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Abstract 

Background:  The deviation of the observed frequency of a word w from its expected frequency in a given sequence 

x is used to determine whether or not the word is avoided. This concept is particularly useful in DNA linguistic analysis. 

The value of the deviation of w, denoted by dev(w), effectively characterises the extent of a word by its edge contrast 

in the context in which it occurs. A word w of length k > 2 is a ρ-avoided word in x if dev(w) ≤ ρ, for a given thresh-

old ρ < 0. Notice that such a word may be completely absent from x. Hence, computing all such words naïvely can be 

a very time-consuming procedure, in particular for large k.

Results:  In this article, we propose an O(n)-time and O(n)-space algorithm to compute all ρ-avoided words of 

length k in a given sequence of length n over a fixed-sized alphabet. We also present a time-optimal O(σn)-time 

algorithm to compute all ρ-avoided words (of any length) in a sequence of length n over an integer alphabet of size σ . 

In addition, we provide a tight asymptotic upper bound for the number of ρ-avoided words over an integer alphabet 

and the expected length of the longest one. We make available an implementation of our algorithm. Experimental 

results, using both real and synthetic data, show the efficiency and applicability of our implementation in biological 

sequence analysis.

Conclusions: The systematic search for avoided words is particularly useful for biological sequence analysis. We pre-

sent a linear-time and linear-space algorithm for the computation of avoided words of length k in a given sequence 

x. We suggest a modification to this algorithm so that it computes all avoided words of x, irrespective of their length, 

within the same time complexity. We also present combinatorial results with regards to avoided words and absent 

words.
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Background

Introduction

�e one-to-one mapping of a DNA molecule to a 

sequence of letters suggests that DNA analysis can be 

modelled within the framework of formal language the-

ory  [1]. For example, a region within a DNA sequence 

can be considered as a “word” on a fixed-sized alphabet 

in which some of its natural aspects can be described by 

means of certain types of automata or grammars. How-

ever, a linguistic analysis of the DNA needs to take into 

account many distinctive physical and biological charac-

teristics of such sequences: �e genome consists of cod-

ing regions that encode for polypeptide chains associated 

with biological functions as well as a plethora of regula-

tory and potentially functional non-coding regions, iden-

tified through multiple alignment of genomes of several 

organisms, and termed conserved non-coding elements 

(CNEs). In addition, it contains large non-coding regions 
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most of which are not linked to any particular function. 

All these genomic components appear to have many sta-

tistical features in common with natural languages [2].

A computational tool oriented towards the system-

atic search for avoided words is particularly useful for in 

silico genomic research analyses. �e search for absent 

words is already undertaken in the recent past and sev-

eral results exist on the application and computation of 

such words [3–6]. However, words which may be present 

in a genome or in genomic sequences of a specific role 

(e.g., protein coding segments, regulatory elements, con-

served non-coding elements etc.) but they are strongly 

underrepresented—as we can estimate on the basis of the 

frequency of occurrence of their longest proper factors—

may be of particular importance. �ey can be words of 

nucleotides which are hardly tolerated because they neg-

atively influence the stability of the chromatin or, more 

generally, the functional genomic conformation; they can 

represent targets of restriction endonucleases which may 

be found in bacterial and viral genomes; or, more gener-

ally, they may be short genomic regions whose presence 

in wide parts of the genome are not tolerated for less 

known reasons. �e understanding of such avoidances is 

becoming an interesting line of research (for recent stud-

ies, see [7, 8]).

On the other hand, short words of nucleotides may be 

systematically avoided in large genomic regions or whole 

genomes for entirely different reasons, i.e. just because 

they play important signaling roles which confine 

their appearance only in specific positions: consensus 

sequences for the initiation of gene transcription and of 

DNA replication are well-known such oligonucleotides. 

Other such cases may be insulators, sequences anchoring 

the chromatin on the nuclear envelope like lamina-asso-

ciated domains, short sequences like dinucleotide repeat 

motifs with enhancer activity, and several other cases. 

Again, we cannot exclude that this area of research could 

lead to the identification of short sequences of regulatory 

activities still unknown.

Brendel et al. in [9] initiated research into the linguis-

tics of nucleotide sequences that focuses on the concept 

of words in continuous languages—languages devoid 

of blanks—and introduced an operational definition of 

words. �e authors suggested a method to measure, for 

each possible word w of length k, the deviation of its 

observed frequency from the expected frequency in a 

given sequence. �e values of the deviation, denoted by 

dev(w), were then used to identify words that are avoided 

among all possible words of length k. �e typical length 

of avoided (or of overabundant) words of the nucleotide 

language was found to range from 3 to 5 (tri- to pentam-

ers). �e statistical significance of the avoided words 

was shown to reflect their biological importance. �is 

work, however, was based on the very limited sequence 

data available at the time: only DNA sequences from two 

viral and one bacterial genomes were considered. Also 

note that k might change when considering eukaryotic 

genomes, the complex dynamics and function of which 

might impose a more demanding analysis. �e authors 

in [10–12] have studied the concept of unusual words—

based on different definitions than the ones Brendel et al. 

use for expectation and variance—focusing on the factors 

of a string, whereas based on Brendel et  al. definitions, 

we consider here any word over the alphabet.

Our contributions

�e computational problem can be described as follows. 

Given a sequence x of length n, an integer k, and a real 

number ρ < 0, compute the set of ρ-avoided words of 

length k, i.e. all words w of length k for which dev(w) ≤ ρ . 

We call this set the ρ-avoided words of length k in x. 

Brendel et al. did not provide an efficient solution for this 

computation  [9]. Notice that such a word may be com-

pletely absent from x. Hence the set of ρ-avoided words 

can be naïvely computed by considering all possible σ k 

words, where σ is the size of the alphabet.

Here we present an O(n)-time and O(n)-space algo-

rithm for computing all ρ-avoided words of length k in 

a sequence of length n over a fixed-sized alphabet. For 

words over an integer alphabet of size σ, the algorithm 

requires time O(σn), which is optimal for sufficiently 

large σ. We also present a time-optimal O(σn)-time algo-

rithm to compute all ρ-avoided words (of any length) in 

a sequence of length n over an integer alphabet of size σ. 

We provide a tight asymptotic upper bound for the num-

ber of ρ-avoided words over an integer alphabet and the 

expected length of the longest one. We also prove that 

the same asymptotic upper bound is tight for the number 

of ρ-avoided words of fixed length when the alphabet is 

sufficiently large.

As shown subsequently, the set of absent ρ-avoided 

words is a subset of the set of minimal absent words of a 

word. Hence the tight asymptotic bounds for ρ-avoided 

words are based on the proof we provide for the tight-

ness of the known asymptotic bound on minimal absent 

words and the tightness of this bound for minimal absent 

words of fixed length over sufficiently large alphabets.

