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Correction  sheet   for P-4910,  On   Balanced Games Without 

Side  Payments.  L.   S.   Shapley,   September 1972 

On page  7,   line   12,   insert  "and  positive" fifter  "uniq^ 

On page  11,   line 7,  change all   three  "+" 

ue it 

On page  11,   line 7,  change all   three  "+" signs  to  "-." 

On page  18,   replace Lemma  6.3 and  its   "proof" uy:* 

Lemma  6.3.     If rr  is   in general  position and if 

£? c 7?  has  exactly n members and is n-balanced,  then 

every n members  of the set  {nu (n)   :  S  -:   9]  U  {m.,}   are 

linearly independent.    Moreover^   if K is   the affine 

set spanned by any n -  2 members  of f mc, (n)   : S e  S] , 

then K n   (mN,  mN_fnj]   = «$. 

The  first  statement  is  proved using  the fact  that 

8 is minimal rr-balanced,   the second by  showing that 

the  line  including  (m*,, mM_f   ] J   either misses K or meets 

it  in just  the  point mr   -. .     For details,   see Shapley 

(1973). 

On page  19,   replace lines   11 and   12  by: 

vertices would span an affine set K that intersects 

(mN,  nuj  r   -I J ,   in violation of Lemma  6.3. 

On page 38,  add: 

Shapley,  L.   S.   (1973),  On  Balanced Games Without Side 

Payments--A Correction,   P-4910/1,  The  Rand Corpora- 

tion,  Santa Monica,  California. 

*We are  indebted  to L.   J.   Billera   for pointing out  the 
difficulty with  the  original form of Lemma 6.3  and helping 
to resolve it. 
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ON   BALANCED GAMES  WITHOUT  SIDE   PAYMENTS 

L.  S.   Shapley 

The Rand Corporation,   Santa Monica,   California 

1.      INTRODUCTION 

In this paper we present a new proof of a basic theorem 

of game  theory,  due  to Scarf,   which  states   that every balanced 

** 
game without  side payments has  a nonempty  core.        Our main 

tool  is a generalization of Sperner's  celebrated topological 

lemma concerning triangulations of  the  simplex, which we 

believe will  be of  independent  interest. 

Like  Scarf,  we base our proof on  a  "path-following" 

algorithm,  descended from the  Lemke-Howson procedure  for 

finding equilibrium points  in bimatrix games.       Despite 

this and perhaps other similarities,  we believe that our 

proof  is  not only  shorter than  Scarf's original but more 

intuitive,   or  at  least easier  to  follow,   since it stays 

close to  familiar  ground most of  the way  and  specializes 

Presented at  the Advanced  Seminar on Mathematical  Pro- 
gramming,   Mathematics Research Center,   University of Wisconsin, 
September  1972,   and  in an earlier version  at  the Second  Inter- 
national Workshop   in Game Theory,   University of California, 
Berkeley,   August  1970.    The  support of  the  National  Science 
Foundation,   Grant  GS-31253,   is  gratefully  acknowledged.     Any 
views  expressed are  the author's  own. 

**Scarf   (1967a);   see also Billera   (1970,   1971). 

Sperner   (1928);  also Knaster,   Kuratowski,  and 
Mazurkiewicz   (1926) . 

*Lemke and Howson (1964) ; see also Cohen (1967) , Scarf 
(1967b), and Kuhn (1968, 1969). Similar techniques are now 
widespread  in mathematical  programming. 
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to the game context only at the very end.  On the other 

hand, Scarf's proof breaks important new ground in the area 

of "ordinal programming." At any rate, this re-proof of a 

known result will serve an expository purpose for readers 

new to the subject of balanced sets and n-person games; we 

have accordingly tried to make the presentation as self- 

contained as possible. 

The section titles should be a sufficient guide to the 

contents.  The economic example in Section 4 may be skipped 

without loss of continuity. Two items of special note are 

(1) the simple but very useful geometric characterization 

of balanced sets, described in Section 3, and (2) the handy 

notational scheme for iterated barycentric partitions of the 

simplex, described in the Appendix. 

._   . ■ iiniii nm iiiinii '- iininii i iilmin   11 ■  --   - -    — ..             -.- 
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2.     GAMES  AND  CORES 

Let N denote  the set {1,   ...,  n),  and let 71 denote the 

set of all nonempty subsets of N;   thus   (711   =  2n -  1.     Let 

N 
E    denote  the n-dimensional euclidean  space with coordinates 

g 
indexed by the elements of N, and for S e 71 let E denote 

i i N the corresponding (S |-dimensional subspace of E . A subset 

N X of E will be called comprehensive if a e X and ß < a 

N      — imply ß e X.  If X c E then X will denote the closure of 

X, and X will denote the "comprehensive hull" of X, i.e., 

N 
the smallest comprehensive set that contains X.  If a e E 

S S and S e 71, then a will denote the projection of a on E , 

i.e., the restriction of a to the coordinates indexed by 

the elements of S. 

In this paper, a game* will be an ordered triple (N, F, D) 

N Here N is as above,  F is a closed subset of E , and D is a 

function from 71 to open, comprehensive, nonempty, proper sub- 

N sets of E that satisfies 

(2.1) D(N) c F, 

(2.2) if a e D(S) and aS = ßS, then ß e D(S),  and 

(2.3) {a  : a e D(S) - U D({i})} is bounded and nonempty. 
icS 

Condition   (2.1)  will be discussed presently.     Condition   (2.2) 

states that D(S)   is  a  "cylinder,"  parallel  to the subspace 
KI    C 

E  .  The sets D({i}), i e N, are therefore open half-spaces 

of the form {a : a^ < v.}; it is sometimes convenient to 
 x  

Cf.  Aumann   (1961), Scarf   (1967a),   Billera   (1971). 
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normalize the game by setting all the v. = 0 and shifting the 

other D(S) accordingly.  If this is done, then (2.3) states 

that the closure of each D (S), intersected with the nonnegative 

orthant of E , is bounded and nonempty. 

In the standard interpretation, the elements of N are 

players, the elements of 71 coalitions, and the elements of 
N 

E payoff or utility vectors. The elements of F represent 

feasible outcomes and the elements of D(S) represent out- 

comes that S can improve upon, in the sense that the players 

in S can through their coordinated actions ensure better 

payoffs for themselves, regardless of the actions of players 

outside S. 

