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1. Introduction. In his recent work in Generalized Axially Symmetric Potential
Theory, A. Weinstein [1] has pointed out that the flow about an axially symmetric body
in ordinary three-dimensional space may be obtained from the electrostatic potential of
the five-dimensional body of revolution possessing the same meridian profile. This
method of solution is referred to as the method of Generalized Electrostatics. It has been
recently used by L. E. Payne and A. Weinstein [2] in deriving a relationship between
capacity and virtual mass and has been employed by A. Weinstein [3] in solving certain
torsion problems.

In this paper the method of Generalized Electrostatics is used to obtain the flow
about a spindle and a lens. The flow about a spindle seems not to have been treated in
the literature despite its obvious importance. The lens problem however was treated in
1947 by M. Shiffman and D. C. Spencer [4] who applied an ingenious and difficult pro-
cedure involving the method of images in a multi-sheeted Riemann-Sommerfeld space.
The solution given in this paper is a straightforward generalization of results given already
in 1868 by F. G. Mehler [5]. Our formulas are considerably simpler than those of Shiffman
and Spencer but there is no obvious computational method of showing that their solution
may be reduced to ours or vice versa. However, the identity of these two solutions is
guaranteed by a uniqueness theorem. In an oral communique Professor D. C. Spencer has
pointed out the fact that the problem of the spindle would be difficult if not impossible to
solve by the method of images in a Riemann-Sommerfeld space. It will be seen that
generally speaking little difficulty is encountered in extending to an arbitrary odd-dimen-
sional space the known solutions of three-dimensional electrostatics problems. Hence by
the method of Generalized Electrostatics we obtain the flows about axially symmetric
profiles almost immediately from the electrostatic solutions.

In this paper we are concerned chiefly with bodies of revolution in three- and five-
dimensional spaces; but since spaces of other dimensions have various applications we
shall first obtain the solution in a general n-dimensional space. The ordinary three-dimen-
sional terminology will be retained throughout. Later we shall assign the particular value
to 7 which is demanded by the physical problem.

2. Basic Equations. We shall restrict ourselves in this paper to profiles of revolution
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in a uniform stream. We shall assume further that the fluid is incompressible and that at
infinity it is travelling at uniform velocity U parallel to the axis of symmetry. Let xy be
the meridian plane of an n-dimensional body which is symmetric about the z-axis. We
shall define all functions in the meridian half plane y = 0.

An axially symmetric potential function ¢{n} in a space of n-dimensions is a solution
of the partial differential equation

The associated stream function ¢{n} is defined with the aid of the generalized Stokes-
Beltrami equations

s doln} _ ayin) w2 doln} _ _ dvin} @)

Let ¥{n} = Uy '(n — 1)"' — ¢{n} be the stream function describing our flow. We
assume ¥ {n} to vanish on the profile and along the z-axis.* We make use of a correspon-
dance relationship [1], namely ¢{n} = Uy"'(n — 1) 'p{n + 2}, to obtain the funda-
mental equation

Yin} = Uy"'(n — D7'A — o{n + 2}). ©))

This equation relates the stream function ¥{n} for an n-dimensional body of revolution B
to an electrostatic potential function ¢{n + 2} in a space of n 4+ 2 dimensions. The
potential ¢{n + 2} assumes the value unity on the profile boundary and vanishes at
infinity.

We may by introducing the substitution x{n} = y“ *”’p{n} reduce Eq. (1) to the
form

Vix = [n — 2)(n — 9/49°Ix = 0 @

where V? denotes the Laplacian operator. It is obvious that for n = 2 or n = 4, x is
harmonic. C. Snow [6] in a discussion of non-axially symmetric potential problems in
three dimensions has treated solutions of Eq. (4) for odd values of n.

Under a transformation x 4+ 7y = z = f(¢) = f(¢ + i9) Eq. (4) takes the form

p. €13 + Xnm — [(n - 2)(n - 4)/4h2y2])( =0 (5)
where h* = | f/(¢) |”®. Similarly under such a transformation Eq. (1) becomes
25 o) -
9% (y Y + an i 0. (6)

If y is of the form f(£) - g(n) the solution of (6) is readily obtained by separation of
variables. If on the other hand (h**)™ = f.(£) + g.(n) as in the cases considered here,
we find it more convenient to use Eq. (5).