We make available an open-source implementation of 

our algorithm. Experimental results, using both real and 

synthetic data, show its efficiency and applicability. Spe-

cifically, using our method we confirm that restriction 

endonucleases which target self-complementary sites are 

not found in eukaryotic sequences  [8]. In addition, we 

apply our algorithm in the case of CNEs, which are classes 

of sequences whose functions in our genomes remain 

largely enigmatic [13, 14]. We observe interesting patterns 
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of occurring avoided words within CNEs compared to 

CNE-like sequences (surrogates) that are in accordance 

with their distinct sequence characteristics which classify 

them from other non-functional sequences [15, 16].

A preliminary version of this article has appeared 

in [17].

Methods

Terminology and technical background

De�nitions and notation

We begin with basic definitions and notation generally 

following [18]. Let x = x[0]x[1] · · · x[n − 1] be a word of 

length n = |x| over a finite ordered alphabet � of fixed 

size σ, i.e. σ = |�| = O(1). We also consider the case of 

an integer alphabet; in this case each letter is replaced by 

its rank such that the resulting string consists of integers 

in the range {1, . . . , n}. For two positions i and j on x, we 

denote by x[i . . . j] = x[i] · · · x[j] the factor (sometimes 

called subword) of x that starts at position i and ends at 

position j (it is empty if j < i), and by ε the empty word, 

word of length 0. We recall that a prefix of x is a factor 

that starts at position 0 (x[0 . . . j]) and a suffix is a factor 

that ends at position n − 1 (x[i . . . n − 1]), and that a fac-

tor of x is a proper factor if it is not x itself. A factor of x 

that is neither a prefix nor a suffix of x is called an infix 

of x. We say that x is a power of a word y if there exists a 

positive integer k, k > 1, such that x is expressed as k con-

secutive concatenations of y; we denote that by x = yk .

Let w = w[0]w[1] · · ·w[m − 1] be a word, 0 < m ≤ n. 

We say that there exists an occurrence of w in x, or, more 

simply, that w occurs in x, when w is a factor of x. Every 

occurrence of w can be characterised by a starting posi-

tion in x. �us we say that w occurs at the starting posi-

tion i in x when w = x[i . . . i + m − 1]. Further let f(w) 

denote the observed frequency, that is, the number of 

occurrences of a non-empty word w in word x. Note that 

overlapping occurrences are considered as distinct ones; 

e.g. f (TT) = 2 in TTT. If f (w) = 0 for some word w, then 

w is called absent, otherwise, w is called occurring.

By f (wp), f (ws), and f (wi) we denote the observed fre-

quency of the longest proper prefix wp, suffix ws, and infix 

wi of w in x, respectively. We can now define the expected 

frequency of word w, |w| > 2, in x as in Brendel et al. [9]:

�e above definition can be explained intuitively as fol-

lows. Suppose we are given f (wp), f (ws), and f (wi). 

Given an occurrence of wi in x, the probability of it being 

preceded by w[0] is 
f (wp)

f (wi)
 as w[0] precedes exactly f (wp) 

of the f (wi) occurrences of wi. Similarly, this occurrence 

of wi is also an occurrence of ws with probability 
f (ws)

f (wi)
. 

(1)

E(w) =
f (wp) × f (ws)

f (wi)
, if f (wi) > 0; else E(w) = 0.

Although these two events are not always independent, 

the product 
f (wp)

f (wi)
×

f (ws)

f (wi)
 gives a good approximation 

of the probability that an occurrence of wi at position j 

implies an occurrence of w at position j − 1. It can be 

seen then that by multiplying this product by the num-

ber of occurrences of wi we get the above formula for the 

expected frequency of w.

Moreover, to measure the deviation of the observed 

frequency of a word w from its expected frequency in x, 

we define the deviation (χ2 test) of w as:

For more details on the biological justification of these 

definitions see  [9].

Using the above definitions and a given threshold, we 

are in a position to classify a word w as either avoided or 

common in x. In particular, for a given threshold ρ < 0, a 

word w is called ρ-avoided if dev(w) ≤ ρ. In this article, 

we consider the following computational problems.

Su�x trees

In our algorithms, suffix trees are used extensively as 

computational tools. For a general introduction to suffix 

trees, see [18].

�e suffix tree T (x) of a non-empty word x of length 

n is a compact trie representing all suffixes of x. �e 

nodes of the trie which become nodes of the suffix tree 

are called explicit nodes, while the other nodes are called 

implicit. Each edge of the suffix tree can be viewed as an 

upward maximal path of implicit nodes starting with an 

explicit node. Moreover, each node belongs to a unique 

path of that kind. �en, each node of the trie can be rep-

resented in the suffix tree by the edge it belongs to and an 

index within the corresponding path.

We use L(v) to denote the path-label of a node v, 

i.e., the concatenation of the edge labels along the path 

from the root to v. We say that v is path-labelled L(v). 

Additionally, D(v) = |L(v)| is used to denote the word-

depth of node v. Node v is a terminal node, if and only 

if, L(v) = x[i . . . n − 1], 0 ≤ i < n; here v is also labelled 

with index i. It should be clear that each occurring 

word w in x is uniquely represented by either an explicit 

or an implicit node of T (x). �e suffix-link of a node v 

with path-label L(v) = αy is a pointer to the node path-

labelled y, where α ∈ � is a single letter and y is a word. 

�e suffix-link of v exists if v is a non-root internal node 

(2)dev(w) =
f (w) − E(w)

max{
√
E(w), 1}

.
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of T (x). We denote by C(v,α) the explicit node that 

is obtained from v by traversing the outgoing edge whose 

label starts with α ∈ �.

In any standard implementation of the suffix tree, 

we assume that each node of the suffix tree is able to 

access its parent. Note that once T (x) is constructed, it 

can be traversed in a depth-first manner to compute the 

word-depth D(v) for each node v. Let u be the parent 

of v. �en the word-depth D(v) is computed by adding 

D(u) to the length of the label of edge (u, v). If v is the 

root then D(v) = 0. Additionally, a depth-first traversal 

of T (x) allows us to count, for each node v, the number 

of terminal nodes in the subtree rooted at v, denoted by 

C(v), as follows. When internal node v is visited, C(v) 

is computed by adding up C(u) of all the nodes u, such 

that u is a child of v, and then C(v) is incremented by 

1 if v itself is a terminal node. If a node v is a leaf then 

C(v) = 1.

Example 1  Consider the word x = AGCGCGACGTCTGTGT.  

Fig.  1 represents the suffix tree T (x). Note that word 

GCG is represented by the explicit internal node v; 

whereas word TCT is represented by the implicit node 

along the edge connecting the node labelled 15 and the 

node labelled 9. Consider node v in T (x); we have that 

L(v) = GCG, D(v) = 3, and C(v) = 2.

