TAIWANESE JOURNAL OF MATHEMATICS Vol. 11, No. 1, pp. 143-150, March 2007 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON b-WEAKLY COMPACT OPERATORS ON BANACH LATTICES

Birol Altin

Abstract. In this paper every *b*-weakly compact operator is shown to factor through a KB-space. Also we give some necessary and sufficient conditions for a continuous operator $T : E \to X$ from a Banach lattice into a Banach space to be a *b*-weakly compact. Moreover, we investigated the order structure of *b*-weakly compact operator.

1. INTRODUCTION AND PRELIMINARIES

The notions b-weakly compactness of operators from a Banach lattice into a Banach space, b-order boundedness of sets in a Riesz space and b-order boundedness of operators between Riesz spaces were introduced in [3].

Let L be a Riesz space. Let L^{\sim} and $L^{\sim\sim}$ denote order dual of L and second order dual of L, respectively. The canonical embedding $Q_L : L \to L^{\sim\sim}$ is defined by

$$Q_L(x) = \hat{x} ; \quad \hat{x}(f) = f(x), \quad f \in L^{\sim}$$

for each $x \in L$, \hat{x} is an order bounded and order continuous linear functional on L^{\sim} . The canonical embedding is a lattice preserving operator. If L^{\sim} separates the points of L then Q_L is also one-to-one, and hence L can be considered as a Riesz subspace of $L^{\sim\sim}$. Since all Banach lattices have separating order duals, we will not distinguish between a Banach lattice E and its image in E''.

Definition 1. Let A be a subset of L. If $Q_L(A)$ is order bounded in $L^{\sim \sim}$, then A is said to b-order bounded in L.

It is clear that every order bounded subset of L is b-order bounded. However, the converse is not true in general. For example, $A = \{e_n : n \in \mathbb{N}\}$ is b-order

Communicated by Bar-Luh Lin.

2000 Mathematics Subject Classification: 47B07, 47B65.

Key words and phrases: Banach lattices, b-Weakly compact operators, b-Order bounded operators, Modulus.

Received September 20, 2004, revised June 1, 2005.

bounded in c_0 but A is not order bounded in c_0 , where e_n is sequence of reals with all terms zero except for the n'th which is 1.

Definition 2. A Riesz space L is said to have property (b) if every b-order bounded subset of L is order bounded in L [3].

Every order dual of Riesz space has property b [3].

Definition 3. An operator T between Riesz spaces L, M is called *b*-order bounded, if it maps *b*-order bounded subsets of L into *b*-order bounded subsets of M.

It is clear that every order bounded operator between Riesz spaces is b-order bounded operator.

Definition 4. Let E be a Banach lattice and X be a Banach space. An operator $T : E \to X$ is said to be *b*-weakly compact whenever T carries each *b*-order bounded subset of E into a relatively weakly compact subset of X. The collection of *b*-weakly compact operators will be denoted by $W_b(E, X)$.

Let W(E, X) and $W_o(E, X)$ denote the spaces of all weakly compact operators and of all order weakly compact operators from E into X respectively. Clearly we have $W(E, X) \subset W_b(E, X) \subset W_0(E, X)$. On the other hand, it is clear that the equality $W(E, X) = W_b(E, X)$ holds whenever E is an AM-space. Let F be a Banach lattice. $\mathcal{L}(E, F)$ and $\mathcal{L}_b(E, F)$ denote the spaces of all bounded and of all order bounded operators from E into F respectively. For brevity, $\mathcal{L}(E, E)$ will be denoted by $\mathcal{L}(E)$. $W_b^r(E, F)$ denotes the linear span of the positive *b*-weakly compact operators from E into F.

