w)

max{
√
E(w), 1}

.

Page 4 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

of T (x). We denote by C(v,α) the explicit node that

is obtained from v by traversing the outgoing edge whose

label starts with α ∈ �.

In any standard implementation of the suffix tree,

we assume that each node of the suffix tree is able to

access its parent. Note that once T (x) is constructed, it

can be traversed in a depth-first manner to compute the

word-depth D(v) for each node v. Let u be the parent

of v. �en the word-depth D(v) is computed by adding

D(u) to the length of the label of edge (u, v). If v is the

root then D(v) = 0. Additionally, a depth-first traversal

of T (x) allows us to count, for each node v, the number

of terminal nodes in the subtree rooted at v, denoted by

C(v), as follows. When internal node v is visited, C(v)

is computed by adding up C(u) of all the nodes u, such

that u is a child of v, and then C(v) is incremented by

1 if v itself is a terminal node. If a node v is a leaf then

C(v) = 1.

Example 1 Consider the word x = AGCGCGACGTCTGTGT.

Fig. 1 represents the suffix tree T (x). Note that word

GCG is represented by the explicit internal node v;

whereas word TCT is represented by the implicit node

along the edge connecting the node labelled 15 and the

node labelled 9. Consider node v in T (x); we have that

L(v) = GCG, D(v) = 3, and C(v) = 2.

Tight bounds on minimal absent words

Definition 1 [4] An absent word w of x is minimal if

and only if all proper factors of w occur in x.

We first show that the known asymptotic upper bound

on the number of minimal absent words of a word is

tight.

Lemma 1 [19] �e upper bound O(σn) on the number

of minimal absent words of a word of length n over an

alphabet of size σ is tight if 2 ≤ σ ≤ n.

Proof To prove that the bound is tight it suffices to

construct a word with these many minimal absent words

asymptotically.

Let � = {a1, a2}, i.e. σ = 2, and consider the word

x = a2a
n−2

1
a2 of length n. All words of the form a2a

k
1
a2

for 0 ≤ k ≤ n − 3 are minimal absent words in x. Hence x

has at least n − 2 = �(n) minimal absent words.

Let � = {a1, a2, a3, . . . , aσ } with 3 ≤ σ ≤ n and con-

sider the word x = a2a
k
1
a3a

k
1
a4a

k
1
· · · aia

k
1
ai+1 · · · aσa

k
1
a
m
1

 ,

where k = ⌊ n

σ−1
⌋ − 1 and m = n − (σ − 1)(k + 1) .

Note that x is of length n. Further note that aia
j
1
 is a

factor of x, for all 2 ≤ i ≤ σ and 0 ≤ j ≤ k. Similarly,

a
j
1
al is a factor of x, for all 3 ≤ l ≤ σ and 0 ≤ j ≤ k .

�us all proper factors of all the words in the set

S = {aia
j
1
al | 0 ≤ j ≤ k , 2 ≤ i ≤ σ , 3 ≤ l ≤ σ } occur in x.

However, the only words in S that occur in x are the ones

of the form aia
k
1
ai+1, for 2 ≤ i < σ. Hence x has at least

(σ − 1)(σ − 2)(k + 1) − (σ − 2) = (σ − 1)(σ − 2)⌊ n

σ−1
⌋

−(σ − 2) = �(σn) minimal absent words. �

In the following lemma we show that, for sufficiently

large alphabets, O(σn) is a tight asymptotic bound for the

number of minimal absent words of fixed length.

Fig. 1 The suffix tree T (x) for x = AGCGCGACGTCTGTGT. Double-lined nodes represent terminal nodes labelled with the associated indices. The

suffix-links for non-root internal nodes are dashed

Page 5 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

Lemma 2 �e upper bound O(σn) on the number of

minimal absent words of fixed length of a word of length n

over an alphabet of size σ is tight if
√
n + 1 ≤ σ ≤ n.

Proof Let � = {a1, a2, a3, . . . , aσ } be an alphabet of

size σ. We will show that we can construct words of any

length n, with σ ≤ n ≤ σ(σ − 1), that have �(σn) mini-

mal absent words of length 3.

We first construct the strings (blocks) Bi = ai+1aiai+2ai

· · · ai+jai · · · aσai, for 1 ≤ i ≤ σ − 1 . Note that

|Bi| = 2(σ − i) and that a letter ai occurs in Bj if and only if

j ≤ i. We then consider the word x = B1B2 · · ·Bi · · ·Bσ−1

which has length |x| =
∑σ−1

i=1
2(σ − i) = σ(σ − 1).

Now consider any prefix y of x with |y| > 2(σ − 1) .

�en y = B1B2 · · ·Bj−1Bj , where Bj is a prefix of Bj for

some j > 1. For any i < j the words of length 3 with ai

as the mid-letter that occur in y are the ones in the

set Ui = {aℓaiaℓ | 1 ≤ ℓ ≤ i − 2} ∪ {akaiak+1 | i + 1 ≤ k

 ≤ σ − 1} ∪ {ai−2aiai−1} ∪ {aσaiai+2} , with the last sin-

gleton not included if i = j − 1 and Bj = ε . We thus have

|Ui| ≤ σ.

