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ON BANDWIDTH CHOICE IN NONPARAMETRIC
REGRESSION WITH BOTH SHORT- AND

LONG-RANGE DEPENDENT ERRORS

¨BY PETER HALL, SOUMENDRA NATH LAHIRI AND JORG POLZEHL

Australian National University, Iowa State University and
Konrad-Zuse-Zentrum fur Informationstechnik¨

We analyse methods based on the block bootstrap and leave-out
cross-validation, for choosing the bandwidth in nonparametric regression
when errors have an almost arbitrarily long range of dependence. A novel
analytical device for modelling the dependence structure of errors is
introduced. This allows a concise theoretical description of the way in
which the range of dependence affects optimal bandwidth choice. It is
shown that, provided block length or leave-out number, respectively, are
chosen appropriately, both techniques produce first-order optimal band-
widths. Nevertheless, the block bootstrap has far better empirical proper-
ties, particularly under long-range dependence.

1. Introduction. In three seminal papers on nonparametric regression
Ž . Ž .with short-range dependent data, Altman 1990 , Chu and Marron 1991 and

Ž .Hart 1991 addressed both the failure of cross-validation and the sort of
remedy that might be appropriate to correct it. Chu and Marron considered a
modified or ‘‘leave-k-out’’ form of cross-validation, and argued that, for pro-
cesses exhibiting short-range dependence, this approach may produce asymp-
totically optimal performance if k is chosen to increase with sample size at
an appropriate rate. On the other hand, the method of partitioned cross-vali-
dation was shown by Chu and Marron to be relatively unsuccessful in
producing asymptotically optimal bandwidths.

In this note we take up the argument where it was left by Chu and
Marron, and demonstrate that, even in the context of very-long-range depen-
dent data, both modified cross-validation and a form of the block bootstrap
produce asymptotically optimal bandwidths. We develop a simple asymptotic
device that allows very long ranges of dependence to be modelled and
analysed with relative ease. For example, it permits an elementary account of

Ž . Žthe way in which leave-out number in cross-validation or block size for the
.block bootstrap should depend on strength of dependence if first-order

optimality of bandwidth choice is to be achieved. Thus, even in the context of
short-range dependence and leave-k-out cross-validation we complement Chu
and Marron’s results by indicating the sort of leave-out numbers or block
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sizes that are required. Furthermore, we address the block bootstrap ap-
proach to both local and global bandwidth choice. These theoretical results
are described in Section 2, for which the technical details are outlined in
Section 4. Section 3 summarizes the conclusions of a simulation study. That
work makes it clear that while leave-k-out cross-validation has first-order
theoretical properties similar to those of the block bootstrap, its empirical
performance is very poor under long-range dependence. This is due to a
marked tendency for cross-validation to select a bandwidth that is almost
identical to the smallest one producing a well-defined cross-validation crite-
rion. The problem becomes more pronounced as the range of dependence
increases, with the result that leave-k-out cross-validation could not really be
considered to perform satisfactorily with a variety of ranges of dependence.
The block bootstrap is much more satisfactory.

A leave-k-out cross-validation method was also considered by Hart and
Ž . Ž .Vieu 1990 , in the context of density estimation. Hart and Wehrly 1986

studied bandwidth selection when measurements are repeated; Hardle and¨
Ž .Vieu 1992 addressed leave-one-out cross-validation with mixing errors;
Ž . Ž .Chiu 1989 , Diggle and Hutchinson 1989 , Hermann, Gasser and Kneip

Ž . Ž .1992 and Kohn, Ansley and Wong 1992 discussed other aspects of band-
Ž .width choice for dependent data; and Hart 1994 introduced the method of

time series cross-validation, appropriate when the dependence structure may
be modelled parametrically. Surveys of the literature on nonparametric re-
gression under dependence may be found in Gyorfi, Hardle, Sarda and Vieu¨ ¨
Ž . wŽ . x1989 and Hardle 1990 , Chapter 7 . The analysis of bootstrap methods for¨
approximating error in curve estimation with independent data was initiated

Ž . Ž .by Taylor 1989 and Faraway and Jhun 1990 . The block bootstrap for
Ž . Ž .dependent data was developed by Hall 1985 , Carlstein 1986 and Kunsch¨

Ž .1989 .