 $I_{x''}$ denotes the principal ideal generated by $x'' \in E''$ and $Y_{x''}$ denotes the Riesz space $I_{x''} \cap E$ for each x'' in E''_+ . It is clear that for each x'' in $E''_+ Y_{x''}$ is an AM-space with the norm,

 $|| u ||_{\infty} = \inf\{\lambda > 0 : | u | \le \lambda x''\} \text{ for each } u \in Y_{x''}.$

Let T be a continuous operator from Banach lattice E into Banach space X and A be a norm bounded subset of E'. We define two Riesz seminorms on E

 $q_T(x) = \sup\{|| T(y) ||: |y| \le |x|\}, x \in E \text{ and }$

 $\rho_A(x) = \sup\{|f| (|x|) : f \in A\}, x \in E.$

For all other undefined terms and notations we will adhere to the conventions in [2] and [6].

2. CHARACTERIZATION OF b-WEAKLY COMPACT OPERATORS

In this section we give some characterizations for a *b*-weakly compact operator.

Proposition 1. Let E be a Banach lattice, X be Banach space and $T : E \to X$ be a continuous operator, the following statements are equivalent:

- (*i*) *T* is b-weakly compact operator.
- (ii) For each b-order bounded disjoint sequence $\{x_n\}$ of $E_+ \lim q_T(x_n) = 0$.
- (iii) $\{T(x_n)\}$ is norm convergent for every b-order bounded increasing sequence $\{x_n\} \subseteq E_+$. (i.e. T is of type B [7].)

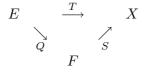
Proof. $(i) \Longrightarrow (iii)$ Let $T : E \to X$ be b-weakly compact. Let $\{x_n\}$ be a b-order bounded increasing sequence of E_+ . We choose $x'' \in E''_+$ with $0 \le x_n \uparrow x''$ in E''. Let $T_{x''}$ be the restriction of the operator T to $Y_{x''}$. It is clear that $T_{x''}$ is weakly compact. Accordingly, $T'_{x''} : X' \to Y'_{x''}$ is also weakly compact. Thus if W is the closed unit ball of X', $B = T'_{x''}(W)$ is relatively weakly compact. Theorem 2.5.5 in [6] implies that the sequence $\{x_n\}$ in $Y_{x''}$ is ρ_B -Cauchy. Hence, $\{T(x_n)\}$ is norm convergent in X.

- $(iii) \Longrightarrow (i)$ is obvious.
- $(i) \iff (ii)$ It follows from Theorem 2.5.5. in []6.

Since the dual of Banach lattice has property (b), 3.5 Proposition in [7] is given as a result of preceding proposition.

The preceding proposition coupled with Theorem 3.4.11 and Theorem 3.5.8 in [6] yields the following characterization.

Proposition 2. Let $T : E \to X$ be a continuous operator from a Banach lattice with order continuous norm into a Banach space, then T is b-weakly compact if and only if T admits a factorization through a KB-space F



where Q is an interval preserving lattice homomorphism.

Corollary 1. Let E be a Banach lattice with order continuous norm, X be a Banach space and $T : E \to X$ be a continuous operator, then the following statements are equivalent:

- (*i*) *T* is a b-weakly compact.
- (ii) $\lim_{x_n \to 0} || T(x_n) || = 0$ for every b-order bounded sequence $\{x_n\} \subset E_+$ satisfying

Proposition 3. Let *E* be a Banach lattice with order continuous norm and weakly sequentially continuous lattice operations. Let *X* be a Banach space and $T: E \rightarrow X$ be a continuous operator, then the following assertions are equivalent:

- (*i*) T is b-weakly compact
- (ii) If $\{x_n\}$ is a b-order bounded $\sigma(E, E')$ -Cauchy sequence, then $\{T(x_n)\}$ is $\|\cdot\|$ -convergent.

