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The normal mode solution for Love waves from a shear fault in a

stratified layer over the half-space is investigated with special attention to
the azimuthal behavior of amplitude compared with the radiation pattern

of SH waves. It is found that Love waves are denoted by the sum of
two terms associated with a particular set of rays of physical significance.
For the torsional oscillation of a homogeneous elastic sphere due to the shear

fault, a similar relation is recognized between higher radial modes and rays.

The mode-ray relations obtained in the above two cases coincide with the
ones derived in other literature from quite different considerations that inter-

pret the normal modes by interference phenomena.
The radiation patterns of SH waves and of normal modes are found to be

related through the apparent equivalent take-off angle lh, which is defined

so that the radiation pattern of square amplitude for a normal mode may

be equal to the pattern of the sum of the square amplitudes for SH waves

emitted in the two directions specified by the take-off angles lh and π-lh.

Provided that the apparent equivalent take-off angles are known beforehand

as a function of the eigen-frequency and the focal depth, it is easy to obtain

the azimuthal dependence of amplitude of the normal modes excited by a

shear fault of arbitrary dip and slip, because the azimuthal behavior is the

same as the radiation pattern of SH waves associated with the apparent

equivalent take-off angles. Numerical experiments are shown for the fun-

damental torsional oscillation of a Gutenberg-Bullen A' spherical earth

excited by a pure dip slip and a pure strike slip fault at depth 5.35km.

1. Introduction

Attempts at revealing the mode-ray relation have been made by many authors.
BRUNE (1964) proposed an excellent idea of connecting rays and normal modes of a
spherical earth and applied the method successfully for obtaining torsional higher
mode dispersion curves from body wave phases. BEN-MENAHEM (1964) also revealed
the mode-ray duality from the analytical considerations. The contribution of theore-
tical seismograms to the study of this problem is significant and valuable results have
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been achieved (e.g., ALTERMAN and KORNFELD, 1966; ALTERMAN and ABOUDI, 1969;
LANDISMAN et al., 1970).

It is well known that the radiation pattern of the amplitude of normal modes,
either of surface waves propagating on the surface of multi-layered elastic half-space
or of free vibrations of an elastic sphere, depends on the focal mechanism and the
focal depth. It is thus reasonable to suppose that the radiation pattern for normal
modes has some correlation with that for body waves radiated from the same source
if some mode-ray correspondence relation exists.

In this paper, it is examined whether we can find some evidence revealing the
mode-ray relation in the expression of normal mode solutions of SH type due to a
double-couple force system. The method is based on the idea that if there is a
certain relationship between modes and rays, the azimuthal variations of amplitude
for a normal mode and for body waves associated with a particular ray must show
identical patterns. The procedure is realized by investigating expressions for normal
modes and for body waves due to a source with some directivity, referring to their
radiation patterns.

Two simple cases are studied. One is Love waves propagating in a layer over a
semi-infinite medium and the other the torsional oscillation of a homogeneous elastic
sphere. Certain correspondence relations between normal modes and rays are found;
these are consistent with those pointed out in other literature discussing similar pro-
blems. Useful formulas for obtaining the radiation pattern of amplitude spectra of
normal mode solutions are also derived.

2. Expressing Radiation Pattern of SH Waves

Displacements of body waves due to a shear fault in the infinite homogeneous
isotropic elastic medium have been formulated by many investigators (e.g., BEN-
MENAHEM et al., 1965; SATO, 1969). These are required in later sections for com-

paring with radiation patterns of normal modes.
For horizontally polarized transverse waves due to a fault of arbitrary dip and

slip, adopting only the far-field term, we have

(1)

where R denotes the distance between the source and the station, ih the take-off angle

at the focus, φ the azimuth of the station measured from the strike direction, t the

time, M0 the moment of the force system equivalent to the shear fault, ρ the density,

and υs the shear wave velocity. The source time function is f(t), and a dot (・) over

it means d/dt.

RSH stands for a factor indicating the radiation pattern of SH waves and is given as

(2)

where

(3)
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δ gives the dip angle and λ the slip angle. The geometry of the fault is interpreted

in Fig. 1.

Fig. 1. Coordinate systems and source geometry.
O refers to the focus and St the station. Arrows
indicate the direction of the fault movement
along one of two possible infinitesimal fault

planes associated with the double-couple force
system located at the coordinate origin.

