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Abstract

L. S. Shapley has found a necessary and sufficient condition
for the non-emptiness of the core of a characteristic function n~
person game stating that the core 1s non-empty if and only if a
certain system of linear inequallties on minimal balanced col-
lection of finite sets is consistent. Using some well known con-
structs of linear programming, we assoclate to any n-person game
two dual linear programming problems in which the constraint set
of the primal includes the core of the game, and characterize
the non-emptiness of the core in terms of properties of dual
optimal solutions of these problems. We then prove the Shapley
conjecture on sharpness of the set of proper minimal balanced
inequalities with respect to core feasibility of proper n-person
games. Using the Farkas-Minkowskl Theorem, we obtain a charac-
terization of redundant inequalities with respect to core feasi-
bility and express the rate of growth of the game as a sequence
of lower bounds for successive game values corresponding to in-
creasing subsets of the collection of N players, which vitiates
the possibility of constraint redundancy. If all game values are
non-negative, the characteristic growth rate induces a partial
ordering on game values corresponding to subsets of N.




Introduction

Recently L. S. Shapley [4] found a necessary and sufficient

unction n-person game, which states that the core is non-empty
/’and only if a certain system of linear inequalities on mini-
ﬁal balanced collections of finite sets is consistent. One ap-
lication of this result is that if all minimal balanced collec-
ions of order n are known, then the question of non-empti-
>ss of the core of an n-person game can be answered by examin-
ng whether each minimal balanced collection satisfies its respec-
ive balanced linear inequality or not. Following in this direc-
ion, Peleg [5] has set forth an inductive combinatorial method
or constructing minimal balanced collections of order n+l

fom those of order n. Thus, following these lines, it would
ppear that one would need to construct minimal balanced collec-
ipns of increasing order ad infinitum in order to investigate
uestions such as non-emptiness of a given core or relations
etween types of incidence matrices and cores, etc.

Our approach here to these and other matters is quite dirf-
erent. Using some well known constructs of linear programming,
ﬁch as the theorem on the association of extreme points with
inearly independent sets [1] and the opposite éign theorem [11],
Wwe reprove some of the results of Shapley [4] on the relations
between balanced sets, minimal balanced sets, and extreme points

in the space of weight vectors for an appropriate incidence




matrix. We associate to any n-person game two dual linear pro-
gramming problems in which the constraint set of the primal
problem. includes the core of the game, and characterize the non-
emptiness of the core in terms of properties of dual optimal
solutions of these problems. We also prove the Shapley conjec-
ture (see [4], p. 15) on sharpness of the set of proper minimal
balanced inequalities with respect to determining whether the

core of a proper n-person game is empty or not. Using the Farkas-
Minkowskil Theorem, we characterize redundant inequalities with
respect to core feasibility, and characterize the growth rate of

the game which vitiates constraint redundancy.
2. Games, Balanced Sets, and Solutions Space for an Appropriate

Incidence Matrix

Let N = {1,2,...,n}. Following Shapley [3] a game v 1is
a function from the subsets of N to the reals such that v(Z)=0.
The core of v 1is defined to be the set of all additive functions
X such that x(5) > v(g), all SN and =x(§) = v(x). A set
{Sl,.;.,Sp} of distinct, non-empty, proper subsets of N is
said to be balanced if there exists positive weights wy,...5w

p

such that wy =1 all 1eN.1/ This definition has been

J

Succinctly stated in terms of an incidence matrix associated

J/gsS

with this set of subsets by Peleg [5]. A minimal balanced set
is one that includes no other balanced set. For our purposes,
however, we introduce one incidence matrix Y corresponding to

all subsets of N except g and ?l,2,3,...,n§. We assume that

l/See Shapley [4] page 1.
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all of these subsets are indexed in a convenient way, say, lilst-

ing subsets of one element first, then those containing two ele-

ments, etc. Thus, we obtain an indexing S;, Sz,...,S2n ) and
we may define y,. = { - for 1 <1 < 2°-2 and
J 0 - -
AEEN
1/ . n
1 <J <n. Let Y denote this matrix of 27'-2 rows and n
columns. Let A = {wIwTY = eE, w > 0}. Observe that each row

vector, Rij of Y corresponds precisely to one and only one

subset of N.

