
On-axis diffractional
behavior of two-dimensional pupils

Manuel Martinez-Corral, Pedro Andres, and Jorge Ojeda-Castaheda

We show that, at any Fresnel number, a suitable one-dimensional Fourier transform relates the
complex-amplitude distribution along the optical axis with the zero-order circular harmonic of the
amplitude transmittance of a two-dimensional diffracting screen. First, our general result is applied to
recognize that any rationally nonsymmetric screen generates an axial-irradiance distribution that
exhibits focal shift. In this way we identify a wide set of two-dimensional screens that produce the same
focal shift as that produced by the clear circular aperture. Second, we identify several apodizers for
shaping the axial-amplitude distribution. We discuss some examples for achieving high-precision
focusing, axial hyperresolution, or high focal depth.
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1. Introduction

Imaging devices are commonly designed by use of
geometrical optics, with the purpose of concentrating
optical rays in certain prespecified areas. Thus one
expects that an imaging device will concentrate en-
ergy, for instance, at certain positions along the
optical axis. However, when using diffractive optics
in optical interconnects or for evaluating the perfor-
mance of diffracting screens as apodizers, one must
describe the irradiance concentration capabilities in
terms of physical optics.

Several authors have considered analysis of the
axial impulse response of an optical system with a
two-dimensional (2-D) pupil by using a convenient set
of functions that describes as a series expansion the
radial variations of the pupil. For example, Walsh
functions,1 Chebyshev polynomials,2 and Zernike poly-
nomials3 have been used. Legendre polynomials have
been employed for tailoring the axial impulse re-
sponse with the purpose of achieving arbitrarily high
focal depth4 or for shaping the focal power spectrum
of zone plates.5 In previous years, efforts have been
addressed to study the loss of symmetry of the axial
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impulse response that appears when optical systems
of small Fresnel number6-12 are used.

The aim of this paper is to report a compact
analytical expression for evaluating the axial-ampli-
tude distribution generated by a 2-D diffracting screen.
The formulation holds for any rotationally nonsym-
metric screen, with or without central obscuration,
and for any Fresnel number. Our formula consists
of two factors. As in McCutchen's theorem,13 the
first factor involves a suitable one-dimensional (1-D)
Fourier transform of the zero-order circular har-
monic of the amplitude transmittance of the diffract-
ing screen. The second factor is N - 2W20, where N
is the Fresnel number of the pupil and W20 is the
defocus coefficient, and it is responsible for the focal-
shift effect shown by the axial-irradiance distribution.
Our general result is illustrated here by evaluation of
the focal shift produced by certain pupils without
radial symmetry, and we propose some apodizers for
shaping the axial irradiance. Other applications will
be developed elsewhere.

In Section 2 we formulate the basic theory for
evaluating the axial-amplitude distribution produced
by an arbitrary generalized pupil, at any Fresnel
number. In Section 3 we discuss the focal-shift
effect produced by any pupil without radial symmetry.
Finally, in Section 4 our formulation is applied to
design certain apodizers for shaping the amplitude
distribution along the optical axis.

2. Irradiance Distribution Along the Optical Axis

We start by considering a rather general set of 2-D
diffracting screens that are characterized by having
an amplitude transmittance equal to zero in both a
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central region and an external region. The transmit-
tance is different from zero in an amorphic region
that is confined to an annular area centered in the
optical axis, as is shown in Fig. 1(a). The external
radius of the pupil is a, and the internal radius is ea,
where E (O < e < 1) is the central obscuration ratio.
Note that in the particular case of e = 0, the
amplitude-transmittance function is confined into a
circular area. Hence the complex-amplitude trans-
mittance of any 2-D diffracting screen is hereafter
mathematically expressed as an annular generalized
pupil function, p(r, 0).

According to Ref. 12, if this screen is illuminated by
a converging, monochromatic spherical wave, the
Fresnel-Kirchhoff diffraction equation for the ampli-
tude distribution along the optical axis is

27r(pa

u(z) = [-i/Xf(f + z)]exp(ikz) p(r, 0)

x exp[-ikzr 2 /2f (f + z)]rdrd0, (1)

where is the wavelength of the incident light, k =
2rr/X, z denotes the axial coordinate as measured
from the paraxial focal point, and f represents the
focal length of the optical system, as is shown in Fig.
1(b).