We notice that the strings of the form akai for

all k ∈ Pi = {1, 2, . . . , σ } \ {i − 1, i} occur in y

and similarly the strings of the form aiaℓ for all

ℓ ∈ Si = {1, 2, . . . , σ } \ {i, i + 1} occur in y. Hence, all

proper factors of all strings in Vi = {akaiaℓ | k ∈ Pi, ℓ ∈ Si}

occur in y and |Vi| = (σ − 2)2. �en all the words in

Mi = Vi \ Ui are minimal absent words of y of length

3 with mid-letter ai and they are at least (σ − 2)2 − σ.

Now, since |Bi| < 2σ for all i, we have that j >
|y|
2σ

. Hence ∑j−1

i=1
|Mi| ≥ ((σ − 2)2 − σ) ×

|y|
2σ

. Since the sets Mi are

pairwise disjoint it then follows that y has �(σ |y|) minimal

absent words of length 3.

Hence, given an alphabet of size σ we can construct

words of any length n, such that 2σ < n ≤ σ(σ − 1), that

have �(σn) minimal absent words of length 3.

Note that when σ ≤ n ≤ 2σ the example of

y = a1a2a3 · · · aσ (possibly padded with aσ’s) gives the

desired result as at most σ out of the σ 2 possible combi-

nations aiaj (of length 2) occur in y, while all proper fac-

tors of all such combinations occur in y. �

Useful properties of avoided words

In this section, we provide some useful insights of com-

binatorial nature which were not considered by Brendel

et al. [9]. By the definition of ρ-avoided words it follows

that a word w may be ρ-avoided even if it is absent from x.

In other words, dev(w) ≤ ρ may hold for either f (w) > 0

(occurring) or f (w) = 0 (absent).

Example 2 Consider again the word

x = AGCGCGACGTCTGTGT, k = 3, and ρ = −0.4.

 • Word w1 = CGT, at position 7 of x, is an occurring ρ

-avoided word:

 • Word w2 = AGT is an absent ρ-avoided word:

�is means that a naïve computation should consider

all possible σ k words. �en for each possible word w, the

value of dev(w) can be computed via pattern matching on

the suffix tree of x. In particular, we can search for the

occurrences of w, wp, ws, and wi in x in time O(k) [18]. In

order to avoid this inefficient computation, we exploit the

following crucial lemmas.

Lemma 3 Any absent ρ-avoided word w in x is a mini-

mal absent word of x.

Proof For w to be a ρ-avoided word it must hold that

�is implies that f (w) − E(w) < 0, which in

turn implies that E(w) > 0 since f (w) = 0. From

E(w) =
f (wp)×f (ws)

f (wi)
> 0, we conclude that f (wp) > 0 and

f (ws) > 0 must hold. Since f (w) = 0, f (wp) > 0, and

f (ws) > 0, w is a minimal absent word of x: all proper

factors of w occur in x. �

Lemma 4 Let w be a word occurring in x and T (x) be

the suffix tree of x. �en, if wp is a path-label of an implicit

node of T (x), dev(w) ≥ 0.

Proof For any w that occurs in x it holds

that f (wi) ≥ f (ws), which implies that

f (wp) ≥
f (wp)×f (ws)

f (wi)
= E(w). Furthermore, by the defini-

tion of the suffix tree, if w occurs in x and wp is a path-

label of an implicit node then f (wp) = f (w). It thus fol-

lows that f (w) − E(w) = f (wp) − E(w) ≥ 0, and since

max{1,
√
E(w)} > 0, the claim holds. �

Lemma 5 �e number of ρ-avoided words of length

k > 2 in a word of length n over an alphabet of size σ

is O(σn); in particular, this number is no more than

(σ + 1)n − k + 1. �e upper bound O(σn) is tight if √
n + 1 ≤ σ ≤ n.

Proof By Lemma 3, every ρ-avoided word is either

occurring or a minimal absent word. It is known that the

number of minimal absent words in a word of length n

is smaller than or equal to σn [20]. Clearly, the occur-

ring ρ-avoided words in a word of length n are at most

E(w1) = 3 × 3/6 = 1.5, dev(w1) = (1 − 1.5)/
√
1.5 = −0.408248.

E(w2) = 1 × 3/6 = 0.5, dev(w2) = (0 − 0.5)/1 = −0.5.

dev(w) =
f (w) − E(w)

max{
√
E(w), 1}

≤ ρ < 0.

Page 6 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

n − k + 1. �erefore the number of ρ-avoided words

of length k are no more than (σ + 1)n − k + 1. �is

implies that O(σn) is an asymptotic upper bound. In the

case of an alphabet of size
√
n + 1 ≤ σ ≤ n, it follows

from Lemma 2 that there exist words with �(σn) mini-

mal absent words of a fixed length k > 2. Consider such

a word x, the respective k, and some ρ ≥ −
1

n
. Let w be

any minimal absent word of x. We have that f (wp) ≥ 1 ,

f (ws) ≥ 1, and f (wi) ≤ n; and hence E(w) ≥
1

n
. Since

f (w) = 0, it follows that dev(w) ≤ −
1

n
≤ ρ. �us, every

minimal absent word of x is ρ-avoided, and since there

are �(σn) of them of length k, we conclude that O(σn) is

a tight asymptotic bound in this case. �

Avoided words algorithm

In this section, we present Algorithm AW

for computing all ρ-avoided words of length k in a given

word x. �e algorithm builds the suffix tree T (x) for

word x, and then prepares T (x) to allow constant-time

observed frequency queries. �is is mainly achieved

by counting the terminal nodes in the subtree rooted at

node v for every node v of T (x). Additionally during this

pre-processing, the algorithm computes the word-depth

of v for every node v of T (x). By Lemma 3, ρ-avoided

words are classified as either occurring or (minimal)

absent, therefore Algorithm AW calls Rou-

tines AAW and OA-

W to compute both classes of ρ-avoided words

in x. �e outline of Algorithm AW is as

follows.