Employing the formulas

(4)

the radiation pattern of SH waves of Eq. (2) is reduced to

(5)

This relation plays an important role in correlating modes and rays in later sections.

The following formula is also useful for calculating the radiation pattern of normal
modes of rotational type.

(6)

This quantity is concerned with the energy released from the source along the two

rays having the same ray parameter.

3. Love Waves and Rays

In this section, Love waves excited by a shear fault are investigated assuming the
simplest model, a single-layer and half-space model, with special reference to the azimuthal
behavior of amplitude in comparison with that of SH waves. This model is preferred
because the analytical expression for solutions can be obtained with comparative ease
and because the discussion analogous to the problem of sound wave transmission in
shallow water, in which the mode-ray correspondence relation is well established from
a viewpoint of interference phenomena, is possible as well.

HASKELL (1964) treated the problem for the excitation of surface waves due to

point sources in a multilayered medium with the aid of layered matrices. The solu-
tion relevant to the present problem is also involved in his study.

The azimuthal displacement on the surface far from the epicenter due to a shear
fault within a layer is
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(7)

where

(8)

and

(9)

M0 means the moment of a double-couple force system equivalent to the shear fault

and ρ, μ and υs the density, rigidity and shear wave velocity in the layer, respectively.

The corresponding quantities in the semi-infinite medium are ρ', μ′ and υs'. H is the

thickness of the layer, d the depth down to the focus, p the angular frequency, and

j the unit of imaginary numbers. The cylindrical coordinate system referred to the

origin at the free surface is (r, φ, z) as indicated in Fig. 2. The focal mechanism re-

Fig. 2. A single-layer semi-infinite model. F in-
dicates the seismic origin. The x-y plane con-
stitutes the free surface.

ferring to the (x, y, z) coordinate system shown in Fig. 2 is identical to the one in
Fig. 1 except for the vertical position of the hypocenter.

F(ξ)=0, (10)

gives the characteristic equation of Love waves, and κ stands for the roots of the

equation. The phase velocity of Love waves is denoted by

CL=p/κ, (11)

and is within the range

(12)

Equation (7) was obtained analytically from the source functions for dipolar sources

given by SATO (1969) and therefore it seems to show a somewhat different expression

from Haskell's. However, a slight modification of it immediately proves that both

are identical.

Other components than the azimuthal displacement are disregarded because the
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vertical component is missing essentially and the radial one is negligibly small compared
to the azimuthal one at a far station.

Substituting Eq. (4) into Eq. (7),

(13)

(14)

where K and φL are defined as

(15)

It is interesting to examine the radiation pattern of each term in the brackets of
Eq. (13), for these terms can be expected to correspond to two rays, one directed
downward and one upward from the focus, respectively. It will then be obvious,
referring to Eq. (5), that the azimuthal dependence of these terms is the same as of
SH waves emitted in the directions with the take-off angles defined by

(16)

The plus sign corresponds to the ray radiated downward from the source and minus

the upgoing one, which are denoted in Fig. 3 as R1 and R2 respectively. Provided

that the value of ihL is limited between 0 and π/2, the solutions of Eq. (16) are given

by ihL and π-ihL. The angle ihL will be called the equivalent take-off angle for Love

waves.

From Eqs. (9), (11), and (16), the following familiar relation is derived

CL=υs/sinihL. (17)

Fig. 3. Ray geometry interpreting the Love wave-SH wave

correspondence relation. R1 and R2 indicate the two

rays with common ray parameter. CL means the phase

velocity of Love waves, υs the shear wave velocity, and

ihL the equivalent take-off angle for Love waves.
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This relation implies that the wave-front of plane SH waves with incident angle ihL

progresses along the surface with the phase velocity CL (cf. Fig. 3). The broken lines

indicated by AF and A'F show the wave-fronts associated with the rays R1 and R2.

It is evident from the figure that the distance γ0 between O and A or A' satisfies

the relation

tanihL=d/γ0, (18)

Employing Eqs. (5), (9), (11), (16) and (18), Eq. (13) can be reduced to

(19)

The derivation is straightforward. This final expression, Eq. (19) of the normal mode

solution is interesting from the viewpoint of connecting modes with rays. It reveals

that the solution for Love waves consists of the sum of two waves with different

azimuthal variations and initial phases. The former possesses the radiation pattern

equivalent to that of SH waves radiated in the direction of the take-off angle ihL and

the initial phase κγ0. For the latter, these quantities have values π-ihL and -κ γ0.