Next, it is convenient to separate the angular
variation from the radial contribution to the transmit-
tance by expansion of the amplitude-transmittance
function into its circular-harmonic series; that is,

where

pm(r) = (1/27r) f p(r, 0)exp(-imf)dO. (3)

In Eq. (2), pm(r) is the radial component of the mth
circular harmonic of p(r, 0). In other words, pm(r) is
a function whose value, for every r, is the mth
coefficient of the Fourier-series expansion of the
aximuthal variation of the generalized pupil function.

Now, by substituting Eq. (2) into Eq. (1) and by
performing the integration with respect to 0, we
obtain

(Pa

u(z) = [-ik/f(f + z)]exp(ikz) J po(r)
'ea

x expt - ik[a2 z/2f (f + z)](r/a)2}rdr, (4)

where po(r), the zero-order circular harmonic, repre-
sents for each r the azimuthal average of the general-
ized pupil function along a centered ring with radius
r, as is shown graphically in Fig. 2.

Now, it is possible to convert Eq. (4) into a 1-D
Fourier transform under a geometrical mapping that
translates the annular interval [Ea, a] for every value
of e into the 1-D interval [-1, 1]. The geometrical
transformation reads as

(r/a)2 -E2
~ = 2 . 1,

1- 2 qo() = po(r). (5)

p(r, 0) = I pm(r)exp(imO),
m= -o

(2) In this way we have, except for an irrelevant phase
factor, the complex-amplitude distribution along the
optical axis:

-1u(z) = [rra 2(1 -
2)/2Xf(f + z)] qo)

x exp{-i2r[a 2(1 - 2 )z/4Xf(f + z)]t}d4. (6)

It is apparent from Eq. (6) that the complex-
amplitude distribution along the optical axis is re-
lated with the 1-D Fourier transform of the mapped
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Fig. 1. Schematic diagram: (a) the diffracting scrcon, (b) the
optical setup under consideration.

La a
Fig. 2. Azimuthal average for obtaining po(r) from the pupil
function along any centered ring with radius r.
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zero-order circular harmonic of the pupil function,
qo(6). Furthermore, Eq. (5) indicates that from a
given mapped function, qo(C), it is possible to generate
a whole family of apodized pupils, po(r); they have the
same transmittance profile but different central obscu-
ration ratios e, as shown in Fig. 3. Consequently Eq.
(6) shows that any pair of functions belonging to the
same family has, aside from a scaling factor, the same
on-axis diffractional behavior.

Moreover, Eq. (6) also permits us to state the
following properties, which may be useful in metrol-
ogy. Zero-axial irradiance is achieved if, and only if,
the angular average of the generalized pupil is equal
to zero.14 Besides, since the axial-amplitude distribu-
tion is related to the 1-D Fourier transform of qo(4), it
appears that the amplitude at the paraxial focus, z =
0, is proportional to the mean value of qo(4) or
equivalently to the area of the function po(r). Thus
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at the focus the axial irradiance is zero if, and only if,
the mean value of the function qo(4) is equal to zero.
We take advantage of this fact in Section 4.

Finally, it is convenient to rewrite Eq. (6) in terms
of the following definitions:

N = a2(1 - E2)/Xf, W20 = Nz/2(f + z), h(W20 ) = u(z),

(7)

where N denotes the Fresnel number of the annular
aperture, i.e., the number of Fresnel zones that cover
the exit pupil from the geometrical focus, while W20is
the well-known defocus coefficient in the imaging
formation formalism, which is proportional to the
modified dimensionless Lommel variable UN =

2irNz/(f + z), as defined by Li and Wolf in Ref. 6.
These definitions are valid for any annular aperture,
and they contain as a particular case the circular
aperture, e = 0.

If we now substitute Eq. (7) into Eq. (6), we obtain

h(W20 ) = [r(N - 2W 2 0 )/2f] f qO(t)exp(-TW 2o0)dC,

(8)

which is a generalization of the result of Ref. 12.
In fact, the difference is that in Ref. 12 a circular pupil
was considered, and here we consider any rotationally
nonsymmetric pupil.