In view of this interpretation, it would be natural to 

specialize (2.1) to 

(2.4) DINT = F, 

and also to assume that the function D is superadditive, in 

the senje that 

(2.5) D(S) n D(T) C D(S U T) , all S, T e 71 with S fl T = 0. 

These assumptions do not figure in our work, however, and 

so we do not make them here.  Similarly, it is often the case 

in applications that the sets D(S) are convex.  But convexity 

N uses the structure of E as a real linear space, while we shall 

___.— -—- ^-.--^—~^~^-.^..^.~^   ,l,,ftJl.,l.imn,^^lim««M*^^li.....f.^-n'.^.^ ■rtUtm*^^.^.-...^ 
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be concerned only with the ordinal and topological structure 

of E
N. 

The core of the game (N, F, D) i-j defined to be the set 

(2.6) F - U  D(S) . 
Serf 

The core represents the set of feasible outcomes that cannot be 

improved upon by any coalition. It is a closed set, and bounded 

as well if (2.4) holds or if F is bounded.  The core may, however, 

be empty. A central problem of game theory is to determine sig- 

nificant classes of games that have nonempty cores. 

The reader with an eye for such things may find Fig. 1 helpful 

in visualizing the foregoing definitions.  The sets D(S) are 

represented for ( SJ = 1 by the coordinate planes, for | s| = 2 by 

the truncated "quarter rounds," and for | SJ = 3 by the spherical 

surface. The core, assuming (2.4) holds, is the shaded area. 

The games described nere are 'games without side payments." 

Games "with side payments" have a parallel but simpler theory; 

they correspond to games in the present sense in which each D(S) 

is a half-space of the form {a : EgCt, < v(S)}, where v is any 

function from 71 to the reals.  Bondareva (1962, 1963) proved (in 

effect) that such games have nonempty cores ii   ani only if tney 

are "balanced" in the sense of the next sec'.ion; Sv>e also Shapley 

(1967) . 

kw...  ■...._..._J.J,ltnilf,,,l,|,^.-^-.-^--^--^-^^'— ■^-.*.....^..-- ■>- -..-^...r.-in. M.r-.. .,i.,, ,,■■■.■),,.,, I*li..lllflh.lldi1.i..,..>.r,.ll.n.lii^..,^.^i-i^^ 
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0(2, 3) 

0(1,2,3) 

'0(1,2) 

Fig.l 
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3.      BALANCED  SETS AND  BALANCED  GAMES 

Let © be a subset of   71 ,   and  let 8,   =  [s  eB :   i  e S}. 

The  set  8 is said to be balanced   (with respect  to N),   if 

there exist nonnegative   "balancing weights"   {ws   :   S  e 8] 

such that 

(3.1) 
S  e 8i 

ws =  1, all  i  e N. 

For example, {{l, 2],   [l,   3],   [l,   4), {2, 3, 4}} is 

balanced with respect to {1, 2, 3, 4}, by virtue of the 

weights 1/3, 1/3, 1/3, 2/3.  If the weights are all 1, then 

9 is a partition; thus balanced sets may be regarded as 

generalized partitions.  It is not difficult to show that 

the balancing weights are unique if and only if the balanced 

set is minimal, i.e., has no proper subset that is balanced, 

and that a minimal balanced set has at most n members.  Of 

course, any superset of a balanced set is balanced. 

Balanced sets can be given a geometric interpretation. 

N Take any set of n linearly independent vectors in E , for 

example, the unit vectors e , ..., e .  For each S e Tl define 

A to be the convex hull of the points {e1 : i e S} and let 

ms denote their center of gravity, and hence the center of 

jravity of A as well.  Then it is easily shown from the 

This is not true if positive weights are required, as 
in the original definition of balanced set (see Shapley (1967)) 
The minimal balanced sets, however, are the same under either 
definition. 

 ■ .,...^.....J ,-, -> ...A.^,.-..^ - .,...■,...T.' .■■. - —..-.-.. .....^ ....^ iiiiiiiMifl.i«.niriiiiriiiiivni -Iili  i    null.   - •  - " - -■--  
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above definition thatöis balanced if and only if m lies 

in the convex hull of (m^ : S e ^).  Fig. 2 illustrates. 

Fig. 2 

A balanced game is defined to be a game (N, F, D) in which 

the relation 

(3.2) n D{S) c F 
Se8 

holds for every balanced set 8,     The reader can verify by 

inspection that the game in Fig. 1 is balanced, and that if 

the surface representing D(N) and F is pulled back towards 

the origin until the core disappears the game is not balanced. 

Theorem 3.1.  (Scarf)  Every balanced game has a nonempty 

core. 

This will be proved in Sec. 8. 

inrn irr.f.ii  i ma rHü MMMWIr-.mi ......,^.— -..-   iMMii«.^-.-.».««»«-.!!»»!^ 
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4.     AN   APPLICATION  TO   ECONOMICS 

Balanced games arise naturally in  economics,   as the  fol- 

lowing model  illustrates.*    Let  each economic agent   (player) 

i c  N have a set C1 of possible   final holdings which is  a 

nonempty compact convex subset of a linear space C.     Similarly, 

let him have a  nonempty compact  convex  set Y    c C of possible 

productions.**     An initial holding a1 e   C1 - Y1   (algebraic 

subtraction)   is  also given,  and  a utility function U    from C1 

to the  reals,   assumed continuous  and quasi-concave.t 

Members of  a consenting group can  trade  freely with  one 

another;   a feasible  final  S-holding  is  defined to be a  set of 

possible  final  holdings  {x    e  C      :   i c   S}   that  satisfy 

(4.1) Ls x1  = Es  a1 + Es  y1 

for some S-production schedule {y1 e Y1 : i e S} .  Thus, it is 

assumed that during the process each trader makes exactly one 

"production move," adding a selected element of Y1 to his holding; 

it does not matter for our purposes when this happens.  Under our 

assumptions the set of feasible final S-holdings is convex, compact, 

and nonempty. 

Turning to the payoff space, we define F(S) to be the set of 

a e E  for which a feasible final S-holding {x1 : i e S} exists 

with 

Compare Scarf {1967a). 
** 

If the reader wishes to  simplify,    he may eliminate pro- 
duction   from the model by  setting all  Y* equal  to  (O). 

A  function f(x)   is quasi-concave  if the  sets C    =  {x:f(x)   >  zj 
are all  convex.    A concave  function is  quasi-concave. 