Proposition 1 A is spanned by 1ts extreme points and hence is a

convex polyhedron. [Lemma 2, Shapley [3]).

Proof We may write A = {uw|J Riwg =€, v 2 0}. Since each Ry
i=1

1s non-zero and non-negative, any non-trivial expression of the

zero vector, say Riai = 0 implies some e, and ag are of op-

posite sign. Hence by the opposite sign theoremﬂz/

by its extreme points. Since there are only finitely many of

these, A 1s a convex polyhedron.

Proposition 2 There is a one-to-one correspondence between all

minimal balanced sets and extreme points of A.3/

Proof Given any extreme point we4, let I = { ilmi> 0}.

A is spanned

Vsee Peleg [5], page 155

2/ 3ee Charnes~Cooper [1] page 282.

3/ see Shapley [4] page 11.



Then by the theorem on the association of extreme points with
linearly independent sets,l/ the set {RilieI} is linearly in-
dependent and hence contains no proper subset which is also in
A, and therefore corresponds to a minimal balanced collection.
On the other hand given any minimal balanced collection with
welghts {wi > 0{ieI}, the associated rows must be linearly

independent, for otherwise some subset of these rows is also

feasible. Hence {wi > 0|ieI} 1is an extreme point of A.

Proposition 3 Any balanced set is the union of the minimal

balanced sets that it contains [Shapley [3] p. 10].

Proof Any balanced set, w 1s a member of A and hence if w

is not an extreme point, then by repeated application of the op-

posite sign property « may be expressed as a convex comblna-

tion of extreme points of A, i.e. initially we may write

o = po® + (1-w)e®  where 0 < p<l, o®Wu@Den ang U ang
s

«(?  each have at least one more zero coordinate than w. Since

non-zero coordinate positions of w appear among those of “ﬂﬂ

or wQL w 1s the union of the balanced sets associated with

w® and W@, The process 1s now repeated i1f necessary on wf1)

and «2) until extreme points are encountered. Thus, at the

conclusion of this process the balanced set associated with w

will be the union of those associated with the extreme points at

termination.

l/Charnes-—Cocper [1] page 245.




We remark that this "purification" algorithm which incor-

porates other featuresl/ has already been coded and could be

immediately applied to the problem of decomposing balanced sets

into unions of minimal balanced sets.

3. Characterization of the Core of a Game by Linear Programming

We observe that any additive function x which is defined

on N is completely determined by its values on the integers

1,2,...,n. Furthermore, X

only if

(1) ¥Yx >V and

is in the core of a game v 1f and

(2) érx = v(N), where

Y 1is the incidence matrix defined above and

vV o= [v(81), v(S2),..., V(S )]T where we follow exactly
2f 2

the same ordering used to define Y. However, 1in order to use

the power of linear programming, we shall replace condition (2)

by the wezker one, (2') érx

> v(N) and construct the following

dual linear programs assocliated with a gilven game n-person game V:

(I)
min el x
subject to ¥x > V
eTx > v(N)

(1D

max WV + nv(N)
subject to wTY + neT = e
wr >0, n > 0.

l/See Charnes-Kortanek-Raike

£31]




Proposition 4 For any n-person game whatever, problems (I) and

(II) possess dual optimal solutions. The core of the game, v,
is empty if and only if for any optimal solution x* to (1),

J&* > v(N).

Proof For any game v, consistency of (I) is most easily seen
by observing that Y contains the identity matrix In as its
first n rows, and éT = (1,1,...,1). Problem (II) is also con-
slstent as seen by taking wl = 0 and n = 1. Hence by the dual
theorem of linear programming there exist dual (extreme point)
optimal solutions to (I) and (II), This completes the proof of
the first assertion. For the second assertion of the Proposition,
observe that if the core is empty, then there is no x satisfy-
ing (1) and (2). Hence at any (I)-optimum, x*, we must have
eTx* > V(N). On the other hand, if at an optimum for (1),

eTx* > v(N), then since e x* is a minimum for ef'x over(l)

and (2'), there is no x satisfying (2).

Actually, the values of n at extreme points are quite

limited as the following proposition shows.

— —

Proposition 5 Let (u, n) be any extreme point feasible solu-

tion to (II). Then 5 is 0 or 1.