Thus, the two features with regard to the radiation pattern and the initial phase sup-

port that the two waves correspond, respectively, to the downgoing and upgoing rays

at the focus with the same ray parameter specified by the equivalent take-off angle ihL.

It should be pointed out that the situation stated above is not exactly the one

that actually occurs near the source region, because the discussion in this section holds

under the condition that the observing point is enough apart from the epicenter that

the plane wave approximation is valid for the spherical waves.

The particular set of rays assigned by Eq. (16) or (17) is very important from the

viewpoint of the physical interpretation of normal modes by the ray theory, because

the characteristic equation denoted by Eq. (10), which permits calculation of the

dispersion curves of Love waves for the layered model in question, can also be derived

by considering the constructive interference effects of downgoing and upgoing waves

associated with this particular set of rays. For the sound wave transmission in the

layered liquid space, these aspects are illustrated in detail in other literature (e.g., EWING

et al., 1957; OFFICER, 1958) and for Love waves by SATO (e.g., 1951, 1954).

Thus, it is found that the comparison of the radiation patterns of body waves

and of normal modes brings out satisfactory results for connecting the particular rays

of physical significance with a normal mode.

Next the dependence of Love wave displacements on the azimuthal angle is con-

sidered; it differs from either of the component waves, i.e., the downgoing or upgoing

waves, as is apparent from Eq. (19). Equation (14) reveals that the radiation pattern

of amplitude spectra of Love waves depends on the focal depth as well as on the

period. Its pattern has some connection with that of SH waves, which can be derived

from Eqs. (6) and (14). If the take-off angle lhL is defined as

(20)

it is obvious that the Love wave radiation pattern is given by

(21)

The absolute value of Eq. (14) is then reduced to
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(22)

The apparent equivalent take-off angle for Love waves, lhL, provides some advantages
in calculating the radiation pattern of Love waves since it can be realized by evaluating
only that of SH waves. From Eqs. (21) and (22), it is found that the pattern for
the square amplitude of Love waves shows similar feature to that for SH waves given
by Eq. (6).

The two angles ihL and lhL differ essentially because the former is inherent in
respective normal modes while the latter varies as a function of the focal depth even
for any assigned modes.

4. Toroidal Modes and Rays

The method developed in the preceding section revealed the mode-ray correspond-
ence relation for the single-layer and half-space model. In this section, the method is
applied to the torsional oscillation of a homogeneous isotropic elastic sphere. It is,
then, expected that a mode-ray relation consistent with the one pointed out by BEN-
MENAHEM (1964) will be derived.

Analytical expressions for the torsional displacement from the shear fault of arbi-
trary dip and slip in the homogeneous sphere are obtained without difficulty with the
aid of equivalent source functions of the double-couple force system introduced by
USAMI et al. (1970). The equivalent source functions are defined as apparent discon-
tinuities of displacements and stresses on the concentric spherical surface, on which the
source is located, caused by the original source functions.

The equivalent source functions of the torsional modes for the shear fault indicated
in Fig. 4 are

(23)

where M0 means the moment of the double-couple force system equivalent to the

shear fault; b the radius of the spherical surface where the source is located; μ the

rigidity; (γ,θ,φ) the polar coordinates referring to the center of the sphere; u, υ, and

w the radial, colatitudinal, and azimuthal displacements; γγ, γθ, and γφ the radial,

colatitudinal, and azimuthal stress components; and Pnm(cosθ) the associated Legendre

function. Equation (3) defines d1, d2, d3, and d4, and they depend on dip and slip

angles of the fault.

Some caution is taken with the derivation of Eq. (23) since the applied double
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Fig. 4. Source geometry and the spherical coordinate

system. O is the center of the sphere, F the

focus, and St the station.

couple forces are different in their directions from those assumed in the paper of
USAMI et al. (1970). The solution was obtained according to the second method of the
two expressed in the paper by USAMI et al. (1970, p. 547). This requires the supple-
mentary boundary condition to have discontinuities of displacement and stress on the
source surface amounting to the values given by the equivalent source functions in
Eq. (23) in addition to the conditions at the free surface and at the center of the earth.
The expression for the azimuthal displacement at the free surface is

(24)

where

(25)

f*(p) means the Fourier transform of the source time function, jn(ξ) the spherical

Bessel function of order n, ipn the angular eigen-frequency associated with the radial

mode number i and the colatitudinal order number n, k the wave number, and a the

radius of the earth. C1 and C2 are defined by Eq. (4).