Computing absent avoided words

In Lemma 3, we showed that each absent ρ-avoided word

is a minimal absent word. �us, Routine AA-

W starts by computing all minimal absent words

in x; this can be done in time and space O(n) for a fixed-

sized alphabet or in time O(σn) for integer alphabets [4,

5]. Let < (i, j),α > be a tuple representing a minimal

absent word in x, where for some minimal absent word w

of length |w| > 2, w = x[i . . . j]α, α ∈ �; this representa-

tion is clearly unique.

Intuitively, the idea is to check the length of every

minimal absent word. If a tuple < (i, j),α > represents a

minimal absent word w of length k = j − i + 2, then the

value of dev(w) is computed to determine whether w is

an absent ρ-avoided word. Note that, if w = x[i . . . j]α

is a minimal absent word, then wp = x[i . . . j],

wi = x[i + 1 . . . j], and ws = x[i + 1 . . . j]α occur in x by

Definition 1. �us, there are three (implicit or explicit)

nodes in T (x) path-labelled wp, wi, and ws, respectively.

�e observed frequencies of wp, wi, and ws are already

computed during the pre-processing of T (x). For an explicit

node v of T (x), path-labelled w′ = x[i′ . . . j′], the value C(v),

which is the number of terminal nodes in the subtree rooted

at v, is equal to the number of occurrences (observed fre-

quency) of w′ in x. For an implicit node along the edge (u, v)

path-labelled w′′, the number of occurrences of w′′ is equal to

C(v) (and not C(u)). �e implementation of this procedure is

given in Routine AAW.

Computing occurring avoided words

Lemma 4 suggests that for each occurring ρ-avoided

word w, wp is a path-label of an explicit node v of T (x) .

�us, for each internal node v such that D(v) = k − 1

and L(v) = wp, Routine OAW

computes dev(w), where w = wpα, α ∈ �, is a path-label

of a child (explicit or implicit) node of v. Note that if wp

is a path-label of an explicit node v then wi is a path-

label of an explicit node u of T (x); node u is well-defined

and it is the node pointed at by the suffix-link of v. �e

implementation of this procedure is given in Routine

OAW.

Page 7 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

Analysis of the algorithm

Lemma 6 Given a word x, an integer k > 2, and a real

number ρ < 0, Algorithm AW computes all

ρ-avoided words of length k in x.

Proof By definition, a ρ-avoided word w is either an

absent ρ-avoided word or an occurring one. Hence, the

proof of correctness relies on Lemmas 3 and 4. First,

Lemma 3 indicates that an absent ρ-avoided word in x is

necessarily a minimal absent word. Routine AA-

W considers each minimal absent word w

and verifies if w is a ρ-avoided word of length k.

Second, Lemma 4 indicates that for each occurring ρ

-avoided word w, wp is a path-label of an explicit node v

of T (x). Routine OAW considers

every child of each such node of word-depth k, and veri-

fies if its path-label is a ρ-avoided word. �

Lemma 7 Given a word x of length n over a fixed-sized

alphabet, an integer k > 2, and a real number ρ < 0,

Algorithm AW requires time and space

O(n) ; for integer alphabets, it requires time O(σn).

Proof Constructing the suffix tree T (x) of the input

word x takes time and space O(n) for a word over

a fixed-sized alphabet [18]. Once the suffix tree is

constructed, computing arrays D and C by travers-

ing T (x) requires time and space O(n). Note that the

path-labels of the nodes of T (x) can by implemented

in time and space O(n) as follows: traverse the suffix

tree to compute for each node v the smallest index i

of the terminal nodes of the subtree rooted at v. �en

L(v) = x[i . . . i + D(v) − 1].

Next, Routine AAW requires time

O(n). It starts by computing all minimal absent words of

x, which can be achieved in time and space O(n) over a

fixed-sized alphabet [4, 5]. �e rest of the procedure deals

with checking each of the O(n) minimal absent words of

length k. Checking each minimal absent word w to deter-

mine whether it is a ρ-avoided word or not requires time

O(1). In particular, an O(n)-time pre-processing of T (x)

allows the retrieval of the (implicit or explicit) node in

T (x) corresponding to the longest proper prefix of w in

time O(1) [21]. Finally, Routine OA-

W requires time O(n). It traverses the suffix tree

T (x) to consider all explicit nodes of word-depth k − 1 .

�en for each such node, the procedure checks every

(explicit or implicit) child of word-depth k. �e total

number of these children is at most n − k + 1. For every

child node, the procedure checks whether its path-label is

a ρ-avoided word in time O(1) via the use of suffix-links.