Proof Since 4 > 0, 1t follows that @'Y > 0 and therefore
n<l. But if 0 < 1n <1, then g ! = 0, for otherwise there
would be at least two distinct ways of expressing el as a linear
comblnation with respect to the set of linearly independent

vectors assoclated with the extreme point (ws n), which is a




contradiction. Hence 1§ = 0 or 1.

Duality Peztures,.Sensitivity Analysis, and Won-ermpty Cores

Proposition 6 Given any game v, with an empty core, it is al-

ways possible to obtain a game v' which has non-empty core by
changing at least one value of V.

Proof If v has an empty core, then at a dual optimum (x*;0%,n,),
for (I) - (II), it follows that eTx* > v(N) by Proposition 4.

Hence by complementary slackness, ng = 0 which implies

m*TY = eT .

Therefore ¥ 1is a minimal balanced collection. Hence V
may be given a core immediately simply by changing one imputation
alone, namely by increasing v(N). Q.E.D.

In considering changes in a game v (having empty core)
which may lead to a game with non-empty core, 1t may happen in
some applications that certain of the values of v are required
to remain unchanged. For example, perhaps it may not be possible
to change the value of v(N). In such situations we still have
at our disposal the vector ¥ which forms a set of dual evalu-
ators for changes in V. Since each component of w*® 1s greater
than zero, it follows that negative marginal changes in compo-
nents of V, i.e. those components which are permitted to be
changed and correspond to components of w¥, will effect a

strict decrease in the objective function elx of (I). Thus,



the power of sensitivity analysisl/

of linear programming may be
brought to bear on the problem of rendering games without core
to ones which have non-empty core. These features can incorporate
restrictlions of the type already mentioned, i.e., maintaining
some of the original game values while permitting others to vary
freely, or perhaps subject to other linear inequality constraints.
Observe that Proposition 4 is equivalent to Theorem 2,
p. 11 of Shapley [4], which states the necessary and sufficlent
condition for nonempty core in terms of an upper bound, v(N) for
all extreme points of the convex polyhedron A. Clearly, if there
were an extreme polnt weA satisfying wTV > v(N), then at any
dual optimum (x*;w¥,ny,) 1t follows that eTx# > TV > v(N) and
ng = 0. On the other hand if elx* > v(N), then ng = 0 im-
plying w¥*eA and elx* = ,#Ty v(N). Thus Proposition 4 is
completely equivalent to Shapley's Theorem 2. The question of
emptiness of the core of an n-person game 1s equivalent to whether
the optimal value of problem (I) is strictly greater than v(N)

or not.

Proper Games and Sharpness of Proper Minimal Balanced Collections

A game 1s called proper if the set function v 1is super ad-

l/See Charnes-Cooper [1] and [2] for simultaneous considerations
of data variations and their programming consequences.




ditive, i.e.,

v(S) + v(T) =.v(SuUT) for all S, T=N
with SNT = g, A minimal balanced collection 1s proper if no
two of its elements are disjoint. Accordingly we identify an
- extreme point ep as proper 1f the sets corresponding to the
rows of Y associated with positive components of ( satisfy
’the pairwise intersecting property above. We shall find it con-

venient to let e denote the row in Y corresponding to a

given set T7N.

Proposition 7 [Shapley [4], Theorem 3] The proper game v has

- a non-empty core if and only 1if wTV < v(N) for all proper ex-

 treme points yea.

Proof One of the implications 1s obvious by Proposition 4, wWe
now show that it suffices to examine only proper extreme points

of jp by eliminating redundant inequalities of problem (I) with
respect to a given optimal solution for (I) in a manner which does
; not destroy dugl (II) feasibility. To this end, let (x¥*; w¥, ny)
be a dual optimal solution to problems (I) and (II) respectively,

where w*T={w§j=1:k:p}, §=1{s,: 1<k <pl, and o

J° k
1s the positive weight corresponding to the set Sk’ 1 <k <p.

To obtain the required reductions, we proceed as follows. Let Q

l.e., T = SktJQ, T -8 We examine cases regarding the known

k *
inequality egx* > v(Q).

T

Tx* > v(Q). We may eliminate the inequality e > v(Q).

€Q
from (I) without affecting dual optimality.