2. Main results.

Ž .2.1. Estimators and basic properties. As in Altman 1990 , Chu and
Ž . Ž .Marron 1991 and Hart 1991 we suppose that the observed data XX s

� 4 Ž . ŽY , 1 F i F n are generated by the model Y s m x q « , where x s i qi i i i i
. � 4c rn for a constant c, m is a smooth function and « is a stationaryi

sequence with zero mean. Let w denote a weight function. We takei

n

2.1 m x s w x YŽ . Ž . Ž .ˆ Ý i i
is1

as our estimator of m. One candidate for w , producing the Nadaraya]i
Ž .Watson kernel estimator treated by Chu and Marron 1991 , is

y1n

2.2 w x s K x y x rh K x y x rh ,� 4Ž . Ž . Ž . Ž .� 4Ýi i j
js1
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where K is a kernel function and h is a bandwidth. Another, the local linear
Ž .regression smoother proposed by Fan 1993 , is

y1n
y22.3 w x s v x v x q n ,Ž . Ž . Ž . Ž .Ýi i j½ 5

js1

where
nx y x x y xi j kv x s K s y x y x s and s s K x y x� 4Ž . Ž . Ž .Ýi 2 i 1 k j½ 5 ½ 5h hjs1

for k s 1, 2.
Ž .Alternative choices of w include those proposed by Gasser and Muller 1979¨i

or a simpler version of the Nadaraya]Watson prescription in which the
Ž .denominator in 2.2 is replaced by nh. Our results have straightforward

Ž .analogues in these cases. The mean squared error MSE and mean inte-
Ž .grated squared error MISE of m are given byˆ

2 22.4 MSE x s E m x y m x , MSE s E m y m ,� 4Ž . Ž . Ž . Ž . Ž .ˆ ˆH
II

Ž .where II : 0, 1 .
� 4We model the dependence of the errors by taking « , 1 F i F n - ` to be ai

triangular array, with the nth row having a joint distribution determined by
Ž .defining « s Z l x , 1 F i F n, where Z is a stationary stochastic process ini i

the continuum. We assume that Z has zero mean and autocovariance g , and
take l s l to be a sequence of positive numbers that would typicallyn

Ž . � Ž .4increase with n. Under this model, E « « s g l x y x , and l may bei j i j
� 4interpreted as a measure of the strength of dependence of the process « ,i

with larger values of l indicating weaker dependence. In particular, l s `
corresponds to independence, and lrn ª ` to asymptotic independence, in
the sense that first-order asymptotic properties of m are identical to thoseˆ
under independence. We always assume that l ª ` as n ª `. If l does not
diverge, then the amount of statistical information contained in any given

� Ž .4sequence Y : x g a, b , for any a - b, does not generally increase withi i
Žincreasing n. For example, consider the case where the process Z is Gauss-

.ian. The classical description of dependence among errors in nonparametric
regression arises when l ' n, the results in so-called ‘‘time-series errors’’

Ž . Ž . Ž .with E « « s g i y j . This is the context studied by Altman 1990 , Chui j
Ž . Ž .and Marron 1991 and Hart 1991 .

Note particularly that under our model the sum of autocovariances, s 'n
n Ž .Ý E « « , is not necessarily bounded. Indeed, if lrn ª 0 and Hg / 0,is1 iq1 1

then s is asymptotic to a constant multiple of nrl and so is unbounded,n
implying that the data exhibit long-range dependence.

As a prelude to describing asymptotic properties of mean squared error
under our model, we assume that m has two bounded, continuous derivatives

w xon the interval 0, 1 ; that K satisfies the usual conditions of a second-order
Ž i Ž . .kernel i.e., Hy K y dy s 1 if i s 0, 0 if i s 1 and 2k , say, if i s 2 and is
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compactly supported, Holder continuous and of bounded variation, with H` K¨ yx
and H x K bounded away from zero for all x G 0; that g is integrable,y`

Ž . Ž .ultimately monotone and satisfies Hg / 0; that h s h n ª 0 and min l, n h
Žª ` as n ª `; and that lrn ª C, where 0 F C F `. The condition that K

be compactly supported is imposed only for simplicity in technical arguments,
and may be relaxed. In particular, our results are all valid if K is the

. Ž . 2 Ž .standard normal density. Define R K s HK and L s min n, l , and let
Y Ž . Y Ž .b s m y 1 if the weights are given by 2.2 , b s m if they are given by 2.3 .