Tight bounds on minimal absent words

Definition 1 [4] An absent word w of x is minimal if 

and only if all proper factors of w occur in x.

We first show that the known asymptotic upper bound 

on the number of minimal absent words of a word is 

tight.

Lemma 1 [19] �e upper bound O(σn) on the number 

of minimal absent words of a word of length n over an 

alphabet of size σ is tight if 2 ≤ σ ≤ n.

Proof  To prove that the bound is tight it suffices to 

construct a word with these many minimal absent words 

asymptotically.

Let � = {a1, a2}, i.e.  σ = 2, and consider the word 

x = a2a
n−2

1
a2 of length n. All words of the form a2a

k
1
a2 

for 0 ≤ k ≤ n − 3 are minimal absent words in x. Hence x 

has at least n − 2 = �(n) minimal absent words.

Let � = {a1, a2, a3, . . . , aσ } with 3 ≤ σ ≤ n and con-

sider the word x = a2a
k
1
a3a

k
1
a4a

k
1
· · · aia

k
1
ai+1 · · · aσa

k
1
a
m
1

 , 

where k = ⌊ n

σ−1
⌋ − 1 and m = n − (σ − 1)(k + 1) . 

Note that x is of length n. Further note that aia
j
1
 is a 

factor of x, for all 2 ≤ i ≤ σ and 0 ≤ j ≤ k. Similarly, 

a
j
1
al is a factor of x, for all 3 ≤ l ≤ σ and 0 ≤ j ≤ k . 

�us all proper factors of all the words in the set 

S = {aia
j
1
al | 0 ≤ j ≤ k , 2 ≤ i ≤ σ , 3 ≤ l ≤ σ } occur in x. 

However, the only words in S that occur in x are the ones 

of the form aia
k
1
ai+1, for 2 ≤ i < σ. Hence x has at least 

(σ − 1)(σ − 2)(k + 1) − (σ − 2) = (σ − 1)(σ − 2)⌊ n

σ−1
⌋

−(σ − 2) = �(σn) minimal absent words.  �

In the following lemma we show that, for sufficiently 

large alphabets, O(σn) is a tight asymptotic bound for the 

number of minimal absent words of fixed length.

Fig. 1 The suffix tree T (x) for x = AGCGCGACGTCTGTGT. Double-lined nodes represent terminal nodes labelled with the associated indices. The 

suffix-links for non-root internal nodes are dashed
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Lemma 2 �e upper bound O(σn) on the number of 

minimal absent words of fixed length of a word of length n 

over an alphabet of size σ is tight if 
√
n + 1 ≤ σ ≤ n.

Proof  Let � = {a1, a2, a3, . . . , aσ } be an alphabet of 

size σ. We will show that we can construct words of any 

length n, with σ ≤ n ≤ σ(σ − 1), that have �(σn) mini-

mal absent words of length 3.

We first construct the strings (blocks) Bi = ai+1aiai+2ai 

· · · ai+jai · · · aσai, for 1 ≤ i ≤ σ − 1 . Note that 

|Bi| = 2(σ − i) and that a letter ai occurs in Bj if and only if 

j ≤ i. We then consider the word x = B1B2 · · ·Bi · · ·Bσ−1 

which has length |x| =
∑σ−1

i=1
2(σ − i) = σ(σ − 1).

Now consider any prefix y of x with |y| > 2(σ − 1) . 

�en y = B1B2 · · ·Bj−1Bj , where Bj  is a prefix of Bj for 

some j > 1. For any i < j the words of length 3 with ai 

as the mid-letter that occur in y are the ones in the  

set Ui = {aℓaiaℓ | 1 ≤ ℓ ≤ i − 2} ∪ {akaiak+1 | i + 1 ≤ k 

 ≤ σ − 1} ∪ {ai−2aiai−1} ∪ {aσaiai+2} , with the last sin-

gleton not included if i = j − 1 and Bj = ε . We thus have 

|Ui| ≤ σ.

We notice that the strings of the form akai for 

all k ∈ Pi = {1, 2, . . . , σ } \ {i − 1, i} occur in y 

and similarly the strings of the form aiaℓ for all 

ℓ ∈ Si = {1, 2, . . . , σ } \ {i, i + 1} occur in y. Hence, all 

proper factors of all strings in Vi = {akaiaℓ | k ∈ Pi, ℓ ∈ Si} 

occur in y and |Vi| = (σ − 2)2. �en all the words in 

Mi = Vi \ Ui are minimal absent words of y of length 

3 with mid-letter ai and they are at least (σ − 2)2 − σ. 

Now, since |Bi| < 2σ for all i, we have that j >
|y|
2σ

. Hence ∑j−1

i=1
|Mi| ≥ ((σ − 2)2 − σ) ×

|y|
2σ

. Since the sets Mi are 

pairwise disjoint it then follows that y has �(σ |y|) minimal 

absent words of length 3.

Hence, given an alphabet of size σ we can construct 

words of any length n, such that 2σ < n ≤ σ(σ − 1), that 

have �(σn) minimal absent words of length 3.

Note that when σ ≤ n ≤ 2σ the example of 

y = a1a2a3 · · · aσ (possibly padded with aσ’s) gives the 

desired result as at most σ out of the σ 2 possible combi-

nations aiaj (of length 2) occur in y, while all proper fac-

tors of all such combinations occur in y. �

Useful properties of avoided words

In this section, we provide some useful insights of com-

binatorial nature which were not considered by Brendel 

et al.  [9]. By the definition of ρ-avoided words it follows 

that a word w may be ρ-avoided even if it is absent from x. 

In other words, dev(w) ≤ ρ may hold for either f (w) > 0 

(occurring) or f (w) = 0 (absent).

Example 2  Consider again the word 

x = AGCGCGACGTCTGTGT, k = 3, and ρ = −0.4.

  • Word w1 = CGT, at position 7 of x, is an occurring ρ

-avoided word: 

  • Word w2 = AGT is an absent ρ-avoided word: 

�is means that a naïve computation should consider 

all possible σ k words. �en for each possible word w, the 

value of dev(w) can be computed via pattern matching on 

the suffix tree of x. In particular, we can search for the 

occurrences of w, wp, ws, and wi in x in time O(k) [18]. In 

order to avoid this inefficient computation, we exploit the 

following crucial lemmas.

Lemma 3 Any absent ρ-avoided word w in x is a mini-

mal absent word of x.