For integer alphabets, the suffix tree can be con-

structed in time O(n) [22] and all minimal absent words

can be computed in time O(σn) [4, 5]. �e efficiency of

Algorithm AW is then limited by the total

number of words to be considered, which, by Lemma 5,

is O(σn). Note that for integers alphabets, a batch of

q C(v,α) queries can be answered off-line in time

O(n + q) with the aid of radix sort (in Routine AA-

W) or on-line in time O(q log σ) (in Routine

OAW). �

Lemmas 5, 6 and 7 imply the first result of this article.

�eorem 1 Algorithm AW solves Problem

AWC in time and space O(n).

For integer alphabets, the algorithm solves the problem in

time O(σn); this is time-optimal if
√
n + 1 ≤ σ ≤ n.

Optimal computation of all ρ‑avoided words

Although the biological motivation is yet to be shown

for this, we present here how we can modify Algorithm

AW so that it computes all ρ-avoided

words (of all lengths) in a given word x of length n over

an integer alphabet of size σ in time O(σn). We further

show that this algorithm (AAW) is in fact

time-optimal.

Based on Lemma 1 and similarly to the proof of

Lemma 5 we obtain the following result.

Lemma 8 �e number of ρ-avoided words in a word of

length n over an alphabet of size 2 ≤ σ ≤ n is O(σn) and

this bound is tight.

It is clear that if we just remove the condition on

the length of each minimal absent word in Line 2 of

Page 8 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

AAW we then compute all absent ρ

-avoided words in time O(σn). In order to compute all

occurring ρ-avoided words in x it suffices by Lemma 4

to investigate the children of explicit nodes. We can thus

traverse the suffix tree T (x) and for each explicit inter-

nal node, check for all of its children (explicit or implicit)

whether their path-label is a ρ-avoided word. We can do

this in O(1) time as described. �e total number of these

children is at most 2n − 1, as this is the bound on the

number of edges of T (x) [18]. �is modified algorithm is

clearly time-optimal for fixed-sized alphabets as it then

runs in time O(n). �e time optimality for integer alpha-

bets follows directly from Lemma 8. Hence we obtain the

second result of this article.

�eorem 2 Algorithm AAW solves

Problem AAWC in time

O(σn). �is is time-optimal if 2 ≤ σ ≤ n.

Remark 1 In [23], it is shown that all |A| minimal absent

words of a word x of length n over an integer alphabet

can be computed in time O(n + |A|) and space O(n) .

Computing minimal absent words and checking for each

of them if it is an avoided word is the bottleneck for algo-

rithms AW and AAW. �e

result of [23] implies that for a word x of length n over

an integer alphabet we can make both algorithms to

require time O(n + |A|) and space O(n). We can do that

by checking for each minimal absent word output by the

algorithm whether it is avoided, instead of storing a rep-

resentation of them and then making the check.

Remark 2 As the complexity of algorithms A-

W and AAW does not depend on

the value of ρ, one can use a negative ρ close to 0, sort the

output ρ-avoided words with respect to dev(w), and con-

sider the extreme ones.

Lemma 9 �e expected length of the longest ρ-avoided

word in a word x of length n over an alphabet � of size

σ > 1 is O(logσ n) when the letters are independent and

identically distributed random variables uniformly dis-

tributed over �.

Proof By Lemma 4 the length of the longest occurring

word is bounded above by the word-depth of the deepest

internal explicit node in T (x) incremented by 1. We note

that the greatest word-depth of an internal node corre-

sponds to the longest repeated factor in word x. Moreo-

ver, for a word w to be a minimal absent word, wi must

appear at least twice in x (in the occurrences of wp and

ws). Hence the length of the longest ρ-avoided word is

bounded by the length of the longest repeated factor in

x incremented by 2. �e expected length of the longest

repeated factor in a word is known to be O(logσ n) [24]

and hence the lemma follows. �

Experimental results

Algorithm AW was implemented as a pro-

gram to compute the ρ-avoided words of length k in one or

more input sequences; there is an option to run Algorithm

AAW instead. �e program was imple-

mented in the C++ programming language and developed

under GNU/Linux operating system. Our program makes

use of the implementation of the compressed suffix tree

available in the Succinct Data Structure Library [25]. �e

input parameters are a (Multi)FASTA file with the input

sequence(s), an integer k > 2 , and a real number ρ < 0.

�e output is a file with the set of ρ-avoided words of

length k per input sequence. �e implementation is dis-

tributed under the GNU General Public License, and it is

available at http://github.com/solonas13/aw. �e experi-

ments were conducted on a Desktop PC using one core of

Intel Core i5-4690 CPU at 3.50 GHz under GNU/Linux.

�e program was compiled with g++ version 4.8.4 at

optimisation level 3 (−O3). We also implemented a brute-

force approach for the computation of ρ-avoided words.

We mainly used it to confirm the correctness of our imple-

mentation. Here we do not plot the results of the brute-

force approach as it is easily understood that it is orders of

magnitude slower than our approach.