Payne and Weinstein [2] have derived a relationship between the n-dimensional
virtual mass M {n} (uniform flow in the z-direction) and the n + 2-dimensional capacity
C{n + 2} which for n = 3 is given by

M{3} + V{3} = (2r/3)C{5}. @)

*This implies that the profile and the z-axis form a single streamline.
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In (7) V{3} denotes the volume of the body of revolution (the density of the fluid has
been taken as unity). The capacity C{n} is determined from the equation
Cin} = (n — 2) lim " pfn}, r=2"4+149 8)
where ¢{n} is the electrostatic potential of the body. We shall make use of (7) and (8)
in determining the virtual mass of the spindle and the lens.
3. Flow About a Spindle. A curve ¢ = &, in dipolar coordinates defines the profile of a
a spindle. The dipolar transformation is given by

x 4 iy = ic cot 3(§ + in) ©)

where c is a positive constant. The range of coordinates is chosen as — o < 5 <4 o,
0 < ¢ = w. The boundary of the spindle is given by £ = & < 7 and the exterior region
is defined by 0 < £ < £ . We may choose as particular solutions of Eq. (1) functions
determined with the aid of (5) which are of the form

(s — /(1 = &)*1"*Q1 (2N cos mn (10)

where 2¢ = n — 3, s = cosh 9, t = cos £ and A = cot £ The Q function represents a
generalized spherical harmonic of the second kind as defined by E. Hobson [7]. The func-
tions considered in (10) obviously vanish at infinity (¢ = 0, n = 0). We are primarily
interested in odd integral values of n and in this case (10) is considerably simplified.
Particular solutions of (1) are then given by

(s — 'K (f) cos my (11)

where (g) denotes the gth partial derivative with respect to the argument and K,(f) is a
Legendre function of complex degree commonly called a conal function (7, p. 445]. It is
defined as

K.(t) = <7gr) cosh a7rf [2 cosh u + 2 cos £]7'"* cos au du. (12)
0
If we replace ¢ by (= — £) in (12) we obtain
K. (-t = <1gr) cosh o f [2 cosh u — 2 cos £]7'"* cos au du. (13)
0

Nowif 0 < ¢ < m, Eq. (13) may be differentiated ¢ times with respect to cos & the order
of differentiation and integration being interchanged on the right. For 0 < & < = the
term (cosh 7 — cos &)~ ““*** satisfies the conditions of the Fourier integral theorem and
may be expanded as follows

(cosh n — cos &)~ “*'/?

= (2)] cos an{f [cosh 7' — cos &] “*"® cos an’ dn'} der. (14)
0 0

Y g

We notice that the term in braces is simply K’ (—t) multiplied by a function of a. We
have used £, to represent cos & . We understand by the superscript (¢) in K’ (—¢) the
gth partial derivative with respect to cos ¢ and not with respect to —cos &.

We now choose for the electrostatic potential ¢{n} a function of the form

eini(s — H~VP = fm A K (t) cos an da. (15)
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The condition that ¢ = 1 for § = §, determines with the aid of (14) the function A («)
since (15) must be satisfied identically in 5. The n-dimensional electrostatic potential
o{n} is found for odd n to be

® (@¢__ (a)
Ka ( tO)Ka (t) Cos an de.

16
K®(t,) cosh ar (16)

eln} = 2m)'°T7 (¢ + 1/2)s — *"
o
This integral converges for all y and for 0 < £ < & .
If n is not an odd integer the electrostatic potential function becomes much more
complicated in general. However, in the special case n = 4 the potential may be easily
determined with the aid of (5) as

eld} = 2(s — (1 — )7 f: sinh a(mr — &) sinh of cosan ,

sinh a7 sinh o,

(17)

For odd values of n the stream function ¥{n} representing the flow about a spindle may
now be obtained from (16) with the aid of (3). We bhave

. 2(g+1)
¥i{n} = Uesing) 2(a+1)
2(g + (s — ¥
©2m)'%(s — ) " KV (—t) KLV (8) cos an ]
o da |. 18
[ I'(qg + 3/2) fo KV (t,) cosh ar * (18)

Thus when n = 3 (¢ = 0) we obtain the stream function corresponding to a uniform flow
about a three-dimensional spindle. It is given by

Uc® sin® ¢ [ a2 sz [T KL (—t)KY(2) cos an :|
V{3l =—F——|1—(2 -t do |. 19
8} 2(s — )° @76 ) K{’(t) cosh ar * (19)

If &, = m/2 the spindle becomes a sphere and the well known stream function for the
sphere is obtained.
The capacity C{n} of an n-dimensional spindle is found according to (8) as

T KL (—t)KP (1)
K(ty) cosh ar

The case n = 3 has been given by G. Szegé [8]. We obtain the virtual mass M {3} with
the aid of (7).