Case 1

T

Qx* = v(Q). If Q £ S, we may eliminate the inequality

Case 2 e
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egx > v(Q) without affecting dual optimality since Uy = 0. 1If,

however, Q =5, ¢ S, then v(T) < egx* = eg x¥ + eg x¥ =

k J

V(Sk) + V(Sj) < v(T), since Sknsj =4, egkx* = v(8,),

eg x¥ = V(Sj) by complementary slackness,and v is proper.

Hence v(T) = egx*. Thus, 1f T = N, then we may eliminate all

inequalities from (I) except eTx > v(N) without affecting op-
timality of x¥*. 1If on the other hand T # N, then we may re-
move the 1nequality associated with 8, or SJ (or both) with-
out affecting dual optimality following the Shapley constructior.
({47, p. 14), where the set T may now be introduced with ap-
propriate positive weight. Thus, whether in case 1 or case 2
above, we may remove inequalities from (I) which do not affect
optimality of x¥*, and the process stops when an inequality sys-
tem is attained which corresponds to sets which have pairwise
non-empty intersections. Q.E.D.

Let Y be all the rows of Y which correspond to sets which
have pairwise non-empty intersection, and let A be the polyhedron
associated with the matrix Y. We shall call the set of extreme
points of A wuniversal with respect to the property of core
feasibility of any proper game of corresponding dimension. Thus,
analogous to Shapley [4], we obtain the smaller set, A, which
is universal for proper games of order n in terms of Proposition
7. The question Shapley railses and which we propose to answer 1:
whether 1A 1is sharp, 1.e. is there yet a smaller set of extreme
points within A which 1s universal for proper n-person games?
Shapley's conjecture in the affirmative appears to be correct as

we shall now show.




-11-

It will suffice to construct for arbitrary n, a proper

game which singles out any a priori specified proper extreme
point weA such that &7 > v(§) and ©V < v(N) for all

other extreme points in A.

Proposition 8  The extreme points of 7 defined above are

sharp, in the sense that no proper subset of extreme points of
% is a universal set for determining core feasibility of proper
games of order n.

T 3 |
Proof Let @ = {wsl,...,ms ] be any extreme point of A 8O

that S = {51:°-':Sp} is a proper minimal balanced collection

wlth weights '@T.

Let Z . = {S - 8,818}, 1 <k <p. Thus, ZSk is

the set of complements of Sk with respect to sets properly

ZS . The values for v are assigned

1 7k

[ I eniio)

containing it. Let Z =
_ k

as follows:
\ 1 ;3 if SeS
v(8) = - -y ; if SeZ
—u+l; 1f SgSUZ 5 v(g) =0,
where u > 1 1s to be specified later. '
We show that (1) v 1is well-defined and (2) v 1s a proper

game.

Lemma 1 v as defined above is a well-defined function on sub-
sets of N.

Proof It suffices to show that S5n Z= g. Suppose not, 1.e.
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and S = Sj' Then there exists Q such that Qg:Sk and
= SJ' But Sk(\fﬁ # @ since ET is proper and there-

Q - Sk SJ is impossible.

v 1s a proper game.
Let Q and R be any non-empty subsets of N and
g. We must show v(Q) + v(R) < v(QUR).
Q or R in §. First, observe that not both Q and
in S; otherwise we contradict properness of w. Thus, we

y assume Q = Ske§ and RFS. But R = QUR - Q@ since

NR =@, and this implies that RsZSk. Hence v(R) = -u, anc
(Q) + v(R) = 1-u. Claim now that QUR 4 SUZ. On the contrary,
f QUReS, then we can make R a member of S by simply
ransferring the welght of QUR to Q and to R, eliminat-
7hg QUR from S. This is a contradiction since RgS. Thus,
WJUR ¢S. We show now that QUR ¢Z. If to the contrary

’kJR eZ, say QUR sZé then there exists TS, for some

J

such that T - S, = QUR = S, UR which again is impossible

J k
ince S;NS, # § for any J. Hence QUR ¢ S U Z, and there-

fore Vv(QUR) = -y + 1. Hence v(Q) + v(R) = 1 - y < v(QUR)
-¢ + 1.