Experiment I

To evaluate the time performance of our implementa-

tion, synthetic DNA (σ = 4) and protein (σ = 20) data

were used. �e input sequences were generated using a

randomised script. In the first experiment, our task was

to establish that the performance of the program does not

essentially depend on k and ρ; i.e., the elapsed time of the

program remains unchanged up to some constant with

increasing values of k and decreasing values of ρ. As input

datasets, for this experiment, we used a DNA and a protein

sequence both of length 1M (1 Million letters). For each

sequence we used different values of k and ρ. �e results,

for elapsed time are plotted in Fig. 2. It becomes evident

from the results that the time performance of the program

remains unchanged up to some constant. �e longer time

required for the protein sequences for some value of k is

explained by the increased number of branching nodes in

this depth in the corresponding suffix tree due to the size of

the alphabet (σ = 20). To confirm this we counted the num-

ber of nodes considered by the algorithm to compute the ρ

-avoided words for k = 4 and ρ = −10 for both sequences.

�e number of considered nodes for the DNA sequence

was 260 whereas for the protein sequence it was 1,585,510.

http://github.com/solonas13/aw

Page 9 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

Experiment II

In the second experiment, our task was to establish the fact

that the elapsed time and memory usage of the program

grow linearly with n, the length of the input sequence.

As input datasets, for this experiment, we used synthetic

DNA and proteins sequences ranging from 1 to 128 M. For

each sequence we used constant values for k and ρ: k = 8

and ρ = −10. �e results, for elapsed time and peak mem-

ory usage, are plotted in Fig. 3. It becomes evident from

the results that the elapsed time and memory usage of the

program grow linearly with n. �e longer time required for

the protein sequences compared to the DNA sequences

for increasing n is explained by the increased number of

branching nodes in this depth (k = 8) in the correspond-

ing suffix tree due to the size of the alphabet (σ = 20).

To confirm this we counted the number of nodes consid-

ered by the algorithm to compute the ρ-avoided words

for n = 64M for both the DNA and the protein sequence.

�e number of nodes for the DNA sequence was 69,392

whereas for the protein sequence it was 43,423,082.

Time for n = 1M and ρ = −10 Time for n = 1M and k = 8

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20 25 30

T
im

e
 [

s
]

Fixed Length k [-]

DNA
Proteins

 0

 2

 4

 6

 8

 10

 12

-20-15-10-5 0

T
im

e
 [

s
]

Threshold [-]

DNA
Proteins

Fig. 2 Experiment I. Elapsed time of Algorithm AVOIDEDWORDS using synthetic DNA (σ = 4) and proteins (σ = 20) data of length 1M for variable k

and variable ρ

Time for k = 8 and ρ = −10 Memory for k = 8 and ρ = −10

 0

 200

 400

 600

 800

 1000

 1200

 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08

T
im

e
 [

s
]

Length n [-]

DNA
Proteins

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08

M
e

m
o

ry
 [

K
b

]

Length n [-]

DNA
Proteins

Fig. 3 Experiment II. Elapsed time and peak memory usage of Algorithm AVOIDEDWORDS using synthetic DNA (σ = 4) and proteins (σ = 20) data of

length 1–128M

Page 10 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

Experiment III

 In the next experiment, our task was to evaluate the time

and memory performance of our implementation with

real data. As input datasets, for this experiment, we used

all chromosomes of the human genome. �eir lengths

range from around 46M (chromosome 21) to around

249M (chromosome 1). For each sequence we used k = 8

and ρ = −10. �e results, for elapsed time and peak

memory usage, are plotted in Fig. 4. �e results with real

data confirm that the elapsed time and memory usage of

the program grow linearly with n.

Experiment IV

 In an experiment with a prokaryote, we computed the

set of avoided words for k = 6 (hexamers) and ρ = −10

in the complete genome of Escherichia coli and sorted

the output in increasing order of their deviation. �e

most avoided words were extremely enriched in self-

complementary (palindromic) hexamers. In particular,

within the output of 28 avoided words, 23 were self-com-

plementary; and the 17 most avoided ones were all self-

complementary. For comparison, we computed the set of

avoided words for k = 6 and ρ = −10 from an eukary-

otic sequence: a segment of the human chromosome 21

(its leftmost segment devoid of N’s) equal to the length

of the E. coli genome. In the output of 10 avoided words,

no self-complementary hexamer was found. Our results

confirm that the restriction endonucleases which tar-

get self-complementary sites are not found in eukaryotic

sequences [8].

Experiment V

 �en, we proceeded to the examination of several col-

lections of CNEs obtained through multiple sequence

alignment between the human and other genomes. �e

detailed description of how those CNEs were identified

could be found in [15]. For each CNE of these datasets,

a sequence stretch (surrogate sequence) of non-coding

DNA of equal length and equal GC content was taken

at random from the repeat-masked human genome.

�e CNEs of each collection were concatenated into a

single long sequence and the same procedure was fol-

lowed for the corresponding surrogates. Seven CNEs

concatenates and the corresponding surrogate datasets

have been formed and used in this experiment. We have

determined through the proposed algorithm the avoided

words for k = 10 (decamers) and ρ = −2 for these four-

teen datasets and the results are presented in Table 1. In

Table 2, we show likewise for k > 2 (all avoided words)

and ρ = −2.