Gn(a)=0 is the characteristic equation for the torsional oscillation of the homo-

geneous sphere, and the solution of the equation gives discrete eigen-frequencies as a

function of mode and order numbers. The numerical solution is, for example, given

by SATO and USAMI (1962) up to considerably high modes.

There is no radial displacement for the toroidal modes. The colatitudinal com-

ponent is disregarded because it shows much smaller amplitude than the azimuthal.

In the following, only the quantity in brackets in Eq. (24) is considered, for it is

all that governs the azimuthal variation of the displacement spectra for the torsional

oscillation. In the following, ipn will be simply written as p.

Employing the asymptotic formulas for the associated Legendre function, this

quantity is, for order numbers n≫1, reduced as follows
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(26)
where

(27)

In the last expression of Eq. (26), the first term in the brackets corresponds to waves

propagating in the +θ direction and the second in the -θ. These aspects were proved

by the numerical calculations for the fundamental spheroidal modes of a radially

heterogeneous sphere (ODAKA and USAMI, 1970). For any toroidal modes as well, we

assume that the summation of the contribution from the first term gives rise to waves

propagating in the +θ direction and the second term in the opposite direction. Here-

after, attention will be paid only to the first term, that is, waves progressing in the

+θ direction. For waves radiated to the -θ, a similar discussion holds.

Thus, the factor contributing to the radiation pattern is simply written as

(28)

Equation (28) is valid for any radial modes of order n, as long as the restriction n≫1

is satisfied.

Some familiar formulas in mathematical physics (e.g., WATSON, 1966) are introduced

in order to reduce Eq. (28) to a more convenient form to compare the radiation pattern

of the toroidal modes with that of SH waves given by Eq. (5).

(29)

Modifying this formula, we have

(30)

Equations (29) and (30) are the asymptotic formulas valid for large values of ν.

Putting

ν=n+1/2,

ν・secα=ξ,

(31)

and assuming

ξ≫ ν, (32)

we have

(33)

(34)

where
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(35)

In deriving Eqs. (33) and (34), the well-known relation between jn(ξ) and the Bessel

function Jν(ξ), and the recurrence formuta are employed. Putting

ξ=kb, (36)

and employing Eqs. (25), (33) and (34) under the conditions in Eq. (32), Eq. (28) is

reduced to

(37)

It is immediately found that Eq. (37) is similar in form to Eq. (13) which gives the
Love wave displacement. This leads us to suppose that the each term in the brackets
may have some connection with a particular ray as was seen in the previous case for
Love waves. To prove this, the method developed in the preceding section is applied,
comparing the radiation pattern of respective waves in the brackets with that of SH
waves in Eq. (5). Defining ihT by

(38)

and using Eq. (5), Eq. (37) can be transformed to

(39)

The angle ihT, the value of which is limited within the range (0, π/2), is called the

equivalent take-off angle for the torsional oscillation, because the radiation pattern of

respective waves composing the toroidal displacement is just the one of SH waves

associated with this angle as is apparent from Eq. (39).

The numerator of Eq. (38) may be replaced by ν for large n with sufficient ac-

curacy. With this and Eqs. (31) and (36), the following important formulas are ob-

tained

(40)

Then the ray parameter becomes

(41)

where e0 denotes the angle of incidence at the free surface, γd the radius of the deepest

point of the ray (cf. Fig. 5). CT is the phase velocity for the torsional oscillation

defined by

(42)

It must be noted that the quantities p, ihT, e0, γd, and CT are the functions of radial

mode and colatitudinal order numbers.
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Fig. 5. The ray geometry in the homogeneous

sphere. O is the center of the sphere and F the

focus. The radius of the earth is denoted by a

and the radius to the source surface is b.

Equation (41) has been derived by BEN-MENAHEM (1964) applying the analytical
method to the normal mode solution. This relation connects particular modes with

particular rays through the identity of the phase velocity of normal modes and the
apparent velocity of SH waves. BRUNE (1964) calculated the phase velocity of toroidal
modes from the body wave phases assuming this relation.

It is significant that Eq. (40) or (41) relating modes and rays is now established by
a quite different method based on the idea that both radiation patterns should have
some connection each other.