THEOREM 2.1. If C s 0 or `, then

2 y1 y1E m x y m x s R K nh g 0 q lh g� 4Ž . Ž . Ž . Ž . Ž . Ž .ˆ H½ 5ž /2.5Ž .
2 y14 2 4q h k b x q o Lh q hŽ . Ž .� 4

Ž .uniformly in x g d , 1 y d for each d ) 0, and

2E m x y m x dx� 4Ž . Ž .ˆH
II

y1 y1 24 2s R K nh g 0 q lh g q h k b x dxŽ . Ž . Ž . Ž . Ž .H H½ 5ž /II

2.6Ž .

y1 4q o Lh q hŽ .� 4
Ž .uniformly in measurable sets II : d , 1 y d . If 0 - C - `, then

2 y1 y1E m x y m x s R K nh g 0 q lh g Ci� 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .ˆ Ý½ 5
i/02.7Ž .

2 y14 2 4q h k b x q o Lh q hŽ . Ž .� 4
Ž .uniformly in x g d , 1 y d for each d ) 0, and

2E m x y m x dx� 4Ž . Ž .ˆH
II

y1 y1 24 2s R K nh g 0 q lh g Ci q h k b x dxŽ . Ž . Ž . Ž . Ž . Ž .ÝH ½ 5
II i/0

2.8Ž .

y1 4q o Lh q hŽ .� 4
Ž . Ž .uniformly in measurable sets II : d , 1 y d . If the weights at 2.3 are

Ž . Ž . Ž .employed, then 2.6 and 2.8 are available uniformly in all JJ : 0, 1 .

Locally and globally optimal bandwidth choices are obtained by minimiz-
Ž . Ž .ing the right-hand sides of 2.5 ] 2.8 . In all cases the optimal bandwidth is

asymptotic to a constant multiple of Ly1r5, giving a convergence rate of
Ly4r5 in terms of mean squared error. In the special case when C s 0, a

Ž . Ž .version of 2.5 has been proved by Hart 1987 for the Gasser]Muller¨
estimator of m.
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2.2. Bandwidth choice by block bootstrap. Let m and m denote twoˆ ˆ1 2
Ž .estimators of m that are constructed according to the prescription at 2.1 ,

but employing respective values h and h of the bandwidth h. In what1 2
follows, m will be used to compute centred residuals and m to generateˆ ˆ1 2
bootstrap data.

X Xy1Ž .Put « s Y y m x , « s N Ý« and « s « y « , where Ý denotesˆ ˆ ˆ ˆ ˆ ˆ ˆ1 i i 1 i 1? 1 i i 1 i 1?

Ž .summation over all N design points x that lie within II : 0, 1 . These arei
the centred residuals. Shortly we shall define the bootstrap errors «U. Ini
terms of those, let

n
U U U UY s m x q « , m x s w x Y ,Ž . Ž . Ž .ˆ ˆ Ýi 2 i i i i

is1

Ž .where w is exactly as in 2.1 . Our estimators of MSE and MISE arei
$ 2U <MSE x s E m x y m x XX ,� 4Ž . Ž . Ž .ˆ ˆ 2

$ X 2Uy1 <MISE s N E m x y m x XX .� 4Ž . Ž .ˆ ˆÝ 2

To minimize mean squared error, locally or globally, we select the smoothing$ $
parameter in the definition of w so as to minimize MSE or MISE, respec-i $
tively. It is of course not essential to use the same interval II to define MISE
and the residuals « ; we do so only to simplify notation and discussion.î

Next we describe a block bootstrap algorithm for generating the «U ’s.i
� 4Write n , n for integers such that x g II if and only if i g j: n F j F n .1 2 i 1 2

Let l F n y n q 1 denote block length and let b denote the integer satisfy-2 1
Ž . Žing b y 1 l - n F bl. We shall argue in Theorem 2.2 that l should be of

.smaller order than nh and of larger order than nrl. Write BB s1 i
Ž .« , . . . , « for the block of centred residuals that starts from position i,ˆ ˆi iqly1
where n F i F n y l q 1. Resample randomly, with replacement, b times1 2
from the sequence of all n y n y l q 2 such blocks, obtaining the sequence2 1
BBU, 1 F j F b, say. Put the elements of these blocks into a string of length bl,j
and let «U denote the ith element of the string.i

We are now in a position to address performance of the block bootstrap.
Ž .Take II to be a subset of d , 1 y d for some d ) 0, to eliminate edge effects.