Time for k = 8 and ρ = −10 Memory for k = 8 and ρ = −10

 0

 20

 40

 60

 80

 100

 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

T
im

e
 [
s
]

Length n [-]

Human Genome

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

M
e
m

o
ry

 [
K

b
]

Length n [-]

Human Genome

Fig. 4 Experiment III. Elapsed time and peak memory usage of Algorithm AVOIDEDWORDS using all chromosomes of the human genome

Table 1 The number of avoided words, for k = 10 and ρ = −2, for each concatenate of surrogates (Row 1); the number

of avoided words of the corresponding CNE dataset (Row 2); and their ratio (Row 3)

CNEs 75–80 CNEs 80–85 CNEs 85–90 CNEs 90–95 CNEs 95–100 Mammalian Amniotic

Surr. 1658 810 445 256 429 29,677 6043

CNE 514 153 51 40 45 2821 623

Ratio 3.23 5.29 8.73 6.40 9.53 10.52 9.70

Page 11 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

�e first five CNEs collections have been composed

through multiple sequence alignment of the same set

of genomes and they differ only in the thresholds of

sequence similarity applied between the considered

genomes: from 75 to 80 (the least conserved CNEs, which

thus are expected to serve less demanding functional

roles) to 95–100 which represent the extremely conserved

non-coding elements (UCNEs or CNEs 95–100) [15]. �e

remaining two collections have been composed under dif-

ferent constraints and have been derived after alignment

of genomes belonging to the Mammalian and Amniotic

groups. In Tables 1 and 2, the last line shows the ratios

formed by the numbers of avoided words of each con-

catenate of surrogates divided by the numbers of avoided

words of the corresponding CNE dataset.

Two immediate results stem from inspection of

Tables 1 and 2:

1. In all cases, the number of avoided words from the

non-functional (surrogate) concatenate of sequences

far exceeds the corresponding number derived from

the corresponding CNE dataset.

2. In the case of datasets with increasing degree of

similarity between aligned genomes (from 75–80 to

95–100) the ratios of the numbers of avoided words

show a clear increasing trend.

Both these findings can be understood on the basis of the

difference in functionality, and thus tolerance to muta-

tions, between CNE and surrogate datasets. One particu-

larly frequent source of mutations is the slippage error

during DNA replication; see e.g. reference [26]. Within

a genomic sequence, this phenomenon causes the gen-

eration and increase in length, during evolutionary time,

of polypyrimidine and polypurine nucleotide tracts. �e

expansion of those tracts is impeded at a considerable

degree in the case of sequences which serve a functional

role (as CNEs do) due to several constraints. On the other

hand, in non-functional regions (as our surrogates mostly

are) this procedure ceases to be tolerated only when it

reaches to the formation of a polypyrimidine/polypurine

tract with length affecting the proper folding or other

structural features of the chromatin. �en, selection

eliminates it, while its longer proper factors are tolerated

in sufficient numbers within the sequence, thus resulting

to an avoided word. In support of this explanation is the

observation that all lists of avoided words found by our

algorithm in concatenates of surrogates exhibit a consid-

erable enrichment in oligopurines and oligopyrimidines.

Taking at random some examples, for k = 10, we notice:

AAAAAAAAAT, AAAAAACCAC, ACAAAAAAAA, CTC-

CTCTTTT, etc.

Our second observation, i.e. the positive correlation

between (1) the paucity of avoided decamers in CNEs

collections and (2) the similarity thresholds used for

their identification comes in accordance with the above

argument. CNEs extracted under a stricter requirement

of sequence similarity between evolutionary distant

species are CNEs whose functionality is less tolerant to

alterations due to random mutations in general. Hence,

they also tolerate less the propagation within their

sequence of parasite polypyrimidine/polypurine tracts

too.

Conclusions

We presented an O(n)-time and O(n)-space algorithm to

compute all ρ-avoided words of length k in a sequence of

length n over a fixed-sized alphabet. For integer alpha-

bets, our algorithm runs in time O(σn) and is optimal for

a sufficiently large alphabet of size σ. We also presented

a time-optimal O(σn)-time algorithm to compute all ρ

-avoided words (of any length) in a sequence of length n

over an integer alphabet. Moreover, we provided a tight

asymptotic upper bound for the number of ρ-avoided

words over an integer alphabet and the expected length

of the longest one.

In the process, we showed that the known asymptotic

upper bound on the number of minimal absent words of

a sequence is tight for integer alphabets. We also showed

that the same asymptotic bound is tight for the number

of minimal absent words of a fixed length if the alphabet

is sufficiently large.

Finally, we made available an implementation of our

algorithm. Experimental results, using both real and syn-

thetic data, show its efficiency and applicability in biolog-

ical sequence analysis.

Table 2 The number of avoided words, for k > 2 and ρ = −2, for each concatenate of surrogates (Row 1); the number

of avoided words of the corresponding CNE dataset (Row 2); and their ratio (Row 3)

CNEs 75–80 CNEs 80–85 CNEs 85–90 CNEs 90–95 CNEs 95–100 Mammalian Amniotic

Surr. 10,734 7202 5351 3849 4540 112,181 22,595

CNE 3207 1847 1296 1043 1030 17,685 3635

Ratio 3.35 3.90 4.13 3.69 4.41 6.34 6.22

Page 12 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

Authors’ contributions

YA and SPP conceived the study. PC, JG, MM, CSI, and SPP devised the algo-

rithms. PC showed the tight asymptotic bounds. JG and SPP implemented the

algorithms. YA, JG, SPP, and DP conceived and conducted the experiments. All

authors contributed equally in writing up the manuscript. All authors read and

approved the final manuscript.