Proof. $(i) \Longrightarrow (ii)$ Let $\{x_n\}$ be a b-order bounded $\sigma(E, E')$ -Cauchy sequence of E. If $\{T(x_n)\}$ is not norm Cauchy sequence of X, then there exist some $\epsilon > 0$ and a subsequence $\{y_n\}$ of $\{x_n\}$ satisfying $|| T(y_{n+1}-y_n) || > \epsilon$ for all $n \in \mathbb{N}$. Since $\{y_{n+1} - y_n\}$ convergences weakly to zero and lattice operations in E are weakly sequentially continous, we see that $(y_{n+1} - y_n)^+ \to 0$ and $(y_{n+1} - y_n)^- \to 0$ weakly. Therefore, $\lim || T(y_{n+1} - y_n) || = 0$, which is impossible. Thus, $\{T(x_n)\}$ is a norm Cauchy sequence, and hence is norm convergent in X.

 $(ii) \Longrightarrow (i)$ This assertion follows from proposition 2.8 in [3].

Proposition 4. Let *E* be a Banach lattice with order continuous norm, *X* be a Banach space and $T : E \to X$ be a continuous operator, then the following statements are equivalent:

- (*i*) *T* is b-weakly compact operator.
- (ii) For each $x'' \in E''_+$ and $\epsilon > 0$ there exist $0 \le y''' \in (Y_{x''})''$ and $\delta > 0$ such that $|y| \le x''$ and $y'''(|y|) < \delta$ imply $||T(y)|| < \epsilon$.

Proof. (i) \implies (ii) Let $T : E \to X$ be b-weakly compact operator. Fix $\epsilon > 0$ and $0 < x'' \in E''$. We can assume that $Y_{x''} \neq \{0\}$. Denote by $T_{x''}$, the restriction of the operator T to $Y_{x''}$. $T_{x''} : Y_{x''} \to X$ is weakly compact operator. Accordingly, $T_{x''}'' : X''' \to (Y_{x''})'''$ is also weakly compact. Thus, if W is the closed unit ball of X''' then $T_{x''}''(W)$ is relatively weakly compact in $(Y_{x''})'''$. Then by Theorem 13.10 in [2], there exists some $0 \leq y''' \in (Y_{x''})'''$ such that $\| (|T_{x''}''(f)| - y''')^+ \| < \epsilon/2 \| x'' \|$ holds for all $f \in W$.

Now put $\delta = \epsilon/2$ and let $|y| \le x''$ satisfy $y'''(|y|) < \delta$. Then for each $f \in W$, we have

$$| f(T''_{x''}(y) | = | T'''_{x''}f(y) |$$

$$\leq | T'''_{x''}f | (| y |)$$

$$= (| T'''_{x''}f | -y''')^{+}(| y |) + (y''' \wedge | T'''_{x''}f | (| y |))$$

$$\leq || (| T'''_{x''}f | -y''')^{+} || \cdot || y || +y'''(| y |)$$

$$< \epsilon,$$

which implies that $|| T(y) || < \epsilon$ holds, as desired.

 $(ii) \implies (i)$ Let B denote the band generated by E in E'' and $x'' \in B_+$. We choose a net $\{x_\alpha\}$ in E with $0 \le x_\alpha \uparrow x''$. Taking into account that $x_\alpha \stackrel{w^*}{\to} x''$ in E''

and $T'': E'' \to X''$ is w^* -continuous, we see that $Tx_\alpha \xrightarrow{w^*} T''x''$ also holds. Since $||x_\alpha||_{\infty} \leq 1$ and $\{x_\alpha\}$ is increasing net in $Y_{x''}$, there exists a positive element y'''' in $Y_{x''}'''$ with $0 \leq x_\alpha \uparrow y''''$ in $Y_{x'''}'''$. Therefore, $f(x_\alpha) \to y'''(f)$ for all $f \in (Y_{x''}'')_+$. Now let $\epsilon > 0$. Choose $\delta > 0$ and $0 \leq y''' \in Y_{x''}''$ such that $|y| \leq x''$ and $y'''(|y|) < \delta$ imply $||T(y)|| < \epsilon$. Next pick some α_0 so that $y'''(|x_\alpha - x_\beta|) < 2\delta$ holds for all $\alpha, \beta \geq \alpha_0$. Fix some $\beta \geq \alpha_0$ and note that if $g \in X'$ with $||g|| \leq 1$, then