We emphasize that this analytical tool permits us
to establish that the axial-irradiance distribution,
I(W20) = h(W20 ) 12, generated by any 2-D diffracting
screen exhibits focal shift. Furthermore, the above

I I | \ result is also useful for designing apodizers for shap-
o.0 o .5 10 o ing the amplitude distribution along the optical axis.

We next show both facts.
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Fig. 3. Generation of a family of apodized pupils with the same
transmittance profile but with different central obscuration ratios:
(a) generating function qo(K) = 1 - 2, (b) some members of the
family of 2-D annular pupils generated with the above qo(C).

3. Focal Shift in Apodized Screens

If a monochromatic spherical wave is focused by a
diffraction-limited optical system of sufficiently small
Fresnel number, then the axial point of maximum
irradiance does not coincide with the geometrical
focus, but it is located closer to the aperture. This
nonsymmetrical behavior appears if certain factors
preceding the integral in the Fresnel-Kirchhoff equa-
tion for scalar diffraction are preserved,9 as was made
in our formalism.

The factor N - 2W20, with W20 as the functional
variable, which precedes the diffraction integral in
Eq. (8), is responsible for the loss of symmetry in the
irradiance distribution along the optical axis for both
radially symmetric and radially nonsymmetric annu-
lar generalized pupils. This effect is important when
the value of the Fresnel number, N [see Eq. (7)], is
sufficiently small.

In other words any pair of diffracting screens
whose zero-order circular harmonic has both the
same profile and the same Fresnel number generates
an identical axial-irradiance distribution. Therefore
it is possible in principle to find several screens that
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generate the same axial irradiance, and consequently
they show the same focal shift. In particular the
same on-axis behavior is exhibited by the clear annu-
lar aperture and by all the radially nonsymmetric
annular pupils that fulfil the condition

po(r) = k, a < r < a, (9)

and zero elsewhere, where k is a constant
(0 < k I < 1). The requirement in Eq. (9) is equiva-
lent to qo(4) = k. In Fig. 4(a) we show an element of
this wide set of 2-D functions that satisfies Eq. (9).
The normalized axial-irradiance distribution of this
type of screen is depicted for N = 2.5 in Fig. 4(b).
As is usual, the normalization is such that I(W20 =

0) = 1. We note from Fig. 4(b) that the position of
the maximum value of the axial irradiance does not
coincide with the geometrical focus (W20 = 0) but is
shifted toward the aperture (W20 < 0).
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4. Apodizer Design

Inspection of Eq. (8) reveals that for a sufficiently
high Fresnel number the axial-irradiance distribu-
tion generated by the 2-D screen p(r, 0) is propor-
tional to the square of the 1-D Fourier transform of
qo(6). A result of this type is encountered in the
standard analysis of imaging systems in which a
Fourier transformation links the amplitude transmit-
tance of a 1-D pupil filter with the amplitude distribu-
tion at the image plane.

This analogy can be exploited for designing apodiz-
ers that produce, along the optical axis, the same
effect that a pupil filter would in an imaging forma-
tion context, as was pointed out in Ref. 15. In this
way, if we have a 1-D pupil filter that decreases the
outer lobes of the amplitude impulse response, which
enlarges the central lobe, then we recognize that it is
possible to obtain a whole family of 2-D screens for
achieving high focal depth. Specifically, any mem-
ber of the family of screens with qo(4) = 1 - 2 (see
Fig. 3) is able to create high focal depth, as is shown in
Fig. 5. The spreading of the central lobe increases
the tolerance of the device to a defocus error.