In addition to the conditions of Theorem 2.1, assume that mY is Holder¨
Ž .continuous with exponent a g 0, 1 . Suppose that the process Z used to

define the errors « is stationary with all moments finite, and satisfies thei
Rosenblatt mixing condition

< < a `sup P A l B y P A P B : A g FF , B g FF , y` - a - `� 4Ž . Ž . Ž . y` aqt

F C exp yC tŽ .1 2

for all t ) 0 and for constants C , C ) 0, where FF b denotes the s-field1 2 a
� Ž . w x4generated by Z x : x g a, b . To simplify the formulation of our next result

we assume that h is of the same order as the optimal bandwidth, and in fact1
take h s jLy1r5 for some j ) 0; and suppose that h satisfies C LyŽ1 r5.qd

1 2 3
Ž yŽ1 r5.qŽa r10..F h s o L for some C , d ) 0. This reflects the fact that m̂2 3 1
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should ideally use a bandwidth of similar order to the optimal one, whereas
m should employ a bandwidth of larger order, in order to address theˆ 2
problem of implicitly estimating the second derivative of m when approxi-

Žmating the squared bias contribution to mean squared error. In practice, h1
.at least would be computed using an iterative scheme. Finally, we assume

that
y1 y1 d y12.9 n ll q l nh q n l ª 0Ž . Ž . Ž .1

as n ª `. The first two portions of this condition assert maximum and
minimum orders of magnitude, respectively, for the block length l. Note that
l s nha satisfies both the requirements whenever 1 - a - 5. The last part is1
a technical assumption and rules out extraordinary long-range dependence.

THEOREM 2.2. Under the above conditions,
$ $

y4r5 y4r5MSE x y MSE x s o L , MISE y MISE s o LŽ . Ž . Ž . Ž .p p

Ž . w y1r5 y1r5 xuniformly in x g d , 1 y d and h g H s C L , C L for any d ) 0n 4 5
and any 0 - C - C - `.4 5

Ž .In the event that the weights w are chosen by the prescription at 2.3 wei
may take d s 0, both in the definition of II and the statement of the theorem.

It follows from Theorems 2.1 and 2.2 that the ratio of the bandwidth that$ $
Ž . Ž .minimizes MSE x respectively, MISE over H to that which minimizesn

Ž . Ž .MSE x respectively, MISE converges to 1 in probability.

2.3. Bandwidth choice by leave-out cross-validation. Let m representˆ j
Ž .the version of the estimator m, defined at 2.1 , in which the sum overˆ

1 F i F n is replaced by a sum over those values in this range that satisfy
< <i y j ) l, where l is an integer. Put

& X 2y1MISE s N m x y Y .Ž .� 4ˆÝ j j j
&

Then choosing h to minimize MISE amounts to using leave-k-out cross-vali-
dation with k s 2 l q 1. The integer k, or equivalently l, plays a role similar
to block length in the block bootstrap.

Our main result in this section is an analogue of Theorem 2.2 and holds
Ž .under identical conditions except that we change 2.9 to

y1y1 3 d y12.10 n ll q l nh q n l ª 0Ž . Ž . Ž .1

as n ª `.

THEOREM 2.3. Under the above conditions,
& Xy1 2 y4r5MISE y MISE y N « s o LŽ .Ý i p

w y1r5 y1r5 xuniformly in h g H s C L , C L for any d ) 0 and any 0 - C -n 4 5 4
C - `.5
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Ž .It follows that if l is chosen appropriately to satisfy 2.10 , then the ratio of&
the bandwidth that minimizes MISE over H to that which minimizes MISEn
converges to 1 in probability.