Case 2 QS and R£S. If QUR £ Z, then

v(Q) + v(R) < -2u + 2 < -y + 1 < v(QUR), since y>1. On the
other hand, if QUR e Z, say QUR e Zg , then there exlsts

k

T-3 such that T - S

<"k k

= QU R. But this implies T - Sk - Q@ =R
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- since QNR = @, which implies R.eZS . Similarly, we conclude
k

' SeZg . Hence v(Q) + v(R) = -2u < -y = v(QUR). Thus
k
1in all cases v(Q) + v(R) < v(QUR), for Q, R:N with

QN R = @. Therefore, v 1is superadditive and therefore a proper

Observe that N = {1,2,...,n} ¢ SUZ and therefore v(N)

-p + 1. Clearly increasing the value of v(N) will not destroy

the properness of the game v. Therefore we may and do redefine

Cw(N) = 0.

~Determination of a Value for u

Let wy = {mll,,,,’mlt(l)},..o, UJk = {wkl""’wkt(k)}

“be all the extreme points of A other than &, where for each
1, 1 <1 <k, it follows that 1 < k(i) <n since n 1s the

‘rank of Y. Let a = min{wij} and o; = ey toee. ¥ owgig)
" 1,3

fyfor 1 <1 <k Then a >0 and there exists real u > 1 such
(u-Da > oy for all i, 1 <i <k
V<o,

Lemma 3 If mieX’ wy #T, then w

- Proof Given wy # s, then wiﬁ < 9y + ('“+l)“ij fo? some ],

1 <J < t(i) since at least one positive component of wy COr-

responds to a subset of N not in S, 1.e., a subset in Z or
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ot in SUZ with game value < =-u + 1. But

oy * (-u+1)wij <oyt (-utl)e < 0 since wyy 2 @ > 0 and

w> 1. Hence w;V < 0 for each wye A, w; 7 T. Q.E.D.

=)

We complete the proof of Proposition 8 by observing that @ is

simply the sum of its positive components, and therefore WV > 0
= v(N). Hence for our a priori specified extreme point u ea,

we have constructed a proper game which in terms of linear pro-
gramming problem (II), has a functional value > v(N) at @,
while for all other extreme points in X, the (II)-functional
value is < v(N). Thus, the core of the game is empty, and it

is precisely the proper extreme point ® and this point alone

which satisfies the condition WtV > v(N).

Redundancy, Growth Conditions, and the Farkas-Minkowski Property

In discussing Proposition 7 above, we discovered that for
any proper game 1t 1s necessary to examine only proper extreme
points in order to ascertain the existence of a core. The tech-
nique of proof was to show that with respect to an optimal solu-
tion x* of problem (I), certain inequalities could be deleted
from (I) without affecting the optimality of x¥, until a sys-
tem of inequalities remained whose corresponding sets satisfied
the pairwise non-intersecting property. In general, however, the
inequalities which are deleted are not of themselves redundant ,

i.e., any one of these may not be a consequence of some subsys-
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tem of inequalities. It is possible for a proper game to have
no redundant inequalities. 1In this section we characterize re-
dundancy by introducing a natural ordering of values of the game
corresponding to increasing subsets of N, which for positive

games induces a partial ordering on subsets of N.

T

Proposition 9 For any S _N, egx > v(S) can only be the

implicand of inequalities of the form
T -
eq¥ 2 v(Q), where Q<7 S.

Proof  Assume egx > v(S) whenever egx > v(Q) for Q # S

QeQ, a collection of subsets in N. Then by the Farkas-Minkowski

Theorem, there exists A, > 0 such that eg = %QQAQ and
v(S) < ZV(Q)AQ. ut since Ag 2 0 and e, consists of zeros &nd
5 2 ;

ones, any positive positions in any eQ outside of coordinate
positions corresponding to S could never be annihilated, and

- therefore would contradict the expression of eg. Hence Q- S.

Proposition 10 (Characterization of Redundancy) Max z VQAQ,
A Q-8

subject to Y
QT

SeQAQ = €q, AQ > 0 exists and is denoted by
M(S). egx > v(8) is reduncent if and only if v(8) < M(3).
Proof Ir egx > v(8) 1is redundant, then egx > v(S) whenever

' egx > v(Q), Q -S. Hence, for problem (IS) with dual (IIS)

below, (IS) is consistent and bounded below.
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(Ig) (I14)
min elx max ‘v(Q)a
S é Q
s.t eTx > v(Q) Q ~— S s.t Ee An = €
T A ? = T & Q"Q S
AQ_>_O

By the Farkas-Minkowski Theorem, there exists feasible AQ such

that v(S8) < ZV(Q)AQ < M(8), proving the first implication. On
Q

the other hand suppose v(8) < M(S). Then by dual optimality,

for any x satisfying eTx > v(Q), Q»iis, it follows that

Q

egx > M(S) > v(S), which proves redundancy. Q.E.D.