Another possibility is to achieve the opposite effect,
i.e., axial hyperresolution. In this case the profile of
qo(C) is the same as that of a 1-D hyperresolving filter,
say, qo(6) = 2. In Fig. 6(a) we plot some elements,
with different central obscuration ratios, of the fam-
ily of apodized pupils that are mapped, with the
transformation of Eq. (5), into the function qo(4) = 2.
The normalized axial-irradiance distribution ob-
tained with this type of apodizer is shown in Fig. 6(b).
The outer lobes of the axial irradiance increase, but
the central lobe narrows; in this way one is able to
achieve an axially hyperresolving effect, which may be
useful for precision focusing. 16

The above results on apodizer design can be conve-
niently rephrased in mathematical terms for a wide
range of generalized pupils. Let us assume that the
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Fig. 4. Focal-shift effect produced by an absorbing screen whose
azimuthally averaged amplitude transmittance is po(r) = 0.5: (a)
gray-scale representation of the annular aperture, (b) normalized
axial-irradiance distribution for N = 2.5. Te normalized axial-
irradiance distribution for the clear annular pupil is the same.
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Fig. 5. Normalized axial-irradiance distribution for the pupil
funetions in Fig. 3(b) (solid curve) and for thle clear annular pupil
(dashed curve).
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Therefore from Eq. (11) it is possible to evaluate the
axial-irradiance distribution, I h(W2 0) 12, of any annu-
lar generalized pupil function, with a variable central
obscuration ratio, whose mapped zero-order circular

I!' harmonic is expressible as a series of Legendre polyno-
mials. It is evident that the above-mentioned apodiz-
ers exemplify this case. Next, the present formula-
tion is applied to propose two apodizers that may be
useful for high-precision focusing.

It is interesting to note from Eq. (11) that at the
/l paraxial focus, W20 = 0, the only contribution is due

to the zero-order spherical Bessel function. Conse-
quently if the amplitude transmittance profile of the
apodizer in Eq. (10) excludes the Legendre polyno-
mial of zero order, then the axial irradiance at the

1 .o focus is zero, which may be useful for setting the focal
r/c point with high precision. As in Refs. 14 and 17, the

present scheme uses a null rather than a maximum in
the axial-irradiance distribution in order to locate the
focus and to create a much greater (ideally, infinite)
proportional change of a signal for a particular degree
of defocusing.

The first apodizer, for achieving zero focal irradi-
ance, is obtained by recognition that the first-order
spherical Bessel function has the lowest spread among
the nonzero-order functions of the same kind.
Consequently our first proposed apodizer is repre-
sented by the function qo(4) = P1 (c) = 4, whose
associated 2-D representation is

2 3

DEFOCUS COEFFICIENT: W20
(b)

Fig.6. Axial hyperresolving effect: (a) apodizers whose azimuth-
ally averaged amplitude transmitance is mapped into the 1-D
function qo(C) = 2, (b) normalized axial-irradiance distribution for
these pupil functions (solid curve) and for the clear annular pupil
(dashed curve).

mapped zero-order circular harmonic of the pupil
function is expressible as a series of Legendre polyno-
mials, Pn(4), that are a complete set of orthogonal
functions for -1 < < 1; that is,

+0

qO(t) = E n (10)
n=O

Hence by substituting Eq. (10) into Eq. (8) and by
taking into account that the Fourier transform of the
n-order Legendre polynomial is proportional to the
spherical Bessel function of the same order, jn we
obtain, for a sufficiently high Fresnel number,

+x0

h(W20) = (N/f) E (-i)nanjn(rW2 0). (11)
n=O

(r/a)2-po(r) =2 1- _-1 if a < r < a (12)

and zero elsewhere, as is plotted in Fig. 7(a). Since
in this case an = n,i in Eq. (10), then according to Eq.
(11), the axial-irradiance distribution is

I h(W2 0) 2 = (rN/f) 2 [j 1 (7W2 0)]2 . (13)

The normalized irradiance distribution is plotted in
Fig. 7(b). Here the normalization is such that the
maximum value of the intensity is unity. It is
convenient to observe that the zero value at the focal
point is placed between two maxima, which are
symmetrically located along the optical axis. These
irradiance distribution properties can be exploited for
setting a focusing technique with high precision.

However, care must be taken to avoid confusing
any other zero value along the optical axis with the
zero focal irradiance. This drawback can be elimi-
inated if the zero focal value is created over a uniform
background. Under this consideration we propose
next a second apodizer for high-precision focusing.