$$\| (T''x'' - Tx_{\beta})(g) \| = \lim_{\alpha \ge \alpha_0} | g(T(x_{\alpha} - x_{\beta}) |$$

$$\leq \limsup_{\alpha} \| T(x_{\alpha} - x_{\beta}) \|$$

$$< \epsilon$$

holds, the latter implies that $||T''(x'') - T(x_{\beta})|| < \epsilon$. This shows that T''x'' lies in the norm closure of X in X''. Since X is a Banach space, we see that $T''(x'') \in X$ hence, $T''(B) \subseteq X$ holds. By Proposition 2.11 in [3], T is b-weakly compact.

Neither the adjoint of *b*-weakly compact operator nor a continuous operator with a *b*-weakly compact adjoint have to be b-weakly compact in general. One can just put the identity operators on l_1 and c_0 respectively.

Recall that a continuous operator $T: X \to E$ from a Banach space into a Banach lattice is semicompact whenever for $\epsilon > 0$ there exists some $u \in E_+$ satisfying

$$|| (|T(x)| - u)^+ || < \epsilon$$

for all $x \in X$ with $||x|| \le 1$.

A continuous operator, whose adjoint is semicompact, from a Banach lattice with order continuous norm into a Banach lattice is *b*-weakly compact.

Corollary 2. Let $T : E \to F$ be a continuous operator from a Banach lattice with order continuous norm into a Banach lattice. If the adjoint of T is semicompact, then T is b-weakly compact.

However, as the next example shows, the converse of this result is not true in general.

Example 1. The identity operator $I : l_2 \rightarrow l_2$ is a *b*-weakly compact but its adjoint $I : l_2 \rightarrow l_2$ is not a semicompact.

Recall that an operator $T: X \to Y$ between two Banach spaces is a Dunford-Pettis operator whenever $x_n \xrightarrow{w} 0$ in X implies $\lim || T(x_n) || = 0$.

Birol Altin

Every Dunford-Pettis operator maps b-order bounded sets onto relatively weakly compact sets.

Proposition 5. Every Dunford-Pettis operator $T : E \to X$ from a Banach *lattice* E into a Banach space X is b-weakly compact.

A b-weakly compact operator need not be a Dunford-Pettis operator. For instance, the identity operator $I: L_1[0,1] \to L_1[0,1]$ is b-weakly compact but it is not Dunford Pettis operator.

3. ORDER STRUCTURE OF b-WEAKLY COMPACT OPERATORS

In [1], the idea of a generalized sublattice was introduced. There it is said that (\mathcal{J},\leq) is a partially ordered vector spaces and \mathcal{Z} a subspace of \mathcal{J} , then \mathcal{Z} is a generalized sublattice of \mathcal{J} if (\mathcal{Z}, \leq) is a lattice and for each $x, y \in \mathcal{Z}$ the supremum of x and y calculated in \mathcal{Z} is also their supremum in \mathcal{J} . For example the compact operators from C([0,1]) into c_0 (which form a lattice) as a subset of $\mathcal{L}(C([0,1]), c_0)$ (which is not a lattice).

The following example shows that on Dedekind complete Banach lattices, bweakly compact operators do not form a lattice.

Example 2. The well known operator $T: L_1[0,1] \rightarrow c_0$ defined by

$$T(f) = \left(\int_0^1 f(x)\sin x dx, \int_0^1 f(x)\sin 2x dx, \cdots\right)$$

is a b-weakly compact operator but it is not order bounded. Therefore, $W_b(L_1[0, 1], c_0)$ is not a lattice.

The next example due to Z.L. Chen and A.W. Wickstead in [4] shows that the order bounded, b-weakly compact operators from a Banach lattice into a Dedekind complete Banach lattice do not form a lattice.