Proposition 11. If the game Vv 1s not strictly proper, then

there exists at least one redundant inequality.

Proof Suppose no constraint is redundant. Then for any Sgéblg
v(S) > M(S) by Proposition 10. In particular for any Q, R,

QMR = @, we have
v(QUR) > M(QUR) > v(Q) + v(R). Q.E.D.

Remark There are strictly proper games, however, that have re-

dundant constraints.

Proposition 12 The operator M defined on a proper game 1s

itself proper, i.e. given 83, Sz, SN S; =@, then
M(Sy) + M(S2) < M(S;uUS2)

Proof Consider the two problems,




-17-

(IIT) II(S1 5)
2
)
v(R)Ag Max Z v@rg + v(P)Ap
T Q <3S, PS5
€. A, = € s.t 2 e A Z
R'R T Q'Q + €Ay = €
Q< S, PC)SZPP T
A, > O
R -~ AQ AP >0

here T = S;US,. Clearly the optimal value of (IIg ) is
122

(8;) + M(S,) since $;NS, = @g. However, following the Shapley
47 (p. 14) construction, we can do better by transferring weights
0 move into problem (IIT). Specifically, in considering terms

(Q)AQ + v(P)ap of (IISl 2), 1f ag = Ap we set R =QuP and
2

+ to obtailn a possibly bigger solution for (IIT).

KQ AP
f Aqg > Aps then assign weight 2, to v(T) and Ag ~ Ap to

(Q) and delete to obtain an improved solution for (IIT).

€p,
erefore M(T) > M(S;) + M(S;).

orollary If v takes on positive values, then the operator

induces a partial ordering on subsets of N, given by

M(R) < M(S).

; We return to the game constructed in the proof of Proposi-
ion 8 and with slight changes exhibit a strictly proper game with

no redundant inequalities. Here, let S = {Sj :1 < J <n} with

L1 _ where S, =N - {j}. Then for any subset

n-12 J
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QuN, Q .;;Sj for some Jj. But this implies Q 48 (other-
wise transfer weights as usual to obtain a contradiction on mini-
mality of S). Claim that egx > v(3) is not redundant, where
St N. Clearly this is true if S consists of one element. If
S has more than one element, then S £ Z 1in addition to

S £ S. Hence by definition v(S) = -y + 1. Now consider M(S)

determined by max § v(Q)ry, subject to )

Q< s gd g o' T s

Ag 2 0. Clearly, %AQ > 1 for any feasible solution, and

v(Q) < -y + 1 since Q ¢ 5. Therefore
M(S) = EV(Q)Aa < (—u+l)EA5 < -y +1=v(S) at an optimum. Hence,
Q Q
egx > v(8) 1is not redundant by Proposition 10. Finally, upon
setting Vv(N) = Jv(S.)Aqy = === + 6, for some &> 0, 1t fol-
J SJ n-1

lows that eTx > v(N) 1is also not redundant. By choice of

e 1, éV(Q)AQ < 0 on all extreme points except S, and

n

the maximum achieved at §, -1’

is strictly less than v(N).

It 1s easy to check that v as defined is strictly proper. In

fact, in case 2 of the proof of Proposition 8 we already have
strict inequality. 1In case 1, we see now that if Q = Sk e S,
and R¢ S, QNR¥ P, then QUR =N and

- v(Q) + v(R) =1 -y + 1 < 0 < v(N) and strict inequality occurs
in this case also. Hence v 1is strictly proper, has no redun-
dant inequalities, and by the redefinition of v(N) has non-

empty core.
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Thus, the sequence {M(S): S'. N} permits a sequential desig-
nation of values of a game such that if v(8) > M(S), no inequali-
ties are redundant. The sequence, any member of which depends
on previous game values, expresses the rate of growth as a lower
bound for successive game values corresponding to larger and larg-
er subsets of the collection of N players which vitiates any

possibility of constraint redundancy.
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