Cin} = 2°'(2¢ + D=’ T (¢ + 1/2) (20)

M{3} = —@)71-03{2 + 3 cot® & + 3¢, cot & csc® &

43 [0+ DES (=t da}_ @)

o K (t) cosh ar

It is easily verified that for §, = w/2 we have the well known virtual mass of the sphere.

4. Flow About a Lens. Let us introduce the peripolar transformation, z + <y =
—c cot (¢ + 4n), where c is a positive constant. The profile of a lens is defined by two
curves £ = &, and £ = £, . We shall assume that 0 < £, < & < 2m. The external region
ischosen as n > 0, & — 27 < £ < & . Particular solutions of (1) are given by functions
of the type

(s — O3 — 1)"?K (s) cosh m¢ (22)
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and those obtained by replacing cosh mé¢ by sinh mé¢. In (22) K .(s) is a Legendre function
of the type discussed by Mehler, see [7, p. 451]. As in the case of the spindle the lens
problem is solved much more easily and the solution is given in a much simpler form
whenever 7 is an odd integer. Particular solutions of (1) are in this case given by

(s — )"’ K:P(s) cosh m¢. (23)

solutions containing sinh m¢ being understood as before. The function K .(s) is defined
[7, p. 451] as

K.(s) = (?r) cosh ar f [2 cosh u 4 2 cosh 7] '"* cos au du. (24)
0
We have also the known expansion [7, pp. 452, 453] valid for 0 < ¢ < 2x
(s — )72 = 22 f cosh a(t — ) sech ar K.(s) da. 25)
[

Clearly K (s) is a well defined function obtained from (24) by a permissible exchange
of order of integration and differentiation. Also for 0 < ¢ < 27 Eq. (25) may be differen-
tiated ¢ times with respect to s the order of integration and differentiation being enter-
changed on the right. We choose as the electrostatic potential ¢{n} of the lens

efnl(s — =P = fom [A(e) cosh at + B(a) sinh at]KP(s) da. (26)

The functions A («) and B(a) may be chosen in such a way that ¢{n} = 1for¢ = ¢ and
¢ = £, . We need only differentiate (25) ¢ times with respect to s evaluate for £ = ¢, and
¢ = &, and insert in (26). Since (26) must be satisfied identically in 5 the functions A4 ()
and B(e) are easily determined. The electrostatic potential of an n-dimensional lens
(n odd) is thus given by

pln} = (—1)%@0'T™(q + 1/2)s — f " Fla, 9 sech ar K9 doc (2)
where
sinh a(2r — & + £)F(a, £)

= sinh a(§, — £ cosh a(r — &) + cosh a(r — &) sinh a(2r — & + £). (28)

Equation (27) is valid for all positive 5 and for all £ in the interval £, — 27 < £ < & . The
case n = 3 was given by F. G. Mehler [5] in 1868.

We note again that in case n = 4 the electrostatic potential may be easily obtained
with the aid of (5). We have

ol4} = 2[(s — /(" — 1] fo i F(a, £) csch ar sin an da. (29)

The stream function ¥{n} representing the flow about an odd-dimensional lens is
obtained from (27) with the aid of (3). Thus for n = 3

¥{3} = [Uc’(s® — 1)/2(s — ¥)?] [1 + 2%%(s — §)** fom F(a, £) sech ar K (s) da] (30
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By an appropriate choice of £ and &, electrostatic potentials and stream functions for a
spherical bowl, symmetrical lens, hemisphere, etc., may be determined.
Because of the invariance of form of the Stokes-Beltrami equations, i.e.

y"_ZCPE =Y,, yn-2q>n = =¥, (31)

it is a simple matter to determine from ¥ the velocity potential ® to which ¥ is associated-
It remains to be shown that this soluion is unique.

The problem of establishing the uniqueness of the stream function ¥ defined in the
infinite region outside the profile in the xy plane and satisfying prescribed boundary
conditions is equivalent to the problem of establishing uniqueness of this function in an
infinite half strip in the £y plane. An application of Green’s formula would demand a
knowledge of the behavior of the derivatives of ¥ at infinity in the £7¢ plane. Hence we
find it more convenient to make use of an eigen value method due to A. Weinstein [9]
which requires only a knowledge of the behavior of ¥ at infinity. By this method we can
show that there is only one stream function ¥ which satisfies the prescribed conditions on
the lens profile. If the stream function is unique the potential & is also unique up to an
arbitrary constant which must be zero in order that the potential vanish at infinity.