.    ,- ,......■,.■-..,■.^.„».■/..u.-;;-^ ^•WJ-ViTlJ'iiit.t'.a-i ti --     • --   -   --"       —    -      -  -     -h.Mi.iti i   nmlW- " ' ^.-.^ 
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U   (x  )  =  a-,       all  i   G S. 

linder our  assumptions F(S)   is  nonempty and compact for each 

S e   71 . 

The game   (N,   F,  D)   associated  with  this economic model   can 

now be defined.     Indeed,   we merely   take  F  to be  F(N)   and  take 

D(S),   for each S   e   71 ,   to be  the  set of  a  e E    such that 
S 

a    is majorized   (strictly)   by  a member of  F(S).     Then  F is 

closed  and  D(S)   is  open,   comprehensive,   nonempty  and proper, 

as required.     Properties   (2.1)   and   (2.2)   can be  immediately 

verified,   as well  as   {2.4)   and   (2.5).     Finally,   in   (2.3) 

the boundedness  follows   from the boundedness of  F(S)   and 

the nonemptiness   follows   from superadditivity   (2.5).     Thus, 

all  the defining  conditions  for a game  are  fulfilled. 

Theorem 4.1.     The game described is  balanced. 

Proof.     Let  6 be a balanced set with weights   {wq   :   S   e  ^3, 

and let a  c  n« D(S) .    We wish  to show that a e F. 

For each S  e /9 we can find a feasible  final  S-holding 

{x    cC     :ieS)   satisfying   (4.1)   for some S-production 

schedule  {y    eY     :ies3  and such that 

U1(Sx1)  > ai,       all  i  e S, 

For each i   e N,  define 

x1  =    E      wc 
Sxi. 

Se/?.     b 

,^., ..^...^^V^.L^L^^VUtV^********^*^!^** 
,.■.,.,.. ......■.^.i ■-. -—.■..-.^.....,..— MBiü—•'-• -- ^jmmgtmiiatgj  .v.„.^..,.„,,,,.*.-~***ä*iäta*iiuaamk 
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By quasi-concavity and (3.1) we have U
1
 (x

1
) > a., for each 

i e N. Hence it remains only to show that {x1 : i e N} in 

a feasible final N-holding. 

To this end, for each i c N define 

y1 = s ws V. 
Se0i  

ö 

By (3.1) we have x  e C and y1 e Y .  Finally, we have 

.E„ ^   
+
   .E. yi = A  E  ws(

Sxi+Syi) = S_ .S wc,(
Sxi+Syi) 

ieN ieN ieN Se/?. SeS ieS 

=  E  2 w a1 = E  E  w.a1 = E a1. 
Se^ icS 0    ieN Sc/?.       ieN 

This completes the proof. 

-■—>-- -   •"-—! "---"i«      ■ 
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5.  SIMPLICIAL PARTITIONS, SPERNER'S LEMMA, AND THE K-K-M THEOREM 

A face of a closed convex set C is either C itself or the 

intersection of C with one of its supporting hyperplanes. 

A facet of C is a face of dimension one less than the dimension 

of C.  A simplex can be characterized as the convex hull of a 

finite set of "affinely independent" points; a test for the 

affine independence of r points in E being that the r x n + 1 

matrix obtained from their coordinates with a column of I's 

adjoined should have rank r.  A simplex has finitely many 

faces, all of them simplices. 

As before, let A denote the convex hull of the unit 

i S vectors {e  : i e S}.  Then the A comprise the faces of the 

N (n-1)-dimensional simplex A .  By a simplicial partition 

N N 
of A we shall mean a finite collection E of subsets of A , 

* 
called cells, such that 

(5.1) each cell is a simplex, 

(5.2) each face of a cell is a cell, 

(5.3)    the union of all the cells is A , and 

(5.4)    the intersection of any two cells is either empty 

or a face of both of them. 

5     ~ .        N 
Of course, E is not a true partition of A , because of 

the overlapping.  But the relative interiors of the cells in 
a simplicial partition do form a partition. 

The term "simplicial subdivision" is often employed 
instead, usually in reference to the subcollection we call 
Z     (see below). 

 ■ ^..i        -       ' n.n.Wnii.m.n^irtrii.niliiiiT^^^^ ' inr ii iif«W 
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The mesh of  I  is  the diameter of its  largest cell.    We  take 

N 
it for granted  that simplicial  partitions of A    exist  of 

arbitrarily small mesh. 

Let  E.  denote  the set of members of  E  of dimension d -  1. 
a 

Then  I    comprises  the  "full-dimensional"   cells   in E,   so that 

E is  precisely  the set of all  faces of members of E   ;  we shall ^ n 

therefore  say  that  E  is generated by  E   .     The  following propo- 

sition is  geometrically  fairly obvious;   we omit  the proof. 

N 
Lf;mma  5.1.     If  E  is  a simplicial  partition of A    and 

if T  e  E     . ,   then  x  is  a facet of either  exactly one or 
— n-i ■ — 

exactly  two members  of  E   ,  depending on whether  T  is  or  is 

N 
not contained  in  the  relative  boundary of A   . 

c 
Let T.    denote the set of elements of E that are contained 

S 
in A .  Then it is not hard to verify that if E is a simplicial 

partition of A  then E  is a simplicial partition of A ; we 

S S shall say that E  is induced on A by E.  Moreover, if R c S c N 

then (ES)R = ER. 

We now recall  two well-known theorems.     Let V(E)   denote 

N 
the set of vertices of  E,   that is,   the set of points in E 

that  are extreme  points  of members  of  E.      (Note  that v  e V(E) 

if and only if   {v}   e  E,.)     Let  f be  a "labelling"  function 

from V(E)   to N,   such  that for  every  S  E 71 

(5.5) v  F.  V(E)   fl  A    =>  f(v)   e  S 

N In other words, the labels in the relative interior of A are 

unrestricted, but in the relative boundary the label on v must 

■ ^■-- '   ■ ^^^^.^aa^^MaaatoMMa mm mmmmmmmmmm^ 
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be a member of the set S that defines the smallest face A 

to which v belongs.  It is convenient to define an auxiliary 

function F by F(o) = {f(v) : v E o}.  If F(o) = N then we 

shall say that a is completely labelled. 

Theorem 5.2.  (Sperner's Lemma)  I_f Z is any simplicial 

N partition of A and if f satisfies (5.5) f then at least one 

cell of Z is completely labelled. 