For the second apodizer we suggest a pupil filter
whose ideal axial-amplitude impulse response is

h(W 20) = 1 - (W20), (14)

where denotes the Dirac delta function. For obtain-
ing a realistic design one must consider that for the
set of band-limited functions expressible as a series of
spherical Bessel functions, Dirac's delta function
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or equivalently

M

(4) = lim [(-1)m(2m)!(4m + 1)/2 2m+1(m!)2]p2m(I).
M- M

(18)

By substituting Eq. (18) into Eq. (15), we obtain

M

q(t) = lim E [(-1)m(2m)!(4m + 1)/22m+l(m!)2P2m(0)
M- 00 = 1

7 /, ,,,,,,,', I , (19)
00 0 0. 06 0 10 which describes an apodizer that approaches the

0.0 0.2 0.4 0.6 0.8 1.0 realistic design in Eq. (15). The above complex-

NORMALIZED RADIAL COORDINATE: r/a amplitude transmittance produces an arbitrarily wide
(a) axial-irradiance response. The 2-D amplitude-trans-

mittance function associated with Eq. (19) is shown in

1 A A 1 Fig. 8(a) for several values of M and e = 0. Its
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Fig. 7. First apodizer for high-precision focusing: (a) annular
amplitude transmittance, (b) normalized axial-irradiance distribu-
tion.
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B(W20) is represented by jo(rrW20) = sin(TW2 o)/(rW 2 0).
Hence the 1-D representation of the amplitude trans-
mittance of our second apodizer is, regardless of a <
constant factor.

0•

qo(4) = 8(4) - 0.5Po(4). (15) 0

Now, it is well known that Dirac's delta function x
can be expressed in terms of a complete set of
orthonormal function b,2(k ) as N

8 = E~ ckn(0)k4). (16) 0f l -0 0 Z

If we particularize this relationship to the Legendre
polynomials, we obtain

+00 2n + 1 (7

8(C) = E1 2 P,"(o)Pn(C) (17)n =O
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Fig. 8. Second apodizer for high-precision focusing: (a) ampli-
tude transmittance, (b) normalized axial-irradiance distribution.
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associated axial-amplitude response is

M
h(W 20) = im [(2m)!(4m + 1)/2 2 m+l(m!) 2

]j 2m(TrW 2 0),

(20a)
which can also be written as

h(W2 0) = 1 - [sin(TrW2 0)/TnW20]. (20b)

The square modulus of the sum in Eq. (20a) describes
the axial irradiance, which is plotted in Fig. 8(b) for
various values of M. From Fig. 8(b) we claim that
our proposed apodizer is able to create zero axial
irradiance along a narrow interval centered around
the paraxial focus, over a background that ap-
proaches arbitrarily to uniformity. This result may
be useful for setting a scheme for highly precise
focusing.

5. Conclusions

We present a simple formula for evaluating in terms
of the defocus coefficient W20 the on-axis diffractional
behavior of any 2-D screen with arbitrary Fresnel
number N. Specifically we show that the axial-
amplitude distribution is proportional to the product
of two factors. The first factor involves a 1-D Fou-
rier transform of a suitably mapped version of the
azimuthally averaged amplitude transmittance of the
diffracting screen; the spatial frequency of the Fou-
rier integral is proportional to the coefficient W20.
The second factor depends on both W20 and N but is
independent of the amplitude transmittance of the
screen.

Therefore we recognize that a diffracting screen,
whose mapped transmittance function has the same
profile as any 1-D pupil filter designed for apodizing
the amplitude impulse response of an imaging sys-
tem, produces, for N sufficiently high, an identical
shaping in the axial-amplitude distribution. We illus-
trate our approach by designing some apodizers for
achieving high-precision focusing, axial hyperresolu-
tion, or high focal depth. Our formula permits us to
synthesize the apodizing function by using Legendre
polynomials of any order.

Furthermore, we indicate that the second factor
causes the loss of symmetry of the axial impulse
response, which is appreciable when N is small.
Consequently the same focal shift exhibited by the
clear circular aperture is also exhibited by any screen

whose amplitude transmittance averaged over any
axially symmetric ring is constant.
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