Author details
1 National Center for Scientific Research Demokritos, Neapoleos, 153 10 Ath-

ens, Greece. 2 Department of Informatics, King’s College London, The Strand,

London WC2R 2LS, UK. 3 Computational Regulatory Genomics, MRC Clinical

Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK.

Acknowledgements

Open access for this article was funded by King’s College London.

Competing interests

The authors declare that they have no competing interests.

Funding

This research was partially supported by the Leverhulme Trust. PC is supported

by the Graduate Teaching Scholarship scheme of the Department of Informat-

ics at King’s College London. DP is supported by the UK Medical Research

Council (MRC) postdoctoral scheme.

Received: 14 November 2016 Accepted: 2 March 2017

References

 1. Searls DB. The linguistics of DNA. Am Sci. 1992;80(6):579–91.

 2. Mantegna RN, Buldyrev SV, Goldberger AL, Havlin S, Peng C-K, Simons M,

Stanley HE. Linguistic features of noncoding DNA sequences. Phys Rev

Lett. 1994;73(23):3169. doi:10.1103/PhysRevLett.73.3169.

 3. Acquisti C, Poste G, Curtiss D, Kumar S. Nullomers: really a matter of

natural selection? PLoS ONE. 2007;2(10):1022. doi:10.1371/journal.

pone.0001022.

 4. Barton C, Heliou A, Mouchard L, Pissis SP. Linear-time computation of

minimal absent words using suffix array. BMC Bioinform. 2014;15(1):1.

doi:10.1186/s12859-014-0388-9.

 5. Barton C, Heliou A, Mouchard L, Pissis SP. Parallelising the computation

of minimal absent words. In: Wyrzykowski R, Deelman E, Dongarra J,

Karczewski K, Kitowski J, Wiatr K, editors. Parallel processing and applied

mathematics—11th international conference, PPAM 2015, Krakow,

Poland, September 6–9, 2015. Revised selected papers, Part II. lecture

notes in computer science. vol. 9574. Berlin: Springer; 2015. p. 243–53.

doi:10.1007/978-3-319-32152-3_23.

 6. Crochemore M, Fici G, Mercas R, Pissis SP. Linear-time sequence com-

parison using minimal absent words and applications. In: Kranakis E,

Navarro G, Chávez E, editors. LATIN 2016: theoretical informatics: 12th

Latin American symposium, Ensenada, April 11–15, 2016, Proceedings.

Lecture notes in computer science. Berlin: Springer; 2016. p. 334–46.

doi:10.1007/978-3-662-49529-2_25.

 7. Belazzougui D, Cunial F. Space-efficient detection of unusual words. In:

International symposium on string processing and information retrieval.

Berlin: Springer; 2015. p. 222–33. doi:10.1007/978-3-319-23826-5_22.

 8. Rusinov I, Ershova A, Karyagina A, Spirin S, Alexeevski A. Lifespan of

restriction-modification systems critically affects avoidance of their rec-

ognition sites in host genomes. BMC Genom. 2015;16(1):1. doi:10.1186/

s12864-015-2288-4.

 9. Brendel V, Beckmann JS, Trifonov EN. Linguistics of nucleotide sequences:

morphology and comparison of vocabularies. J Biomol Struct Dyn.

1986;4(1):11–21. doi:10.1080/07391102.1986.10507643.

 10. Apostolico A, Bock ME, Lonardi S, Xu X. Efficient detec-

tion of unusual words. J Comput Biol. 2000;7(1–2):71–94.

doi:10.1089/10665270050081397.

 11. Apostolico A, Bock ME, Lonardi S. Monotony of surprise and large-

scale quest for unusual words. J Comput Biol. 2003;10(3–4):283–311.

doi:10.1089/10665270360688020.

 12. Apostolico A, Gong F-C, Lonardi S. Verbumculus and the discovery of

unusual words. J Comput Sci Technol. 2004;19(1):22–41. doi:10.1007/

BF02944783.

 13. Harmston N, Barešić A, Lenhard B. The mystery of extreme non-coding

conservation. Philos Trans R Soc B. 2013;368(1632):20130021. doi:10.1098/

rstb.2013.0021.

 14. Polychronopoulos D, Sellis D, Almirantis Y. Conserved noncoding ele-

ments follow power-law-like distributions in several genomes as a result

of genome dynamics. PloS ONE. 2014;9(5):95437. doi:10.1371/journal.

pone.0095437.

 15. Polychronopoulos D, Weitschek E, Dimitrieva S, Bucher P, Felici G,

Almirantis Y. Classification of selectively constrained DNA elements using

feature vectors and rule-based classifiers. Genomics. 2014;104(2):79–86.

doi:10.1016/j.ygeno.2014.07.004.