A straightforward limiting argument on the mesh of I 

leads to the next proposition, due to Knaster, Kuratowski 

and Mazurkiewicz, which can in turn be used to obtain the 
* 

Brouwer fixed-point theorem. 

Theorem 5^3.  (K-K-M Theorem)  Let (C. : i e N} be a 

N family of closed subsets of A such that for all S e 71 

(5.6) U C. 3 A . 
ieS 

N . Then H C■   f 0;   in other words, at least one point in A is 
ieN 1     "' "  "    ' ~'   '      ~ """ 

completely covered. 

In Section 7 we shall prove generalizations of these two 

propositions, with the labels drawn from f[  rather than N and 

completeness replaced by balancedness. 

See for example Burger (1963), p. 194 ff, where the 
Sperner, K-K-M, Brouwer, and Kakutani theorems are proved 
elegantly in sequence.  Historically, Brouwer's work (1909, 
1910) preceded the K-K-M paper (1926), which preceded Sperner's 
paper (1928). 

' •■■^■■-' *<m.i- iiini 
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6.  SUBBALANCE AND TT-BALANCE 

Two extensions of the balanced set concept will be re- 

quired in the sequel.  The first depends on specifying a 

"last" element of N, say n. The set ßcTl is then defined 

to be subbalanced (with respect to N, n) if nonnegative 

-/eights {ws :  S e 8}   exist such that 

(6.1) 

and 

Se/9, 
ws = 1,  for i e N - {n} , 

(6.2) 
SeS 

ws < 1 

n 

' i 

This should be compared with (3.1). Note that any set of 

subsets of N - {n} that is balanced w.r.t. N - {n} is trivially 

subbalanced w.r.t. N, n. 

In our geometric interpretation, to say that ß  is sub- 

balanced means that the convex hull of the points {ms : S e B] 

has nonempty intersection with the half-open line segment 

(m^,  ^j.fn]1'  Figure 3 illustrates this for the subbalanced 

set {{1, 2}, {1, 3], {2, 3, 4}} w.r.t. N = {1, 2, 3, 4}, n = 4. 

For the second extension, let there be given an array of 

L   sitive numbers: 

TT = {TT_ . : S e 71, i e Nj . 

The set ß (z t\  is defined to be TT-balanced   (w.r.t.  N)   if 

■.- ■■- -^■-> — '-  -   ..^^^MMäiUUM^MäMmääl^^  ■■■ i  mm 
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Fig.3 

nonnegative weights   {wc   :   S  e 6]  exist such that 

(6.3) 

See, 
w
s'

u
Sti 

= 1'      all i e N. 

Note that because of  the homogeneity of this definition a 

set is TT-balanced if and only if  it is fr-balanced, where 

if is the   "normalization"  of TT given by 

"s  1  =  "c;  i   /    2    TTC   .. 
3,1 S'1      jeS    S'3 

Ordinary balanced sets are of course ^-balanced, where 1 

denotes the array consisting of all I's. 

In the geometric model, rr-balancing replaces each 

centroid ms by the point 

dUS  --   - —^   -    ...^...,.,l..-...,.,^..U^....^^.^,,..^.J..t-„.^JMy, 
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ran(n)  »    E    TTC  .e 
ieS    S'1 

which can lie anywhere in the relative interior of A .  Ii.' we 

let M{/9, TT) denote the convex hull of {m (n) : S c 9} ,   then 

we see that 8  is TT-balanced if and only if H{6r  TT) includes 

the point nt,.  Note that "nu," appears in this statement, 

rather than "m (rr)."  Thus, the set {N} , which is trivially 

balanced, is in general not rr-balanced. 

Combining these two extensions, we define rr-subbalanced 

in the obvious way, changing = to < in (6.3) for i = n.  The 

TT-balanced and n-subbalanced sets will be used primarily to 

get around a certain degeneracy that afflicts ordinary 

balanced and subbalanced sets, but they will also provide 

us with a more general final result. 

Let IT denote the set of all positive arrays ir.  We shall say 

that rr c II is in general position if no subset of the numbers 

TTC . satisfies any nontrivial algebraic equation with rational 

coefficients.  It is clear that the arrays in general position 

are dense in n, regarded as a subset of a euclidean space of 

suitable dimension. 

Lemma 6.1. For each Q (zf\,   the set of TT s n such that 

8 _is TT-balanced is closed in n . 

(k) 
Proof. Let -5 be TT   -balanced for k = 1, 2, ....  Suppose 

(k) (k) 
TT   -♦ TT e II and let {w  } be weight vectors for the normaliza- 

— (k) 
tions {TT  }. These weight vectors lie in a bounded region in 

Note that II is an open cone, 

■■^■...^.-i.t»^---"^-'-—lldWll W-~-~l • 11 HM■IM«lr■^J-:^-•^ '- 
. .... ..-^-..^ -.-^.-.-^ .^„■„.■.■■■rf ^Mmi^Mt 
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E^, so we may extract a convergent subsequence; the 

limit will serve as a weight vector for TT, showing that 

8  is rf-balanced and hence rr-balancad.  Q.E.D. 

Corollary 6.2.  For any TT c H there exists a TT in 

general position such that rr-balance implies rr -balance. 

In particulary there exists a TT in general position such 

that TT-balance implies balance. 

The proof is straightforward. 

Lemma 6.3.  If rr is in general positiony then no (n-2)- 

dimensional affine set contains more than n - 1 members of 

the set {ms(TT) : S e 7[} U {n^, ^.{n})- 

Proof.  If any n of the points mentioned lay in the 

same (n-2)-dimensional affine set,  then the determinant 

composed of their coordinates would vanish, establishing a 

rational algebraic relationship among the TTC ..  Q.E.D. 

Lemma 6.4.  If TT JL,  in general position and if 0 (zfi 

has exactly n members and is TT-balancedy then there is a 

unique subset of B that  has exactly n - 1 members and is 

TT-subbalanced. 

Proof. Write M for M ( /? , TT) , the convex hull of 

{m-(TT) : S «; /?}. We must examine the intersection of M 

with the half-open segment (m«, ^.fnil«  First we note that 
** 

M is full-dimensional  and hence a simplex, since otherwise 

* 
Note that all the points in question lie in the (n-1)- 

N 
dimensional set A . 