Proof  For w to be a ρ-avoided word it must hold that

�is implies that f (w) − E(w) < 0, which in 

turn implies that E(w) > 0 since f (w) = 0. From 

E(w) =
f (wp)×f (ws)

f (wi)
> 0, we conclude that f (wp) > 0 and 

f (ws) > 0 must hold. Since f (w) = 0, f (wp) > 0, and 

f (ws) > 0, w is a minimal absent word of x: all proper 

factors of w occur in x.  �

Lemma 4 Let w be a word occurring in x and T (x) be 

the suffix tree of x. �en, if wp is a path-label of an implicit 

node of T (x), dev(w) ≥ 0.

Proof  For any w that occurs in x it holds 

that f (wi) ≥ f (ws), which implies that 

f (wp) ≥
f (wp)×f (ws)

f (wi)
= E(w). Furthermore, by the defini-

tion of the suffix tree, if w occurs in x and wp is a path-

label of an implicit node then f (wp) = f (w). It thus fol-

lows that f (w) − E(w) = f (wp) − E(w) ≥ 0, and since 

max{1,
√
E(w)} > 0, the claim holds.  �

Lemma 5 �e number of ρ-avoided words of length 

k > 2 in a word of length n over an alphabet of size σ 

is O(σn); in particular, this number is no more than 

(σ + 1)n − k + 1. �e upper bound O(σn) is tight if √
n + 1 ≤ σ ≤ n.

Proof  By Lemma  3, every ρ-avoided word is either 

occurring or a minimal absent word. It is known that the 

number of minimal absent words in a word of length n 

is smaller than or equal to σn  [20]. Clearly, the occur-

ring ρ-avoided words in a word of length n are at most 

E(w1) = 3 × 3/6 = 1.5, dev(w1) = (1 − 1.5)/
√
1.5 = −0.408248.

E(w2) = 1 × 3/6 = 0.5, dev(w2) = (0 − 0.5)/1 = −0.5.

dev(w) =
f (w) − E(w)

max{
√
E(w), 1}

≤ ρ < 0.
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n − k + 1. �erefore the number of ρ-avoided words 

of length k are no more than (σ + 1)n − k + 1. �is 

implies that O(σn) is an asymptotic upper bound. In the 

case of an alphabet of size 
√
n + 1 ≤ σ ≤ n, it follows 

from Lemma 2 that there exist words with �(σn) mini-

mal absent words of a fixed length k > 2. Consider such 

a word x, the respective k, and some ρ ≥ −
1

n
. Let w be 

any minimal absent word of x. We have that f (wp) ≥ 1 , 

f (ws) ≥ 1, and f (wi) ≤ n; and hence E(w) ≥
1

n
. Since 

f (w) = 0, it follows that dev(w) ≤ −
1

n
≤ ρ. �us, every 

minimal absent word of x is ρ-avoided, and since there 

are �(σn) of them of length k, we conclude that O(σn) is 

a tight asymptotic bound in this case.  �

Avoided words algorithm

In this section, we present Algorithm AW 

for computing all ρ-avoided words of length k in a given 

word x. �e algorithm builds the suffix tree T (x) for 

word x, and then prepares T (x) to allow constant-time 

observed frequency queries. �is is mainly achieved 

by counting the terminal nodes in the subtree rooted at 

node v for every node v of T (x). Additionally during this 

pre-processing, the algorithm computes the word-depth 

of v for every node v of T (x). By Lemma  3, ρ-avoided 

words are classified as either occurring or (minimal) 

absent, therefore Algorithm AW calls Rou-

tines AAW and OA-

W to compute both classes of ρ-avoided words 

in x. �e outline of Algorithm AW is as 

follows.

Computing absent avoided words

In Lemma 3, we showed that each absent ρ-avoided word 

is a minimal absent word. �us, Routine AA-

W starts by computing all minimal absent words 

in x; this can be done in time and space O(n) for a fixed-

sized alphabet or in time O(σn) for integer alphabets [4, 

5]. Let < (i, j),α > be a tuple representing a minimal 

absent word in x, where for some minimal absent word w 

of length |w| > 2, w = x[i . . . j]α, α ∈ �; this representa-

tion is clearly unique.

Intuitively, the idea is to check the length of every 

minimal absent word. If a tuple < (i, j),α > represents a 

minimal absent word w of length k = j − i + 2, then the 

value of dev(w) is computed to determine whether w is 

an absent ρ-avoided word. Note that, if w = x[i . . . j]α 

is a minimal absent word, then wp = x[i . . . j], 

wi = x[i + 1 . . . j], and ws = x[i + 1 . . . j]α occur in x by 

Definition  1. �us, there are three (implicit or explicit) 

nodes in T (x) path-labelled wp, wi, and ws, respectively.

�e observed frequencies of wp, wi, and ws are already 

computed during the pre-processing of T (x). For an explicit 

node v of T (x), path-labelled w′ = x[i′ . . . j′], the value C(v), 

which is the number of terminal nodes in the subtree rooted 

at v, is equal to the number of occurrences (observed fre-

quency) of w′ in x. For an implicit node along the edge (u, v) 

path-labelled w′′, the number of occurrences of w′′ is equal to 

C(v) (and not C(u)). �e implementation of this procedure is 

given in Routine AAW.

Computing occurring avoided words

Lemma  4 suggests that for each occurring ρ-avoided 

word w, wp is a path-label of an explicit node v of T (x) . 

�us, for each internal node v such that D(v) = k − 1 

and L(v) = wp, Routine OAW 

computes dev(w), where w = wpα, α ∈ �, is a path-label 

of a child (explicit or implicit) node of v. Note that if wp 

is a path-label of an explicit node v then wi is a path-

label of an explicit node u of T (x); node u is well-defined 

and it is the node pointed at by the suffix-link of v. �e 

implementation of this procedure is given in Routine 

OAW.
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Analysis of the algorithm

Lemma 6 Given a word x, an integer k > 2, and a real 

number ρ < 0, Algorithm AW computes all 

ρ-avoided words of length k in x.

Proof By definition, a ρ-avoided word w is either an 

absent ρ-avoided word or an occurring one. Hence, the 

proof of correctness relies on Lemmas  3 and  4. First, 

Lemma 3 indicates that an absent ρ-avoided word in x is 

necessarily a minimal absent word. Routine AA-

W considers each minimal absent word w 

and verifies if w is a ρ-avoided word of length k.

Second, Lemma  4 indicates that for each occurring ρ

-avoided word w, wp is a path-label of an explicit node v 

of T (x). Routine OAW considers 

every child of each such node of word-depth k, and veri-

fies if its path-label is a ρ-avoided word.  �

Lemma 7 Given a word x of length n over a fixed-sized 

alphabet, an integer k > 2, and a real number ρ < 0,  

Algorithm AW requires time and space 

O(n) ; for integer alphabets, it requires time O(σn).