Thus, it is found that the normal mode solution for the torsional vibration with
any mode and order numbers can be expressed by the summation of two terms associated
with the particular set of rays, the situation of which is quite similar to the Love
wave case. However, some conditions have to be satisfied for the above discussion to
be valid. These are written

(43)

Referring to the numerical results for the eigen-frequencies of the torsional oscillation
of several earth models presented by SATO and his co-workers (SATO and USAMI,
1962; SATO et al., 1963; SATO et al., 1968), it can be seen that Eq. (43) is generally
satisfied in higher torsional modes with a large order number n as long as the focal
depth is not large. This is not inconsistent with the restriction assigned by BEN-
MENAHEM (1964).

Here, it must be said that it is impossible to specify the particular set of rays by
comparing the observed radiation pattern of normal modes with the theoretical body
wave pattern, because the actual radiation pattern is not either one of the two terms
in Eq. (39) but the resultant pattern of the two. In the next section, the radiation

pattern for the torsional oscillation of a radially heterogeneous sphere will be generally
treated.

5. Radiation Pattern of Toroidal Modes

So far, the azimuthal dependence of displacement of normal mode solutions and
the mode-ray relation have been treated for simple cases. In this section, the radiation

pattern of the torsional displacement of a radially heterogeneous sphere excited by a
double-couple force system is discussed, and the applicability of the mode-ray relation
obtained for the homogeneous sphere is considered.
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The expression of the azimuthal displacement relevant to the present case is easily
derived from formulas given by USAMI et al. (1970) and ODAKA and  USAMI (1970).
This is written in the form

(44)

where

(45)

Wn(r) denotes the eigen-function giving the radial distribution of the azimuthal dis-

placement, the value of which is normalized to unity at the free surface, and Gw(r)

the quantity giving the azimuthal stress. The characteristic equation for the torsional

vibration of the radially heterogeneous sphere is Gw(a)=0. μb is the rigidity at the

source depth and a dot (・) over the associated Legendre function stands for d/dθ. Other

quantities such as M0, a, b, C1, C2 and f*(p) are defined in previous sections.

Comparing the above two expressions with those for the homogeneous sphere

given by Eqs. (24) and (25), it is immediately noticeable that the latter are entirely

included in the former. On the other hand, a radially heterogeneous sphere can be

considered to consist of thin spherical homogeneous shells. Therefore, Wn(r) is sup-

posed to be approximated in respective shells by the solution valid for the homogeneous

medium.

These aspects suggest that a discussion similar to the homogeneous sphere holds

for the present case as well. So it can be concluded that Eqs. (40) and (41) are also

valid for the radially heterogeneous sphere. The shear wave velocity ƒÒs appearing in

them, then, varies as a function of the radius.

It is instructive to examine the radial distribution of the azimuthal displacement

of normal modes and the deepest point of the corresponding ray through Eq. (41), be-

cause if such a mode-ray relation is true, it is reasonable to consider that the deepest

point should correspond to the lowermost part of the displacement distribution. Figure

6 illustrates these situations in which the function Wn(r) for higher radial modes with

a large order number is displayed for a Gutenberg-Bullen A' earth model. The deepest

points associated with respective normal modes calculated by Eq. (41) are shown by

arrows. It is certain from the figure that the points indicated by these arrows are

located just below the lowermost maximum amplitude. In other words, the energy

associated with respective normal modes hardly penetrates into the medium inner than

the envelope of the ray given by Eq. (41). These features can be recognized not only

for higher modes and large order numbers as indicated here but also for lower modes

and small orders such as i=2 with n=20 and also for a model with a homogeneous

mantle and a liquid core as well. Therefore, the validity of Eqs. (40) and (41) may

be extended to the first overtone and low order numbers. The data used here are

those prepared by Sato and Usami for the theoretical study of the wave generation,

propagation, and attenuation.

A convenient formula to investigate the radiation pattern of the torsional displace-
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Fig. 6. Radial distribution of azimuthal
displacements for radial higher
toroidal modes with large colatitudi-
nal order numbers, which are
normalized at the surface. The
Gutenberg-Bullen A' spherical earth
is assumed. The radial mode num-
ber is i. n is the colatitudinal order
number and T the eigen-period.
Arrows show the deepest point of
the ray corresponding to each
normal mode by means of Eq. (41).

ment spectra can be obtained by transforming the quantity in the brackets in Eq. (44)
using the asymptotic expansion of the associated Legendre function for a large colati-
tudinal order number n.

(46)

where

(47)

and

(48)

kn and Θ are the same as in Eq. (27).