** 
In these proofs, "full-dimensional," "interior," etc. 

refer to A , not E . 

. ..,..„.„.....■,......,.. -.  *.——  Miittitmiiiii'imi i .■^,-^. 
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the n points {ms(n) : S e ^} would violate Lemma 6.3.  Next 

we note that mN must be interior to M, since it is in M and 

if it were in a facet of M then the n - 1 vertices of that facet 

together with the point mN WD ild violate Lemma 6.3.  Thirdly we 

note that m N-{n} is not interior to M, since it lies in the 

.N boundary of A itself while the interior of M is contained 

in the interior of A .  Therefore the segment (m^, mN-fnl^ 

pierces the boundary of M at a unique point; call it m . 

Moreover, m belongs to a unique facet F of the simplex M, 

for if there were two such facets, then their n - 2 common 

vertices, together with mN and m  r •>, would lie in an 

affine set of dimension n - 2, again in violation of Lemma 6.3. 

This facet F determines a unique /?' with n - 1 members o 

such that M{8',  TT) meets (m^, ^.fn)]«  Q.E.D. 

Lemma 6.5.  If n is in general position and if /9 c 71 

has exactly n members and is rr-subbalanced but not n-balanced, 

then there are precisely two subsets of B  that have exactly 

n - 1 members and are rr-subbalanced. 

The proof is similar to the previous one.  The set M = M(/9,TT) 

is again a full-dimensional simplex, but m and m^.r i are 

now both outside M.  However (m , nu_, -,]   contains at least 

one point of M; in fact, it contains an interior point, 

since a grazing contact would have to include a point common 

to two facets, a situation which violates Lemma 6.3. as we 

saw above. Therefore the segment pierces the boundary twice, 

intersecting a single facet each time; these two facets 

yield the desired (n-1)-member subbalanced subsets of 8.     Q.E.D. 

n iinvliiiiiirüi gmmmm —— -■-■ um J---~—^^—-—^—— 
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7.  GENERALIZATION OF SPERNER'S LEMMA AND THE K-K-M THEOREM 

N 
Let E be a simplicial paxtition of A and let f be a 

"labelling" function from V(2) to 71 such that for every S c 71 

(7.1) v e ViZ)   n Aa =» f (v) c S 

(compare (5.1)).  As before, define F(a) = {f(v) : v e a}. 

Given f, we shall say that the cell CJ is balanced if F(cr) 

is balanced; similarly subbalanced, rr-balanced, and ir-sub- 

balanced. 

Theorem 7.1.  If n is in general position and if f 

satisfies (7.1), then the number of n-balanced cells of Z 

is odd. 

n 

Proof.  We consider the collection £ of all rr-balanced 

and n-subbalanced cells of E.  With TT in general position, 

it follows from Lemma 6.3 that the rr-balanced cells must 

belong to E while the n-subbalanced cells must belong to 

E or E , .  We distinguish four types of cells in S. : n    n-1 JC 

a) a e E is n-balarced.  Then by Lemma 6.4 it has n 

exactly one  facet T   C SI   that is rr-subbalanced,   and 

hence  in £. 

b) CT c  E    is n-subbalanced but not rr-balanced.     Then n 

by Lemma 6.5 it has exactly two facets T, T' e E , that 

are n-subbalanced, and hence in £. 

c) T e E , is n-subbalanced and intersects the interior n-i 
N 

of A .  Then by Lemma 5.1 there are exactly two cells CT. 

..-—. ^ .... ...; ......,.:,-^::.   — ... .   , ^.-^ ■■  .....^_ .., ,. ,.,,....J„.   .J„ k.^M._^^..M^J^^.JM^^nJ 
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CT' € E of which T is a facet; moreover, each of these n 

cells is TT-subbalanced, and hence in X. 

d) T e E , is TT-subbalanced and lies in the boundary 
n-l 

N of A .  Then bv Lenuna 5.1 there is exactly one a e £„ of •' n 

which T   is  a facet;   moreover,   it is n-subbalanced,   and 

hence  in Z. 

By the above we see that the elements of Z  are not 

isolated, but are "chained" together, with the "facet of" 

relation linking each element of £ fl E with one or two 

elements of JC n 2 , and vice versa. Each connected component 

of Z   therefore consists either of an endless loop, containing 

cases (b) and (c) only, or of a path, having case (a) or (d) at 

each end and all the rest (b) or (c). The important fact is 

that the total number of instances of (a) and (d) is even. 

Let us examine case (d) more closely.  Since T is 

n-subbalanced, the union of its labels must include all of 

N - {n).  Hence, by (7.1), the only facet in the boundary 

N N-fnl of A that can contain T is A    ,  moreover, all of the 

labels S e F(T) must be subsets of N - {n}, i.e., must 

exclude n.  This means that F(T) is n-balanced w.r.t. 

N - {n}. Conversely, any cell in A ~ln^ that is n-balanced 

w.r.t.  N -{n} is TT-subbalanced w.r.t. N, and so falls 

under case (d).  Hence (d) identifies precisely the n-balanced 

cells of the induced simplicial partition JT
4
"^-» on A "'■

n-'. 

To finish the proof, let k < n and define K = {1, ..., k}. 

Denote by a. the number of cells in E that are n-balanced 

w.r.t. K.  We have shown that a  '• a , is even.  Similarly, 
n        n-i 

since   (7.1)   implies  the analogous condition in  lower dimensions. 

^M™w,M™,Mi*mifaMmmmtmmmtm*,iw,M,M,itm™-i,,   m,.,^ „„.-■-^...,.^t...,^J.....^..„JJ.J,—-. „ --|aM 
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we have that a^ + ak_1 is even for k»2f ...,n-l. Hence 

all the a. have the same parity. But clearly a, =1; hence 

a is odd.  Q.E.D. 

Theorem 7.2.  (Generalized Sperner's Lemma) For any 

TT e 11, if f satisfies (7.1) then Z has at least one TT-balanced 

cell.  In particular, E has at least one balanced cell. 

Proof.  Theorem 7.1 and Corollary 6.2. 

The examples in Fig. 4 show that we cannot assert that 

the number of balanced cells in 2  is odd, nor that the number 
n 

of balanced cells in Z is odd. 