The electrostatic capacity of an n-dimensional lens is determined for integral values
of ¢ (n odd) with the aid of Eq. (8). It is given by

_ (=12T(/2)2g + D!

Cinl T(q + 1/2)

£ K O0) de.  (32)

) f‘” sinh af, cosh a(r — §,) + cosh a(r — ) sinh a(2r —
0 sinh «(2r + & — &,) cosh ar

The case n = 3 has been given by G. Szego [8]. The virtual mass M {3} is obtained with
the aid of [7] and given by

_ o3 ["sinhaf cosh a(r — &) + cosh a(r — &) sinh o(27r — &)
M{3} = 2mc f,, sinh a(2r + & — &) cosh ar
- (40 + 1) da — V{3} (33)
where

V{3}) = (xc’/6){(2 — cos &) cot £/2 csc® £,/2 — (2 — cos &) cot £,/2 csc’ &/2} .

Equation (33) is a much simpler expression for the virtual mass than that given by
Shiffman and Spencer. Several special cases may be obtained easily from (33). In particu-
lar the virtual mass of a hemisphere is given by

M{3} = (2nc’/81)[1835 — 59(3)'*] = 2.545¢ (34)

where c is the radius of the hemisphere.

5. Additional Results. We shall list here the electrostatic potentials of certain other
n-dimensional bodies of revolution. With the aid of (3), (7) and (8) the corresponding
flow problems can be completely solved. The results given in this section are valid for
any positive real value of ¢(n > 2). It will be noted that the results are simplified con-
siderably whenever » is an odd integer.
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I. Sphere: The potential of an n-dimensional sphere of radius a is given as
eln} = @/m™?, r=("+y)" (35)

II. Two separaled spheres: The lines n = o < 0 and n = 8 > 0 in dipolar coordinates
define two separated spheres. The potential in this case is given by

© -NB : _ Na _
oln} = 20135 — i ZG sinh N(gn — o) + ¢ “ sinh N(8 — »)

= sinh N(8 — a) P,(t/29 + 1) (36)

where N = n 4 ¢+ 3 and P(¢ | 2¢ + 1) represents the 2¢ + 1-dimensional zonal spherical
harmonic or more commonly the Gegenbauer polynomial.

II1. Prolate Spheroid: A line £ = &, defines a prolate spheroid under the transformation
z = c cosh {. The electrostatic potential for such a spheroid is

efn} = (p0/p)°Qa(s)/Qulso) @37

where p = sinh £, s = cosh &.
IV. Oblate Spheroid: Under the transformation z = ¢ sinh { an oblate spheroid is
defined by a line £ = &, , and the potential is given as:

oln} = (s0/9)°Qa(tp)/Qa(tpo). (38)

V. Disc: If & = 0 the oblate spheroid becomes a disc of radius ¢ and the potential of
such a disc is obtained from (38) as

oln} = —[2““ exp {(q i 1)m'}r(q + %)r(%)s"]—'czzap). (39)

We have listed here only a few examples. Numerous others can be easily obtained.

6. Internal Problems. The method of Generalized Electrostatics is also useful in
determining the flow induced in a fluid contained between two or more axially symmetric
boundaries when one or more of the boundaries moves with respect to the others at uni-
form velocity parallel to the axis of symmetry. In this case we consider instead of Eq. (3)
the equation

Yin} = Uy '(n — 1) 'o{n + 2}. (40)

On a moving boundary ¥{n} = V3" '(n — 1) where V; = ¢,U (c; is a constant possibly
differing for each moving boundary). On a stationary boundary ¥{n} = 0. This problem
is reduced by (40) to the solution of a steady state heat flow problem in n + 2-dimensions.
The boundaries in #n + 2-space corresponding to the moving boundaries in n-space are
maintained at temperatures ¢; and those corresponding to the stationary boundaries are
kept at temperature 0. This procedure applies in particular to the case in which the fluid
is bounded by two eccentric spheres, two tori or to the case in which one portion of the
boundary moves with respect to another portion in an infinite fluid.

7. Concluding Remarks. In this paper we have considered only three dimensional
flow problems. It should be remarked, however, that a similar procedure may be em-
ployed in solving plane flow problems for profiles symmetric about the z-axis. In fact if
the profile possesses symmetry with respect to both axes the plane problem may be
solved for uniform flow in any direction.
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