Proof  Constructing the suffix tree T (x) of the input 

word x takes time and space O(n) for a word over 

a fixed-sized alphabet  [18]. Once the suffix tree is 

constructed, computing arrays D and C by travers-

ing T (x) requires time and space O(n). Note that the 

path-labels of the nodes of T (x) can by implemented 

in time and space O(n) as follows: traverse the suffix 

tree to compute for each node v the smallest index i 

of the terminal nodes of the subtree rooted at v. �en 

L(v) = x[i . . . i + D(v) − 1].

Next, Routine AAW requires time 

O(n). It starts by computing all minimal absent words of 

x, which can be achieved in time and space O(n) over a 

fixed-sized alphabet [4, 5]. �e rest of the procedure deals 

with checking each of the O(n) minimal absent words of 

length k. Checking each minimal absent word w to deter-

mine whether it is a ρ-avoided word or not requires time 

O(1). In particular, an O(n)-time pre-processing of T (x) 

allows the retrieval of the (implicit or explicit) node in 

T (x) corresponding to the longest proper prefix of w in 

time O(1)  [21]. Finally, Routine OA-

W requires time O(n). It traverses the suffix tree 

T (x) to consider all explicit nodes of word-depth k − 1 . 

�en for each such node, the procedure checks every 

(explicit or implicit) child of word-depth k. �e total 

number of these children is at most n − k + 1. For every 

child node, the procedure checks whether its path-label is 

a ρ-avoided word in time O(1) via the use of suffix-links.

For integer alphabets, the suffix tree can be con-

structed in time O(n) [22] and all minimal absent words 

can be computed in time O(σn)  [4, 5]. �e efficiency of 

Algorithm AW is then limited by the total 

number of words to be considered, which, by Lemma 5, 

is O(σn). Note that for integers alphabets, a batch of 

q C(v,α) queries can be answered off-line in time 

O(n + q) with the aid of radix sort (in Routine AA-

W) or on-line in time O(q log σ) (in Routine 

OAW). �

Lemmas 5, 6 and 7 imply the first result of this article.

�eorem 1 Algorithm AW solves Problem 

AWC in time and space O(n). 

For integer alphabets, the algorithm solves the problem in 

time O(σn); this is time-optimal if 
√
n + 1 ≤ σ ≤ n.

Optimal computation of all ρ‑avoided words

Although the biological motivation is yet to be shown 

for this, we present here how we can modify Algorithm 

AW so that it computes all ρ-avoided 

words (of all lengths) in a given word x of length n over 

an integer alphabet of size σ in time O(σn). We further 

show that this algorithm (AAW) is in fact 

time-optimal.

Based on Lemma  1 and similarly to the proof of 

Lemma 5 we obtain the following result.

Lemma 8 �e number of ρ-avoided words in a word of 

length n over an alphabet of size 2 ≤ σ ≤ n is O(σn) and 

this bound is tight.

It is clear that if we just remove the condition on 

the length of each minimal absent word in Line 2 of 
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AAW we then compute all absent ρ

-avoided words in time O(σn). In order to compute all 

occurring ρ-avoided words in x it suffices by Lemma  4 

to investigate the children of explicit nodes. We can thus 

traverse the suffix tree T (x) and for each explicit inter-

nal node, check for all of its children (explicit or implicit) 

whether their path-label is a ρ-avoided word. We can do 

this in O(1) time as described. �e total number of these 

children is at most 2n − 1, as this is the bound on the 

number of edges of T (x) [18]. �is modified algorithm is 

clearly time-optimal for fixed-sized alphabets as it then 

runs in time O(n). �e time optimality for integer alpha-

bets follows directly from Lemma 8. Hence we obtain the 

second result of this article.

�eorem  2 Algorithm AAW solves 

Problem AAWC in time 

O(σn). �is is time-optimal if 2 ≤ σ ≤ n.

Remark 1 In [23], it is shown that all |A| minimal absent 

words of a word x of length n over an integer alphabet 

can be computed in time O(n + |A|) and space O(n) . 

Computing minimal absent words and checking for each 

of them if it is an avoided word is the bottleneck for algo-

rithms AW and AAW. �e 

result of  [23] implies that for a word x of length n over 

an integer alphabet we can make both algorithms to 

require time O(n + |A|) and space O(n). We can do that 

by checking for each minimal absent word output by the 

algorithm whether it is avoided, instead of storing a rep-

resentation of them and then making the check.

Remark 2 As the complexity of algorithms A-

W and AAW does not depend on 

the value of ρ, one can use a negative ρ close to 0, sort the 

output ρ-avoided words with respect to dev(w), and con-

sider the extreme ones.

Lemma 9 �e expected length of the longest ρ-avoided 

word in a word x of length n over an alphabet � of size 

σ > 1 is O(logσ n) when the letters are independent and 

identically distributed random variables uniformly dis-

tributed over �.

Proof  By Lemma 4 the length of the longest occurring 

word is bounded above by the word-depth of the deepest 

internal explicit node in T (x) incremented by 1. We note 

that the greatest word-depth of an internal node corre-

sponds to the longest repeated factor in word x. Moreo-

ver, for a word w to be a minimal absent word, wi must 

appear at least twice in x (in the occurrences of wp and 

ws). Hence the length of the longest ρ-avoided word is 

bounded by the length of the longest repeated factor in 

x incremented by 2. �e expected length of the longest 

repeated factor in a word is known to be O(logσ n)  [24] 

and hence the lemma follows.  �

Experimental results

Algorithm AW was implemented as a pro-

gram to compute the ρ-avoided words of length k in one or 

more input sequences; there is an option to run Algorithm 

AAW instead. �e program was imple-

mented in the C++ programming language and developed 

under GNU/Linux operating system. Our program makes 

use of the implementation of the compressed suffix tree 

available in the Succinct Data Structure Library [25]. �e 

input parameters are a (Multi)FASTA file with the input 

sequence(s), an integer k > 2 , and a real number ρ < 0.  

�e output is a file with the set of ρ-avoided words of 

length k per input sequence. �e implementation is dis-

tributed under the GNU General Public License, and it is 

available at http://github.com/solonas13/aw. �e experi-

ments were conducted on a Desktop PC using one core of 

Intel Core i5-4690 CPU at 3.50 GHz under GNU/Linux. 

�e program was compiled with g++ version 4.8.4 at 

optimisation level 3 (−O3). We also implemented a brute-

force approach for the computation of ρ-avoided words. 

We mainly used it to confirm the correctness of our imple-

mentation. Here we do not plot the results of the brute-

force approach as it is easily understood that it is orders of 

magnitude slower than our approach.