To see that Theorem 7.2 includes Sperner's lemma, we 

restrict the values of f to the singletons in 71 . Then 

the only balanced set (or rr-balanced set for that matter) 

Fig. 4 

 —  - - ■•■-■'■:' y-' ■'■■'■'-'•—  ■ - --■•■■ ■'--'^''"^'liMMiiilirffriirtimiiaiiiMiM^ mmm—— — —-■"'■——- 
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is   {{l}/   ...#   {n)},  and a  cell is balanced if and only if 

it is  completely  labelled. 

Theorem 7.3.      (K-K-M-S  Theorem)     Let  {Cc   :   S   c 71) 

be  a family of closed subsets of A    such that for each ' 

T e 71 

(7.2) U     Cc  3 A 
SCT     b   ~ 

(compare (5.6)).  Then for every TT e n there exists a n- 

balanced set B such that 

n C„ ? 0. 
Seß   

b 

Proof.    Let TT  e  IT be  fixed,   and let {Zv   '}  be  a sequence 

N 
of  simplicial partitions  of A    whose mesh converges  to  zero. 

For each  v  e V(i:(k))   let A1"^   be  the smallest face of AN  that 

l]r] 

contains v and define fv  (v) to be any S such that v e C- and 

S c T(v) ; by (7.2) such an S can always be found.  By Theorem 7.2 
(]r) (If) 

there is a TT-balanced cell a^  '   e  I        for each k.  By taking 

(k) 
subsequences we can ensure that the a   converge to some 

N Ck.) point v  e A and that the F(a  ) in the subsequence are all 

equal to the same TT-balanced set ß.     Then for each S  z B, 

v  is the limit of a sequence of points that bear the label 

S and hence belong to C .  Since the Cs are closed, we have 

v     e     n    Cc.    Q.E.D. 
0      Sei?    s 

■ ■ in II'II ntfi ruin  '■-'miMiiTiii---         ■   - m\\*mt  -   
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8.  PROOF OF THE SCARF-BILLERA THEOREM 

Although games have not yet appeared in the argument, 

we are close to our goal of proving that the core of a balanced 

game is not empty.  Let (N, F, D) be a game (see Sec. 2),   and 

for any rr c n let us call the game TT-balanced if (3.2) holds 

for all TT-balanced sets 6.    Without loss of generality, let 

the game be normalized, so that D({i] ) = {a e E  : a. < 0} 

for all i e N. Let M be a nunuier chosen so large that fo- 
N each S c 71 and a c E 

(8.1)    a e DTST - U D({i}) =* a. < M, all i e S; 
icS 1 

this is possible because of (2.3).  Define y
1
 =  -nMe1, i e N; in 

other words 

Y^-Oifj^i, and y^ = -nM. 

For each S e fl ,  redefine A to be the convex hull of {y1 : i e S} ; 

N the new simplex A will provide the setting for our application 

of Theorem 7.3. 

First we must define the sets C .  We do this, intuitively 

speaking, by "looking down" on UD(S) from a vantage point far 

N out in the positive orthant of E .  To make this precise, define 

(8.2) t(a) = sup {t : a + tl e U  D(S)j , 
Sen 

 '-—-'-' '--•- ..-^■..■.■■J„.„..    i,.n^^^J^M^u^mMit^^jMiaMlaatlaM^^ ttMAi 
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where 1 is the vector of all  1's.     Since the d(S)  are proper 

and comprehensive  the supremum in   (8.2)   is   finite and  is  a 

N 
continuous  function of a e  E   .    Now define 

.N 
Cs  = {a e A    : a + t (a) 1 e  DjsT] . 

In other words, a   is in C    if  S  is a   "most  effective"  coalition 

along the diagonal  line L    = {a  + tl} ,   in  the sense that 

D(S)   A L    3 D(T)   n  L    for all T e fl.     Since t(a)   is continuous, 

the Cs are closed  sets.    We shall now show  that they  satisfy 

condition   (7.2). 

T Let a e Cg n A ; we shall show that S c T. We may assume 

T that T ^ N.  Since a e A we have E-d. = -nM. This implies 

that for at least one j e T we have a. < -nM/|T| < -M.  Hence, 

considering just S = {j) in (8.2) we obtain 

(8.3) t(a) > M. 

The point a + t(a)l belongs to 0 (S) but not to any of the open 

sets D(R), R e 71, and in particular not to any of the D({i})/ i e S, 

Hence, by (8.1), 

ai + t(a) < M,  all i e S. 

With (8.3) this yields a. < 0 for all i e S. But a e A implies 

a. = 0 for all i \ T. Hence S c T, and (7.2) follows from the 

N fact that every a e A belongs to at least one set Cs. 

_.; ^ ^.-....-i.-^.-.-^-.^ .: i- i    ,■   ■■.lifiriiiMi'«|-«i[fi[liiiTWitaiiai'  ■irir —-■ JBUmtiltaUiSI* ■ .■^^■v..^,..^-..^....^..^^,.^^.^^^.-.^^^^^^-^^.-..^  -^   -.^....... .^^.^^^^-^AL- 
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Theorem 7.3 now asserts for any neu the existence of a 
N point a e A and a rr-balanced set 6  such that a e Cc for all 

S e   Q.    The point ß = a + t(a)l therefore belongs to n« D(S) 

but not to U-jD(S) .  Suppose the game is rr-balanced.  By (3.2) 

^ then belongs to F, so there is a point y > ß  that belongs 

to F but not to U D(S).  By (2.6), y is in the core, so the 

core is not empty. 

We have therefore proved Theorem 3.1 in particular, and 

more generally* 

Theorem 8.1. (Billera)  Every n-balanced game, TT e n , 

has a nonempty core. 

However, Billera (1970) permits some of the TTC . to be 
zero. b'1 

.^   ■       ■ — —   - 
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9.  SOME REMARKS ON PATH FOLLOWING 

The proof of Theorem 7.1 may seem to be nonconstructive, 

but in fact it gives rise to a computationally effective 

algorithm.* The following remarks apply equally to the 

problem of finding balanced cells (using Corollary 6.2), 

TT-balanced cells, or completely-labelled (Sperner) cells; 

we shall refer to them indiscriminately as "solutions." 

Denote by JCn(a) the class of cells of Z corresponding 

to case (a) in the proof of Theorem 7.1, i.e., the sought- 

for solutions, and denote by£k(a) the analogous class for 

K K the induced partition Z on the face A,. k = 2/ ..., n - 1, 

Similarly define T. (b), £, (c), £, (d), and combine them all in 

n 
x* = u [i:k(a) u JCk(b) u rk(c) u i:k(d)]. 