3. Simulations. We investigated numerical aspects of the block boot-
strap and leave-out cross-validation in a simulation study, the results of
which are summarized here. The mean function m and autocovariance g

Ž . Ž . Ž . 2 yŽ1r5. < t < 2were chosen as m x s cos 4p x and g t s s e with s s 0.04. We
Ž . Ž .Ž 2 .3took K to be the triweight kernel K u s 35r32 1 y u , and employed

Ž .the w sequence defined at 2.3 . The process Z was assumed Gaussian withi
zero mean, and its values were simulated using a Fourier-based algorithm

Ž .developed by Wood and Chan 1993 . We used the procedures described in
Sections 2.2 and 2.3 to estimate the bandwidth that minimizes MISE, defined

Ž . Ž .at 2.4 with II s 0, 1 .
To implement the block bootstrap, we calculated h by iteration, selecting1

first a plausible bandwidth h s 0.4ny1r5, then using it to calculate an11
estimate h of the optimal bandwidth by minimizing the block bootstrap12

Ž .estimate of MSE x or MISE, then replacing h by h and repeating the11 12
operation, and so on until convergence was achieved. Of course, the band-
width to which these iterations converge is equal to that which we seek.

To ensure the right rate of decay for h under both short- and long-range2
dependence, we chose h to depend on h in the form h s C) h5r9. This2 1 2 1

y1r9 Ž Y Y .2gives a bandwidth of the correct size L for minimizing H E m y m ,ˆII
Ž . Y Ythe mean integrated squared error MISE of m , as an estimate of m . Theˆ

wconstant C, obtained from asymptotic theory under independence see Gasser,
Ž .x Ž 2 Ž . 2 YŽ .Engel and Seifert 1993 , is of the form C s 5Hy K y dyrHy K y dy)

Ž Y . Ž . Ž Y . Ž YY ..1r9 Ž Y . Ž YY .R K rR K ) R m rR m . The terms R m and R m were, respec-
Ž Y . Ž YY .tively, estimated by R m and R m , using bandwidths h for the first andˆ ˆ 2

h s h5r13 in case of the second term.3 1
Ž .For comparison we implemented the leave- 2 l q 1 -out cross-validation&

MISE using local linear regression weights. More precisely, we minimized

n& 2y1MISE s n m x y YŽ .� 4ˆÝ j j j
js1

with

m x s v x Y ,Ž . Ž .ˆ Ýj j i j j i
< <iyj )l

where

y1
y2v x s v x v x q n ,Ž . Ž . Ž .Ýi j i j k j½ 5

< <kyj )l

v x s K x y x rh s y x y x s� 4Ž . Ž . Ž .� 4i j i 2 j i 1 j
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and
ks s K x y x rh x y x .Ž . Ž .� 4Ýk j j i j i

< <iyj )l

We considered the same situations as in the case of the block bootstrap.
Our simulations covered a very wide variety of parameter settings and

sample sizes. One feature of the results is that when cross-validation pro-
duces a plausible estimate of the MISE curve, it tends to be flatter than its
counterpart obtained using the block bootstrap, and so is harder to minimize
numerically. In consequence, if the minimum does not occur near the small-
est possible bandwidth, then its value is strongly influenced by sampling
fluctuations, with the result that in such cases cross-validation produces
more variable bandwidths than does the block bootstrap. Moreover, as the
range of dependence increases, cross-validation shows a marked tendency to
select the smallest bandwidth that is consistent with the method being well
defined, leading to chronic undersmoothing. This problem is not observed
with the block bootstrap.

Naturally these effects are influenced by choice of l, for either method.
However, apart from relatively extreme cases such as l s 1, the estimate of
MISE provided by the block bootstrap tends to be nicely curved, and so is
easily minimized, for a wide range of choices of l. With both methods the
position of the minimum of the estimate of MISE tends at first to increase
with l. In the case of cross-validation with very long-range dependent data,
however, this tendency is little more than an artifact of the property that the
smallest bandwidth for which the criterion is well defined increases with l; it

Ž .is equal to l q 1 rn. When using the block bootstrap the minimizing band-
width tends to decrease with l after reaching a maximum. We did not observe
this property clearly in the case of cross-validation. For both methods the
variance of the minimizing bandwidth tends to increase with l, except for
those cases of cross-validation where the minimizing bandwidth is very near
to the smallest value for which the criterion is well defined. As suggested by
the theory in Section 2, the value of l that is required for good performance
using either the block bootstrap or cross-validation tends to increase with
range of dependence, and our simulation study bears this out.