The function RTw(b, φ) determines the azimuthal variation of amplitude spectrum

at frequency ipn due to a double-couple point source in the radially heterogeneous
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sphere. For a homogeneous one, it is necessary only to replace the function Wn(b)

by jn(kb) and Gw(b) by Gn(b) in Eqs. (46), (47), and (48).

Comparing Eqs. (47) and (6), it is readily found that there is an apparent equiv-

alent take-off angle lhT which makes identical the azimuthal variation of both quan-

tities denoted by ESH(lhT, φ) and (RTw(b, φ))(RTw(b, φ))2. This is defined by

(49)

where the value of lhT is limited within the range (0, π/2). From Eqs. (6), (47), and

(49), the following relation is derived

(50)

similar to Eq. (21) for the Love wave case.
The above relation indicates that the radiation pattern of square amplitude for

toroidal modes is given by the quantity associated with the SH wave energy emitted
in particular directions specified by the take-off angle lhT. This angle generally differs
from the equivalent take-off angle ihT introduced in the previous section and can be
defined even for the fundamental radial modes, but does not seem to have any physical
significance except for the coincidence of radiation patterns. This, however, has some

Fig. 7. Numerical examples of the apparent equivalent take-off angle lhT calculated for
the torsional oscillation of the Gutenberg-Bullen A' earth model. Only fundamental
radial mode i=1 is taken into account, which is considered to contribute mainly to
surface waves. The ordinate indicates the angle in degree and the abscissa the colati-
tudinal order number. H means the focal depth.

advantages in calculating the radiation pattern of amplitude spectra of normal modes,

because the pattern can be evaluated from the function ESH(ih, φ) given by Eq. (6),

provided that the apparent equivalent take-off angles associated with those modes are

known beforehand.

Some numerical examples will be demonstrated here for the fundamental radial

modes by using the data for the Gutenberg-Bullen A' spherical earth computed by SATO
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Fig. 8. Radiation pattern of azimuthal displacements for several fundamental toroidal
modes excited by pure dip slip and strike slip faults at depth 5.35km in the Guten-
berg-Bullen A' earth model.

et al. (1968). In Fig. 7 is shown the apparent equivalent take-off angle calculated for
several focal depths by Eq. (49). It is seen from the figure that the radiation pattern
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varies remarkably as a function of the colatitudinal order number. The angle, however,

seems to approach some constant value independent of order numbers as the focal

depth becomes shallower. It can be readily found from Eq. (49) that the extreme

value of this angle is π/2, remembering that Gw(r) is zero and Wn(r) unity at the free

surface. In other words, the apparent ray tends to the horizontal direction as the

focus closes to the surface. A similar feature is recognized for the Love wave case

discussed in Section 2.

Once the apparent equivalent take-off angle is prepared for any modes and focal

depths, the radiation pattern of normal modes for arbitrary dip and slip is obtained by

calculating that of SH waves. Figure 8 manifests that both radiation patterns, one

calculated by a conventional method based on Eq. (47) and the other by Eq. (50)

employing the apparent angle of Fig. 7, agree very well. Solid and broken lines show

those by the former method. Symbols such as circles, squares, and triangles are obtained

by the latter method at every 15° of the azimuth. Broken lines and solid marks

denote the pure dip slip case and solid lines and open marks the pure strike slip.

Calculation is carried out for the azimuth within the range (0°, 90°). From this figure,

the radiation pattern for the azimuth (90°, 360°) is obtained using the symmetrical

relations of the amplitude spectra (ODAKA and USAMI, 1970). Thus, it Will be useful

to prepare lists of the apparent equivalent take-off angle for various earth models.

6. Conclusion

Eq. (41) obtained by BEN-MENAHEM (1964) was also derived by comparing the
radiation pattern of torsional displacement spectra with that of SH waves. This relation
was also supported by the close correlation between the radial distribution of azimuthal
displacements of toroidal modes and the deepest points of the corresponding rays as-
signed by this formula. Considering these results together with the fact that BRUNE
(1964) has successfully obtained the torsional phase velocity from the body wave phases,
it may be concluded that this relation is just the one that connects modes and rays as
far as the torsional modes are concerned. It then seems that this is applicable for any
higher modes of order numbers larger than 20 or so.

These features, however, cannot be said to be completed until theoretical seismo-
grams synthesized taking this relation into consideration reveal the various SH wave
phases.

The author would like to express his sincere thanks to Professor Tatsuo Usami
for kindly reading the munuscript and for the use of his numerical data.
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