Example 3. Let $E = C([0,1]), F = l_{\infty}(F_n)$ where $F_n = (l_{\infty}, \|\cdot\|)$ and $\| (\lambda_k) \| = max\{ \| (\lambda_k) \|_{\infty}, n \limsup(|\lambda_k|) \}$ for all $(\lambda_k) \in l_{\infty}$. Then for each $n \in \mathbb{N}, F_n$ is a Dedekind complete AM-space, hence so is F. Define $T_n : E \to F_n$ by $T_n(f) = (2^n \cdot \int_{I_n} f \cdot r_k dt)_{k=1}^{\infty} \in F_n$ for all $f \in E$, where r_n is the *n*'th Radamacher function on [0, 1] and $I_n = (2^{-n}, 2^{-n+1})$. Now define $T: E \to F$ by $T(f) = (\frac{1}{n}T_n(f))_{n=1}^{\infty}$. Then T is a weakly compact

operator, so T is a b-weakly compact operator and its modulus |T| exists and |T|

148

is not order weakly compact hence not b-weakly compact so $W_b(E, F)$ is not a lattice.

By Corollary 2.9 in [3] we see that the linear span of the positive *b*-weakly compact operators from a Banach lattice into a Dedekind complete Banach lattice is a generalized sublattice of the space of all *b*-weakly compact operators.

Proposition 6. Let *E* and *F* be two Banach lattices with *F* Dedekind complete. Then $W_b^r(E, F)$ is a generalized sublattice of $W_b(E, F)$.

We note that $W_b^r(E, F)$ is an ideal in $\mathcal{L}_b(E, F)$, but $W_b^r(E, F)$ is not a band in $\mathcal{L}_b(E, F)$ in general.

The following proposition gives us some sufficient conditions for the composition of two operators to be a *b*-weakly compact. The proof of the following proposition is routine.

Proposition 7. Let E, F, G be Banach lattices and $E \xrightarrow{T} F \xrightarrow{S} G$ be operators, then we have that

- (1) If T is a b-order bounded operator and S is a b-weakly compact operator then ST is a b-weakly compact operator.
- (2) If S is continuous and T is a b-weakly compact operator then ST is a b-weakly compact operator.
- (3) If F has a continuous norm and T is a continuous operator with $T''(B_E) \subset B_F$ and S is a b-weakly compact operator then ST is a b-weakly compact operator, where $B_E(B_F)$ is the band generated by E(F) in E''(F'').

The above proposition also informs us that the *b*-weakly compact operators on a Banach lattice *E* form a left-sided ring ideal of $\mathcal{L}(E)$.

REFERENCES

- 1. Y. A. Abramovich and A. W. Wickstead, Recent results on the order structure of compact operators, *Irish Math. Soc. Bulletin*, **32**, (1994), 34-45.
- 2. C. D. Aliprantis and O. Burkinshaw, *Positive Operators*, Academic Press, New York and London, 1985.
- 3. Ş. Alpay, B. Altn and C. Tonyal, On property (b) of vector lattices, *Positivity*, 7 (2003), 135-139.
- 4. Z. L. Chen and A. W. Wickstead, Vector lattices of weakly compact operators on Banach lattices, *Trans. Amer. Math. Soc.*, **352(1)**, (1999), 397-412.

Birol Altin

- 5. P. G. Dodds, O-weakly compact mappings of Riesz spaces, Trans. Amer. Soc., 214 (1975), 389-402.
- 6. P. Meyer-Nieberg, *Banach lattices*, Springer-Verlag, Berlin, Heidelberg, New York, 1991.
- 7. C. Niculescu, Order σ -Continuous Operators On Banach Lattices, *Lecture Notes in Math.*, Springer-Verlag, **991** (1983), 188-201.

Birol altin Department of Mathematics, Faculty of Science and Arts, Gazi University, 06500, Teknikokullar, Ankara, Turkey E-mail: birola@gazi.edu.tr