In the proof we showed that £k(d) = «CT,.! (a) for k = 2, ..., n. 

Hence each cell in £* is linked (by the "facet of" relation) 

to exactly two other cells in £*, with the sole exception of 

the cells in rn(a) and JC^d). But £, (d) has jusc the one 

member. A1 ■'. Thus, if we start at that cell and simply follow 

the path, we must arrive at an element of £ (a) , i.e., a solution.** 

 *  
The path-following idea is implicit in the standard ele- 

mentary proof of Sperner's lemma (e.g.. Burger (1959, 1963)); 
for a very clear, explicit statement see Cohen (1967). 

* * 
Thus, primary paths provide a truly constructive proof. 

The proofs by induction (even Cohen's proof, though he depicts 
a primary path in his paper) are not constructive, since the 

„.   ,-....,-.:J.o .*- -.... ^„.»„.«.a« ■      InilinlMilirfll 
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Let u^ call this path the primary path in £*; in general X* 

may also contain closed loops, as well as other paths that 

link the remaining solutions in pairs. 

Despite the dimension changes both up and down that may 

be encountered en route, a path-following algorithm is easy 

to program for a computer. It is necessary, however, to use 

simplicial partitions that admit a systematic description. 

In particular, we must be able to identify without too much 

trouble the cell which lies on the "other side" of a given 

facet of a given cell.  Kuhn (1968, 1969) has described one 

such class of partitions; another is described in the Appendix. 

The arbitrary choice of a "last" element of N in tue 

definition of subbalance (see Sec. 6) gives us a chance to 

expand the search for solutions.  Indeed, each of the n! 

orderings of N will give us a different class Z*  and a dif- 

ferent primary path.  Of course, if there is only one solution, 

all primary paths must lead to it.  But conceivably we miyht 

reach n! distinct solutions just by following primary paths. 

Moreover, whenever we find a solution that is not on the 

primary path for a given Z*, we can use it as the starting 

point of a "secondary" path of X* £nd thereby reach another 

solution. 

Were we to go deeper into the subject, we could show 

how to define an orientation on the solutions (including an 

set of all solutions in A l J is needed to be sure of finding 
some solutions in AK.  If we are given only some solutions in 

A l  , it may happen that none of them lie on a path that leads 
V 

to  a solution in A . 

-■- mmm — • - n  f mTmi- - -■■■--— — - -■--■^ .„^.^.^-^w^^^^^^^^ 
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abstract,   starting-point  "solution"  consisting of  all the A; 

together) ,  in such a way  that every path in every  £* has one 

end oriented  "+"  and one  end oriented  "-".*     Thus,   if we 

define an abstract graph G by taking the paths of  the various 

£*  as edges and the solutions as nodes,   then G is  a bipartite 

graph—i.e.,   it can be two-colored.     If G happens  to be connected, 

then path-following will  eventually yield all solutions,  if we 

are careful to account  for all paths  issuing  from  all solutions 

that we find.**     But there  is no reason  for G to be connected. 

For example,   if a balanced cell in E  is completely enclosed by 

vertices bearing a single  label,  as in Fig.   5,   then there is 

no way for a path to penetrate the protective shell.    This 

example shows  that an exhaustive search of E  is  necessary if 

we wish to be  sure of finding all solutions. 

 3E  

In the  Sperner case,   the orientation  is determined by 
whether the vertices of the solution cell can be mapped onto 
the corresponding vertices of AN without having to  turn the 
cell  "inside out." 

** 
In general, many edges of G may join the same pair of 

nodes by the same path in 2. Only n actual paths start from 
each solution, depending on which "last" element of N is chosen. 
Only if a path reaches the boundary of AN does it split into 
n - 1 continuations, depending on the "next-to-last" element 
of N; only if one of these hits a lower-dimensional face of 
AN will it split again; etc. But no two primary paths coincide 
exactly, since primary paths necessarily run the whole gamut 
of dimensions. 

—  ■■■ —'-    --   - mm*ammM^^*mMaLJLM. 
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Fig.5 
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APPENDIX.     ITERATED BARYCENTRIC PARTITIONS 

Let N »  {1,   ...,  n)   and let A denote the simplex 

{a € E
N
: a > 0 and Eai -  1}.    Denote by Nl   the set of 

all permutations of N.     If p « p1p2...pn is an element 

of NI,    define 

A    = {a e A  :  a      > a      >•••><*). 
P ^1^2 F

n 

The simplices A , P e Nl , generate a simplicial partition 

of A which we denote by Z ^ ' and call the barycentric 

partition.  In accordance with our previous usage, the 

collection {A : p e Nl} is denoted 2n
(1). 

The barycentric coordinates in any simplex are the 

relative weights (summing to 1) that must be placed at 

the vertices so that the center of mass will be at the 

desired point.  In A, the barycentric coordinates of a 

are simply (a,, ..., an)» because of the way we positioned 

A in EN. In A , it may be verified that the barycentric 

coordinates of a are (0,, ..., 0 ), given by 

/a  - fa   ,  for i « 1, ..., n-1, 
pA    Pi+1 

(A.l) 

Pp - "«p • v
n Fn 
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The linear transformation (A.l) will be denoted T ; thus 

0 ■ TD(a). Its inverse T" is given explicitly by 

n 
(A.2)    a  - E p  /j, for i « 1, .. ., n. 

Pj ]■* Pj 

We now repeat this construction.    Let p e  Nl, q e N! 

and define 

P»q P        ql        q2  " "    qn 

where S « T (a) .  If we define T „(') = T^CT (>)), then 
P P»'!     q P 

the barycentric coordinates of a in A „ are (v., ... Y„) • 
^ P^q      1     n 

where y " T  (a) . For each p e N! the collection 
XT ' H 

{A   : q e Nl} generates the barycentric partition of A . 

Moreover, the union over all p e N! of these collections 

generates a simplicial partition of A, which we call the 

(2) barycentric partition of order 2 and denote by E  .  (Note 

that if A and A . have a face in common (of any dimension) » 
P     P 

then their barycentric partitions induce the same simplicial 

partition on that face.) 