For the sake of brevity we illustrate only one set of results from the
simulation study, corresponding to n s 1600 and the two extreme cases

Ž . Ž .l s 1600 short-range dependence and l s 200 long-range dependence . We
chose a large sample size principally because there the inferior properties of
cross-validation are starker. For smaller sample sizes those problems can
perhaps be put down to insufficient data, but when they are so obvious with
n s 1600 we feel that our conclusions are quite convincing. All the features
described above are evident for smaller sample sizes.

Ž . Ž .Figures 1 l s 1600 and 2 l s 200 depict the case of the block bootstrap,
Ž . Ž .whereas Figures 3 l s 1600 and 4 l s 200 address cross-validation. Each

treats several values of l. The left-hand panel of each figure illustrates the
Žaverage over 20 out of 100 samples in the case of Figures 1 and 2, and 200

.samples for Figures 3 and 4 of the estimate of MISE. We used only 20 of the
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FIG. 1. Block bootstrap for short-range dependent data. The parameter values n s 1600 and
l s 1600 were employed, and B s 20 replications were conducted. The left-hand panel depicts
the estimate of MISE averaged over these replications. The right-hand panel illustrates a kernel
estimate of the density of the estimated bandwidths. A MISE curve is added to provide informa-
tion about the mean performance of the selected bandwidths. Curves for l s 20, 40, 60, 80 and
100 are illustrated.

FIG. 2. Block bootstrap for long-range dependent data; parameter specifications are as for
Figure 1, except that now l s 200.
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FIG. 3. Cross-validation for short-range dependent data; parameter specifications are as for
Figure 1, except that now B s 200.

FIG. 4. Cross-validation for short-range dependent data; parameter specifications are as for
Figure 3, except that now l s 200.
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replicates in the case of the block bootstrap because of the computational
costs of the method. The right-hand panels of the figures depict estimates of
the densities of the distributions of those bandwidths that minimize the
estimators of MISE, computed using the same data as the respective left-hand

Ž .panels but with 100 samples in the case of the block bootstrap . In Figure 4,
Ž .cross-validation is selecting the extreme bandwidth h s l q 1 rn in almost

all the simulations. In the case of the block bootstrap and for the values of l
treated, l s 20 performs well when l s 1600, and any l between 40 and 100
seems appropriate when l s 200. For cross-validation, l s 40 or l s 60 is
appropriate when l s 1600, but the method does not appear to work well for
any plausible l when l s 200.

4. Proofs. The proofs are given only in outline.

PROOF OF THEOREM 2.1. Mean squared errors are of course made up of
squared bias and variance components, of which the first may be derived by
arguments identical to those in the case of independent random variables.

Ž . Ž . 2 Ž . Ž 2 . Ž .Indeed, Em x y m x s h kb x q o h uniformly in x g d , 1 y d forˆ
Ž .each d ) 0, and if the weights w are given by 2.2 , then this result holds fori

d s 0. Therefore it suffices to confine attention to deriving that version of
� Ž . Ž .42Theorem 2.1 which is obtained by replacing E m x y m x , b andˆ

�Ž .y1 44 Ž . �Ž .y14o Lh q h by var m x , 0 and o Lh , respectively, in each appear-ˆ
ance made by the former in the statement of Theorem 2.1. Let the corre-

Ž . Ž . Ž X. Ž X. Ž X.sponding versions of 2.5 ] 2.8 be 2.5 ] 2.8 , say. Derivation of 2.5 and
Ž X .2.7 is not particularly awkward, and so is not discussed further here.

Ž . �Ž .y14 Ž .Similarly it may be proved that var m x s O Lh uniformly in x g 0, 1 ,ˆ
Ž X. Ž X. Ž X . Ž X.and so 2.6 and 2.8 follow from 2.5 and 2.7 , respectively. I

PROOF OF THEOREM 2.2. Let C, C , C , . . . denote generic positive con-1 2
stants, not depending on n, h or x. Write EU and varU for expectation and
variance, respectively, conditional on the data XX . Note that

$ 2
MSE x s V x q B x q B x ,� 4Ž . Ž . Ž . Ž .n 1n 2 n

Ž . b U� l Ž . U 4 Ž . n Ž . Ž .where V x s Ý var Ý w w « , B x s Ý w x g xˆn is1 js1 Ž iy1.lqj Ž iy1.lqj 1n is1 i 2 i
Ž . Ž . b l Ž . U Ž U .y g x and B x s Ý Ý w x E « . We shall establish Theo-ˆ2 2 n is1 js1 Ž iy1.lqj j

rem 2.2 by proving that

† < < y2r54.1 sup B x q B x y Eg x y g x s o L ,� 4Ž . Ž . Ž . Ž . Ž . Ž .ˆ1n 2 n p