Experiment I

To evaluate the time performance of our implementa-

tion, synthetic DNA (σ = 4) and protein (σ = 20) data 

were used. �e input sequences were generated using a 

randomised script. In the first experiment, our task was 

to establish that the performance of the program does not 

essentially depend on k and ρ; i.e., the elapsed time of the 

program remains unchanged up to some constant with 

increasing values of k and decreasing values of ρ. As input 

datasets, for this experiment, we used a DNA and a protein 

sequence both of length 1M (1 Million letters). For each 

sequence we used different values of k and ρ. �e results, 

for elapsed time are plotted in Fig.  2. It becomes evident 

from the results that the time performance of the program 

remains unchanged up to some constant. �e longer time 

required for the protein sequences for some value of k is 

explained by the increased number of branching nodes in 

this depth in the corresponding suffix tree due to the size of 

the alphabet (σ = 20). To confirm this we counted the num-

ber of nodes considered by the algorithm to compute the ρ

-avoided words for k = 4 and ρ = −10 for both sequences. 

�e number of considered nodes for the DNA sequence 

was 260 whereas for the protein sequence it was 1,585,510.

http://github.com/solonas13/aw
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Experiment II

In the second experiment, our task was to establish the fact 

that the elapsed time and memory usage of the program 

grow linearly with n, the length of the input sequence. 

As input datasets, for this experiment, we used synthetic 

DNA and proteins sequences ranging from 1 to 128 M. For 

each sequence we used constant values for k and ρ: k = 8 

and ρ = −10. �e results, for elapsed time and peak mem-

ory usage, are plotted in Fig.  3. It becomes evident from 

the results that the elapsed time and memory usage of the 

program grow linearly with n. �e longer time required for 

the protein sequences compared to the DNA sequences 

for increasing n is explained by the increased number of 

branching nodes in this depth (k = 8) in the correspond-

ing suffix tree due to the size of the alphabet (σ = 20).  

To confirm this we counted the number of nodes consid-

ered by the algorithm to compute the ρ-avoided words 

for n = 64M for both the DNA and the protein sequence. 

�e number of nodes for the DNA sequence was 69,392 

whereas for the protein sequence it was 43,423,082.

Time for n = 1M and ρ = −10 Time for n = 1M and k = 8
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Fig. 2 Experiment I. Elapsed time of Algorithm AVOIDEDWORDS using synthetic DNA (σ = 4) and proteins (σ = 20) data of length 1M for variable k 

and variable ρ
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Fig. 3 Experiment II. Elapsed time and peak memory usage of Algorithm AVOIDEDWORDS using synthetic DNA (σ = 4) and proteins (σ = 20) data of 

length 1–128M
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Experiment III

 In the next experiment, our task was to evaluate the time 

and memory performance of our implementation with 

real data. As input datasets, for this experiment, we used 

all chromosomes of the human genome. �eir lengths 

range from around 46M (chromosome 21) to around 

249M (chromosome 1). For each sequence we used k = 8 

and ρ = −10. �e results, for elapsed time and peak 

memory usage, are plotted in Fig. 4. �e results with real 

data confirm that the elapsed time and memory usage of 

the program grow linearly with n.

Experiment IV

 In an experiment with a prokaryote, we computed the 

set of avoided words for k = 6 (hexamers) and ρ = −10 

in the complete genome of Escherichia coli and sorted 

the output in increasing order of their deviation. �e 

most avoided words were extremely enriched in self-

complementary (palindromic) hexamers. In particular, 

within the output of 28 avoided words, 23 were self-com-

plementary; and the 17 most avoided ones were all self-

complementary. For comparison, we computed the set of 

avoided words for k = 6 and ρ = −10 from an eukary-

otic sequence: a segment of the human chromosome 21 

(its leftmost segment devoid of N’s) equal to the length 

of the E. coli genome. In the output of 10 avoided words, 

no self-complementary hexamer was found. Our results 

confirm that the restriction endonucleases which tar-

get self-complementary sites are not found in eukaryotic 

sequences [8].

Experiment V

 �en, we proceeded to the examination of several col-

lections of CNEs obtained through multiple sequence 

alignment between the human and other genomes. �e 

detailed description of how those CNEs were identified 

could be found in  [15]. For each CNE of these datasets, 

a sequence stretch (surrogate sequence) of non-coding 

DNA of equal length and equal GC content was taken 

at random from the repeat-masked human genome. 

�e CNEs of each collection were concatenated into a 

single long sequence and the same procedure was fol-

lowed for the corresponding surrogates. Seven CNEs 

concatenates and the corresponding surrogate datasets 

have been formed and used in this experiment. We have 

determined through the proposed algorithm the avoided 

words for k = 10 (decamers) and ρ = −2 for these four-

teen datasets and the results are presented in Table 1. In 

Table  2, we show likewise for k > 2 (all avoided words) 

and ρ = −2.
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Fig. 4 Experiment III. Elapsed time and peak memory usage of Algorithm AVOIDEDWORDS using all chromosomes of the human genome

Table 1 The number of avoided words, for k = 10 and ρ = −2, for each concatenate of surrogates (Row 1); the number 

of avoided words of the corresponding CNE dataset (Row 2); and their ratio (Row 3)

CNEs 75–80 CNEs 80–85 CNEs 85–90 CNEs 90–95 CNEs 95–100 Mammalian Amniotic

Surr. 1658 810 445 256 429 29,677 6043

CNE 514 153 51 40 45 2821 623

Ratio 3.23 5.29 8.73 6.40 9.53 10.52 9.70
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�e first five CNEs collections have been composed 

through multiple sequence alignment of the same set 

of genomes and they differ only in the thresholds of 

sequence similarity applied between the considered 

genomes: from 75 to 80 (the least conserved CNEs, which 

thus are expected to serve less demanding functional 

roles) to 95–100 which represent the extremely conserved 

non-coding elements (UCNEs or CNEs 95–100) [15]. �e 

remaining two collections have been composed under dif-

ferent constraints and have been derived after alignment 

of genomes belonging to the Mammalian and Amniotic 

groups. In Tables  1 and  2, the last line shows the ratios 

formed by the numbers of avoided words of each con-

catenate of surrogates divided by the numbers of avoided 

words of the corresponding CNE dataset.

Two immediate results stem from inspection of 

Tables 1 and 2:

1. In all cases, the number of avoided words from the 

non-functional (surrogate) concatenate of sequences 

far exceeds the corresponding number derived from 

the corresponding CNE dataset.

2. In the case of datasets with increasing degree of 

similarity between aligned genomes (from 75–80 to 

95–100) the ratios of the numbers of avoided words 

show a clear increasing trend.