In general, let k > 1 and let P represent the sequence 

12      k 12      k-1 p , p , ..., p . Denote p , p , ..., p   by ?' and define 

Ap - {a e Ap, : ß k   = P ^ ^ ••• ^ 0 k^ 

Pi    P2 Pn 

where ß » Tp(a) H T k(Tp,(a)). The barycentric partition 
P (V) v 

of order k,  denoted £    ',  consists of all the   (nl) 

 -— mm—— mm i iiifiimMr--'  ...,...-,^^^.^^^^.^^^4^^ 



mi iiiiHiiia«i|iHaii>ii ii        ■■ ■ J         i   -i»!! i »i   iii   ,II».I..> .UM ILI.1 nu ■^^»■^.i..iii.i,i.,l,i„.liii,.iiii.i 

-33- 

v 
simplices A- for P c (Nl) , together with all their lower- 

dimensional faces. 

Figure 6 illustrates this construction for n » 3 and 
l]r) 

various values of k.  Note that each cell in E    receives 
n 

an unambiguous name, consisting of k "n-letter words" 

p3 e Nl.  Note also that the mesh of the partition 

decreases by at least 1/3 at each iteration.  In general 

we have that the mesh is less than (1 - 1/n)  times the 

diameter of A; since n is fixed this goes to zero as 

k ■♦■ "o. 

(k) 
We now number the vertices of E   in a special way. 

tie) 
Let A„ be an element of E   .  The i-th vertex of A« is 

defined to be the unique point in A whose i-th barycentric 

coordinate in A_ is 1, in other words, the point a such 

that T (a) = e .  This numbering is illustrated in cell 

123 in Figure 6.  Note that the same vertex may receive 

different numbers in different cells; thus, we find that 

the second vertex of 12 3 is the first vertex of 213.  As an 

exercise, the reader may verify that the point "X" is the 

first vertex of 231 123 and the third vertex of 213 321, 

while the point "Y" is second in each of these cells. 

The i-th facet of A- is defined to be the facet opposite 

the i-th vertex, that is, the set of points in A- whose i-th 

barycentric coordinate in A- is zero.  In path-following, we 

are interested in what lies on the "other side" of a given 

facet of a given cell.  The rule is in fact quite simple: 

 1 --    -- -     ^^.„.u.^^^^A^^^J^M^^^^m^^^^^.^^ ^..^.      ,   ,  .....^  
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-321 213 213 

-231  312 312 

Fig.6 

Fig. 7 
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FACET RULE: Let P -p1,?2, ..., pk •(Nl)k, let Ap be 

the corresponding cell of En
(k), and let Fi{Ap) 6 zjQ 

be the i-th facet of A . 
P 

Case 1; Not every word in the name of A ends in i. 

Define I  to be the highest index such that Pn ^ i and define 

I i' to be the immediate successor of i in p . Then F^ (A-) 

= F. , (A ) , where Q is obtained from P by transposing i and 

i' in p and in all subsequent words (if any). Moreover, 

the j-th vertex of A is the j-th vertex of Ap for all j 

except i and i'; the i-th vertex of AQ is the i'-th vertex 

of A ; and the i'-th vertex of A- is the new one. 
P Q 
Case 2; Every word in the name of A ends in i.  Then 

F. (A ) is in the boundary of A and is not a facet of any 

other cell in E^ .  Instead, we have F. (A_) » Bol, where n 1  f     r 

B = AN"^ = An EN"^lJ and the words in P1 (which is a 

k-tuple of permutations of N - {i}) are obtained from those 

in P by dropping the i at the end.  Moreover, each vertex 

of Bp, has the same number in B„,   as In Ap. 

This rule is illustrated at several places in Figure 6. 

For example, in cell 231 312 312 we might want to "pivot 

on Z", i.e., eliminate that vertex and pass through the 

opposite facet to the cell beyond.  Since Z is the second 

vertex. Case 1 applies with 1 > 2, i > 1, and i' ■ 3; 

the new cell is therefore 321 213 213 and its vertices 

are numbered as shown in Figure 7.  If next we pivot on 

lr we have i « 3 and i' - 3, making the new name 321 213 231. 

- 
I 

-^ im ....■•   '--■ ^-^ - ■ i i—nimMuWi MMH^^M^n^an 
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The reader may like to verify that three more pivots on 1 

will bring the path to the boundary of A, specifically to 

cell 32 23 23 In the Induced partition on B - A^2'3^. 

In a computer program, one would calculate the actual 

coordinates of a vertex v only when needed to determine 

f(v), using (A.2) k times.  At any given time, never more 

than n f-values are kept in storage, indexed by their 

vertex-numbers in tho current cell. The dimension changes, 

both up and down, are oasy to effect if we adopt the device 

of always using n-letters words, filling out the shorter 

words with the idle "letters" in order. Thus, we can write 

23145 21345 (3) instead of 231 213, the (3) indicating that 

f 1 2 3] 
the current cell is in the face A1 ' ' J and only the first 

three "letters" are to be read.  To "step up" one dimension 

we merely change the "(3)" to "(4)" and calculate the 

f-value for the new vertex, which will be the fourth vertex 

Ot   2314 2134.  "Stepping down" (Case 2 above) is even easier 

since there is no new vertex to consider. 

A possible drawback to the iterated barycentric parti- 

tions is their rough texture.  Most of the cells are far 

from equilateral (though their volumes are equal); hence 

an unnecessarily large number of cells may be required to 

achieve a given mesh.  Presumably this means that more 

pivot steps are needed to reach a solution of prescribed 

accuracy. 

A possible advantage to the iterated barycentric parti- 

tions—as compared, say, with those used in Kuhn (1968, 1969) 

»AMdMUk ,    n, r.,1 ni.n,.-! ,iir,l<wtriMi«*^"'-"-'-^^ llilrfn'llBlTnUHIM 
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is the ease with which the geometry can be distorted In 

order to increase the cell density In the vicinity of a 

desired "target" point in A.  Indeed, by a projectlve 

transformation of the original coordinates we can put the 

center node of the first partition directly on the target. 

Then b   vltable adjustments of the tr aus formations (A.l), 

(A.2) we can bring the center nodes of the second-order 

partitions as close as we please to the target, and so on. 

This geometric distortion (note that the combinatorial 

structure of the partition is unchangedl) would be worth the 

trouble if we had prior knowledge of the probable location 

of a solution. Such knowledge might arise from a "first 

pass" at the problem with a coarse grid, or from a known 

solution of a similar problem with slightly varied param- 

eters (as when one Is following a solution through time), 

or from special properties of the problem Itself. 

u^M 
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