 16. Polychronopoulos D, Krithara A, Nikolaou C, Paliouras G, Almirantis

Y, Giannakopoulos G. In: Dediu AH, Martín-Vide C, Truthe B, editors.

Analysis and classification of constrained DNA elements with n-gram

graphs and genomic signatures. Berlin: Springer; 2014. p. 220–34.

doi:10.1007/978-3-319-07953-0_18

 17. Almirantis Y, Charalampopoulos P, Gao J, Iliopoulos CS, Mohamed

M, Pissis SP, Polychronopoulos D. Optimal computation of avoided

words. In: Algorithms in bioinformatics: 16th international work-

shop (WABI 2016). Berlin: Springer International Publishing. p. 1–13.

doi:10.1007/978-3-319-43681-4_1.

 18. Crochemore M, Hancart C, Lecroq T. Algorithms on strings. Cambridge:

Cambridge University Press; 2007.

 19. Charalampopoulos P, Crochemore M, Fici G, Mercas R, Pissis SP. Align-

ment-free sequence comparison using absent words (Under Review)

 20. Mignosi F, Restivo A, Sciortino M. Words and forbidden factors. Theor

Comput Sci. 2002;273(1):99–117. doi:10.1016/S0304-3975(00)00436-9.

 21. Gawrychowski P, Lewenstein M, Nicholson PK. Weighted ancestors in

suffix trees. Eur Symp Algorithms. 2014. doi:10.1007/978-3-662-44777-2.

 22. Farach M. Optimal suffix tree construction with large alphabets. In: Pro-

ceedings, 38th annual symposium on foundations of computer science.

New York City: IEEE; 1997. p. 137–43. doi:10.1109/SFCS.1997.646102.

 23. Fujishige Y, Tsujimaru Y, Inenaga S, Bannai H, Takeda M. Computing

DAWGs and minimal absent words in linear time for integer alphabets. In:

Faliszewski P, Muscholl A, Niedermeier R, editors. 41st International sym-

posium on mathematical foundations of computer science (MFCS 2016).

Leibniz international proceedings in informatics (LIPIcs), vol. 58: Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik; 2016. p. 1–14. doi:10.4230/

LIPIcs.MFCS.2016.38.

 24. Manber U, Myers G. Suffix arrays: a new method for on-line string

searches. Siam J Comput. 1993;22(5):935–48. doi:10.1137/0222058.

 25. Gog S, Beller T, Moffat A, Petri M. From theory to practice: plug

and play with succinct data structures. In: International Sympo-

sium on experimental algorithms. Berlin: Springer; 2014. p. 326–37.

doi:10.1007/978-3-319-07959-2_28.

 26. Hile SE, Eckert KA. Positive correlation between DNA polymerase α

-primase pausing and mutagenesis within polypyrimidine/polypurine

microsatellite sequences. J Mol Biol. 2004;335(3):745–59. doi:10.1016/j.

jmb.2003.10.075.

http://dx.doi.org/10.1103/PhysRevLett.%2073.3169
http://dx.doi.org/10.1371/journal.pone.0001022
http://dx.doi.org/10.1371/journal.pone.0001022
http://dx.doi.org/10.1186/s12859-014-0388-9
http://dx.doi.org/10.1007/978-3-319-32152-3%5f23
http://dx.doi.org/10.1007/978-3-662-49529-2%5f25
http://dx.doi.org/10.1007/978-3-319-23826-5%5f22
http://dx.doi.org/10.1186/s12864-015-2288-4
http://dx.doi.org/10.1186/s12864-015-2288-4
http://dx.doi.org/10.1080/07391102.1986.10507643
http://dx.doi.org/10.1089/10665270050081397
http://dx.doi.org/10.1089/10665270360688020
http://dx.doi.org/10.1007/BF02944783
http://dx.doi.org/10.1007/BF02944783
http://dx.doi.org/10.1098/rstb.2013.0021
http://dx.doi.org/10.1098/rstb.2013.0021
http://dx.doi.org/10.1371/journal.pone.0095437
http://dx.doi.org/10.1371/journal.pone.0095437
http://dx.doi.org/10.1016/j.ygeno.2014.07.004
http://dx.doi.org/10.1007/978-3-319-07953-0%5f18
http://dx.doi.org/10.1007/978-3-319-43681-4%5f1
http://dx.doi.org/10.1016/S0304-3975(00)00436-9
http://dx.doi.org/10.1007/978-3-662-44777-2
http://dx.doi.org/10.1109/SFCS.1997.646102
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.38
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.38
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1007/978-3-319-07959-2%5f28
http://dx.doi.org/10.1016/j.jmb.2003.10.075
http://dx.doi.org/10.1016/j.jmb.2003.10.075

	On avoided words, absent words, and their application to biological sequence analysis
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Introduction
	Our contributions

	Methods
	Terminology and technical background
	Definitions and notation
	Suffix trees

	Tight bounds on minimal absent words
	Useful properties of avoided words
	Avoided words algorithm
	Computing absent avoided words
	Computing occurring avoided words
	Analysis of the algorithm

	Optimal computation of all ρ-avoided words

	Experimental results
	Experiment I
	Experiment II
	Experiment III
	Experiment IV
	Experiment V

	Conclusions
	Authors’ contributions
	References