Both these findings can be understood on the basis of the 

difference in functionality, and thus tolerance to muta-

tions, between CNE and surrogate datasets. One particu-

larly frequent source of mutations is the slippage error 

during DNA replication; see e.g. reference [26]. Within 

a genomic sequence, this phenomenon causes the gen-

eration and increase in length, during evolutionary time, 

of polypyrimidine and polypurine nucleotide tracts. �e 

expansion of those tracts is impeded at a considerable 

degree in the case of sequences which serve a functional 

role (as CNEs do) due to several constraints. On the other 

hand, in non-functional regions (as our surrogates mostly 

are) this procedure ceases to be tolerated only when it 

reaches to the formation of a polypyrimidine/polypurine 

tract with length affecting the proper folding or other 

structural features of the chromatin. �en, selection 

eliminates it, while its longer proper factors are tolerated 

in sufficient numbers within the sequence, thus resulting 

to an avoided word. In support of this explanation is the 

observation that all lists of avoided words found by our 

algorithm in concatenates of surrogates exhibit a consid-

erable enrichment in oligopurines and oligopyrimidines. 

Taking at random some examples, for k = 10, we notice: 

AAAAAAAAAT, AAAAAACCAC, ACAAAAAAAA, CTC-

CTCTTTT, etc.

Our second observation, i.e. the positive correlation 

between (1) the paucity of avoided decamers in CNEs 

collections and (2) the similarity thresholds used for 

their identification comes in accordance with the above 

argument. CNEs extracted under a stricter requirement 

of sequence similarity between evolutionary distant 

species are CNEs whose functionality is less tolerant to 

alterations due to random mutations in general. Hence, 

they also tolerate less the propagation within their 

sequence of parasite polypyrimidine/polypurine tracts 

too.

Conclusions

We presented an O(n)-time and O(n)-space algorithm to 

compute all ρ-avoided words of length k in a sequence of 

length n over a fixed-sized alphabet. For integer alpha-

bets, our algorithm runs in time O(σn) and is optimal for 

a sufficiently large alphabet of size σ. We also presented 

a time-optimal O(σn)-time algorithm to compute all ρ

-avoided words (of any length) in a sequence of length n 

over an integer alphabet. Moreover, we provided a tight 

asymptotic upper bound for the number of ρ-avoided 

words over an integer alphabet and the expected length 

of the longest one.

In the process, we showed that the known asymptotic 

upper bound on the number of minimal absent words of 

a sequence is tight for integer alphabets. We also showed 

that the same asymptotic bound is tight for the number 

of minimal absent words of a fixed length if the alphabet 

is sufficiently large.

Finally, we made available an implementation of our 

algorithm. Experimental results, using both real and syn-

thetic data, show its efficiency and applicability in biolog-

ical sequence analysis.

Table 2 The number of  avoided words, for k > 2 and ρ = −2, for  each concatenate of  surrogates (Row 1); the number 

of avoided words of the corresponding CNE dataset (Row 2); and their ratio (Row 3)

CNEs 75–80 CNEs 80–85 CNEs 85–90 CNEs 90–95 CNEs 95–100 Mammalian Amniotic

Surr. 10,734 7202 5351 3849 4540 112,181 22,595

CNE 3207 1847 1296 1043 1030 17,685 3635

Ratio 3.35 3.90 4.13 3.69 4.41 6.34 6.22



Page 12 of 12Almirantis et al. Algorithms Mol Biol  (2017) 12:5 

Authors’ contributions

YA and SPP conceived the study. PC, JG, MM, CSI, and SPP devised the algo-

rithms. PC showed the tight asymptotic bounds. JG and SPP implemented the 

algorithms. YA, JG, SPP, and DP conceived and conducted the experiments. All 

authors contributed equally in writing up the manuscript. All authors read and 

approved the final manuscript.

Author details
1 National Center for Scientific Research Demokritos, Neapoleos, 153 10 Ath-

ens, Greece. 2 Department of Informatics, King’s College London, The Strand, 

London WC2R 2LS, UK. 3 Computational Regulatory Genomics, MRC Clinical 

Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK. 

Acknowledgements

Open access for this article was funded by King’s College London.

Competing interests

The authors declare that they have no competing interests.

Funding

This research was partially supported by the Leverhulme Trust. PC is supported 

by the Graduate Teaching Scholarship scheme of the Department of Informat-

ics at King’s College London. DP is supported by the UK Medical Research 

Council (MRC) postdoctoral scheme.

Received: 14 November 2016   Accepted: 2 March 2017

References

 1. Searls DB. The linguistics of DNA. Am Sci. 1992;80(6):579–91.

 2. Mantegna RN, Buldyrev SV, Goldberger AL, Havlin S, Peng C-K, Simons M, 

Stanley HE. Linguistic features of noncoding DNA sequences. Phys Rev 

Lett. 1994;73(23):3169. doi:10.1103/PhysRevLett.73.3169.

 3. Acquisti C, Poste G, Curtiss D, Kumar S. Nullomers: really a matter of 

natural selection? PLoS ONE. 2007;2(10):1022. doi:10.1371/journal.

pone.0001022.

 4. Barton C, Heliou A, Mouchard L, Pissis SP. Linear-time computation of 

minimal absent words using suffix array. BMC Bioinform. 2014;15(1):1. 

doi:10.1186/s12859-014-0388-9.

 5. Barton C, Heliou A, Mouchard L, Pissis SP. Parallelising the computation 

of minimal absent words. In: Wyrzykowski R, Deelman E, Dongarra J, 

Karczewski K, Kitowski J, Wiatr K, editors. Parallel processing and applied 

mathematics—11th international conference, PPAM 2015, Krakow, 

Poland, September 6–9, 2015. Revised selected papers, Part II. lecture 

notes in computer science. vol. 9574. Berlin: Springer; 2015. p. 243–53. 

doi:10.1007/978-3-319-32152-3_23.

 6. Crochemore M, Fici G, Mercas R, Pissis SP. Linear-time sequence com-

parison using minimal absent words and applications. In: Kranakis E, 

Navarro G, Chávez E, editors. LATIN 2016: theoretical informatics: 12th 

Latin American symposium, Ensenada, April 11–15, 2016, Proceedings. 

Lecture notes in computer science. Berlin: Springer; 2016. p. 334–46. 

doi:10.1007/978-3-662-49529-2_25.

 7. Belazzougui D, Cunial F. Space-efficient detection of unusual words. In: 

International symposium on string processing and information retrieval. 

Berlin: Springer; 2015. p. 222–33. doi:10.1007/978-3-319-23826-5_22.

 8. Rusinov I, Ershova A, Karyagina A, Spirin S, Alexeevski A. Lifespan of 

restriction-modification systems critically affects avoidance of their rec-

ognition sites in host genomes. BMC Genom. 2015;16(1):1. doi:10.1186/

s12864-015-2288-4.

 9. Brendel V, Beckmann JS, Trifonov EN. Linguistics of nucleotide sequences: 

morphology and comparison of vocabularies. J Biomol Struct Dyn. 

1986;4(1):11–21. doi:10.1080/07391102.1986.10507643.

 10. Apostolico A, Bock ME, Lonardi S, Xu X. Efficient detec-

tion of unusual words. J Comput Biol. 2000;7(1–2):71–94. 

doi:10.1089/10665270050081397.

 11. Apostolico A, Bock ME, Lonardi S. Monotony of surprise and large-

scale quest for unusual words. J Comput Biol. 2003;10(3–4):283–311. 

doi:10.1089/10665270360688020.

 12. Apostolico A, Gong F-C, Lonardi S. Verbumculus and the discovery of 

unusual words. J Comput Sci Technol. 2004;19(1):22–41. doi:10.1007/

BF02944783.

 13. Harmston N, Barešić A, Lenhard B. The mystery of extreme non-coding 

conservation. Philos Trans R Soc B. 2013;368(1632):20130021. doi:10.1098/

rstb.2013.0021.

 14. Polychronopoulos D, Sellis D, Almirantis Y. Conserved noncoding ele-

ments follow power-law-like distributions in several genomes as a result 

of genome dynamics. PloS ONE. 2014;9(5):95437. doi:10.1371/journal.

pone.0095437.

 15. Polychronopoulos D, Weitschek E, Dimitrieva S, Bucher P, Felici G, 

Almirantis Y. Classification of selectively constrained DNA elements using 

feature vectors and rule-based classifiers. Genomics. 2014;104(2):79–86. 

doi:10.1016/j.ygeno.2014.07.004.

 16. Polychronopoulos D, Krithara A, Nikolaou C, Paliouras G, Almirantis 

Y, Giannakopoulos G. In: Dediu AH, Martín-Vide C, Truthe B, editors. 

Analysis and classification of constrained DNA elements with n-gram 

graphs and genomic signatures. Berlin: Springer; 2014. p. 220–34. 

doi:10.1007/978-3-319-07953-0_18

 17. Almirantis Y, Charalampopoulos P, Gao J, Iliopoulos CS, Mohamed 

M, Pissis SP, Polychronopoulos D. Optimal computation of avoided 

words. In: Algorithms in bioinformatics: 16th international work-

shop (WABI 2016). Berlin: Springer International Publishing. p. 1–13. 

doi:10.1007/978-3-319-43681-4_1.

 18. Crochemore M, Hancart C, Lecroq T. Algorithms on strings. Cambridge: 

Cambridge University Press; 2007.

 19. Charalampopoulos P, Crochemore M, Fici G, Mercas R, Pissis SP. Align-

ment-free sequence comparison using absent words (Under Review)

 20. Mignosi F, Restivo A, Sciortino M. Words and forbidden factors. Theor 

Comput Sci. 2002;273(1):99–117. doi:10.1016/S0304-3975(00)00436-9.

 21. Gawrychowski P, Lewenstein M, Nicholson PK. Weighted ancestors in 

suffix trees. Eur Symp Algorithms. 2014. doi:10.1007/978-3-662-44777-2.

 22. Farach M. Optimal suffix tree construction with large alphabets. In: Pro-

ceedings, 38th annual symposium on foundations of computer science. 

New York City: IEEE; 1997. p. 137–43. doi:10.1109/SFCS.1997.646102.

 23. Fujishige Y, Tsujimaru Y, Inenaga S, Bannai H, Takeda M. Computing 

DAWGs and minimal absent words in linear time for integer alphabets. In: 

Faliszewski P, Muscholl A, Niedermeier R, editors. 41st International sym-

posium on mathematical foundations of computer science (MFCS 2016). 

Leibniz international proceedings in informatics (LIPIcs), vol. 58: Schloss 

Dagstuhl–Leibniz-Zentrum fuer Informatik; 2016. p. 1–14. doi:10.4230/

LIPIcs.MFCS.2016.38.

 24. Manber U, Myers G. Suffix arrays: a new method for on-line string 

searches. Siam J Comput. 1993;22(5):935–48. doi:10.1137/0222058.

 25. Gog S, Beller T, Moffat A, Petri M. From theory to practice: plug 

and play with succinct data structures. In: International Sympo-

sium on experimental algorithms. Berlin: Springer; 2014. p. 326–37. 

doi:10.1007/978-3-319-07959-2_28.

 26. Hile SE, Eckert KA. Positive correlation between DNA polymerase α

-primase pausing and mutagenesis within polypyrimidine/polypurine 

microsatellite sequences. J Mol Biol. 2004;335(3):745–59. doi:10.1016/j.

jmb.2003.10.075.

http://dx.doi.org/10.1103/PhysRevLett.%2073.3169
http://dx.doi.org/10.1371/journal.pone.0001022
http://dx.doi.org/10.1371/journal.pone.0001022
http://dx.doi.org/10.1186/s12859-014-0388-9
http://dx.doi.org/10.1007/978-3-319-32152-3%5f23
http://dx.doi.org/10.1007/978-3-662-49529-2%5f25
http://dx.doi.org/10.1007/978-3-319-23826-5%5f22
http://dx.doi.org/10.1186/s12864-015-2288-4
http://dx.doi.org/10.1186/s12864-015-2288-4
http://dx.doi.org/10.1080/07391102.1986.10507643
http://dx.doi.org/10.1089/10665270050081397
http://dx.doi.org/10.1089/10665270360688020
http://dx.doi.org/10.1007/BF02944783
http://dx.doi.org/10.1007/BF02944783
http://dx.doi.org/10.1098/rstb.2013.0021
http://dx.doi.org/10.1098/rstb.2013.0021
http://dx.doi.org/10.1371/journal.pone.0095437
http://dx.doi.org/10.1371/journal.pone.0095437
http://dx.doi.org/10.1016/j.ygeno.2014.07.004
http://dx.doi.org/10.1007/978-3-319-07953-0%5f18
http://dx.doi.org/10.1007/978-3-319-43681-4%5f1
http://dx.doi.org/10.1016/S0304-3975(00)00436-9
http://dx.doi.org/10.1007/978-3-662-44777-2
http://dx.doi.org/10.1109/SFCS.1997.646102
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.38
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.38
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1007/978-3-319-07959-2%5f28
http://dx.doi.org/10.1016/j.jmb.2003.10.075
http://dx.doi.org/10.1016/j.jmb.2003.10.075

	On avoided words, absent words, and their application to biological sequence analysis
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Introduction
	Our contributions

	Methods
	Terminology and technical background
	Definitions and notation
	Suffix trees

	Tight bounds on minimal absent words
	Useful properties of avoided words
	Avoided words algorithm
	Computing absent avoided words
	Computing occurring avoided words
	Analysis of the algorithm

	Optimal computation of all ρ-avoided words

	Experimental results
	Experiment I
	Experiment II
	Experiment III
	Experiment IV
	Experiment V

	Conclusions
	Authors’ contributions
	References