† < < y4r54.2 sup V x y var g x s o L ,Ž . Ž . Ž . Ž .ˆn p

† Ž .where sup denotes the supremum taken over all x g d , 1 y d and h g H .n
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Using the Cauchy]Schwarz inequality and the fact that the « ’s areî
centred, we may prove that

b l 2Ž .j2 y1y2B x F C N nh «Ž . Ž .Ý Ý Ý2 n 1 kž /ž is1 js1

2Ž .? 2 y2 y2 2q g x y g x N l q « N l� 4Ž . Ž .ˆ ˆŽ .Ý 1 k k 1 1? 1 /
Ž . Ž j.uniformly in x g d , 1 y d and h g H , where N s N y l q 1, Ý denotesn 1

� 4 �summation over all k g n , n q 1, . . . , n R n q j y 1, n q j, . . . , n q N1 1 2 1 1 1 1
4 Ž ? . Ž j.q j y 2 and Ý denotes summation over the union of indices under Ý for

1 F j F l. Therefore,
2 y2 y1† y4r5 y14.3 E sup B x F C nl L q nh ll .Ž . Ž . Ž . Ž .� 4 � 42 n 1

Let w denote the version of w which arises when h in the latter2 j j
Ž . n Ž . Ž . Ž .is replaced by h , and put w x s Ý w x w x y w x . In this no-2 3 j is1 i 2 i i 2 j

Ž . Ž . n Ž . < Ž . < Ž .y 1tation, B x y EB x s Ý w x « , w x F C nh and1 n 1 n js 1 3 j j 3 j 2
n < Ž . < wŽ .Ý w x F C. Hence, applying Corollary A.2 of Hall and Heyde 1980 ,js1 3 j

xpage 278 , we may deduce that for each integer r G 1,
2r m

ap2 r
E B x y EB x F C r E w x «� 4Ž . Ž . Ž . Ž .� 4Ý Ý Ý Ł1n 1n 1 3 j jp p

ps1m , ams1 1Fj - ??? -j Fn1 m

2r
yrF C r nh qŽ . Ž . Ý Ý Ý2 2½

m , amsrq1 1Fj - ??? -j Fn1 m

4.4Ž .

m
ap< < < <= w x exp yC l x y y x ,Ž .Ł Ž .3 j 3 j jp q s 5ps1

where Ý extends over all a G 1, . . . , a G 1 such that a q ??? qa s 2r,m , a 1 m 1 m
< < � < < < <and q, s are integers such that j y j s max j y j n j y j : 1 F pq s p py1 p pq1

Ža .4 Ža . � 4 a Ž .F m, p g LL , with LL s 1 F p F m: a s 1 . Note that a LL G 2 m y rm m p m
Ž .G 2 for all m G r q 1. Then by 4.4 ,

2r
yr yr2 r

E B x y EB x F C r nh q C r nh� 4Ž . Ž . Ž . Ž . Ž . Ž .Ý1n 1n 2 2 4 2
msrq1

ny1
my r= k exp yC lkrnŽ .Ý 3

ks1

4.5Ž .

yr yrF C r nh q nrl lh .Ž . Ž . Ž . Ž .� 45 2 2

More simply, we may show that

< < 2 a y2r5sup EB x y Eg x y g x s O h h s o L ,� 4Ž . Ž . Ž . Ž .ˆ Ž .1n 2 1
Ž .xg d , 1yd
hgHn

Ž . Ž . Ž .which in conjunction with 4.3 and 4.5 establishes 4.1 .
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Ž . YThe remainder of our proof is devoted to deriving 4.2 . Write Ý for
summation over n F k F n y l q 1, and observe that we may write V s1 2 n

Ž . y1 b Y � l Ž . 42 Ž .V y V , where V x s N Ý Ý Ý w x « and V xˆ1n 2 n 1n 1 is1 k js1 Ž iy1.lqj jqky1 2 n
y2 b � Y l Ž . 42s N Ý Ý Ý w x « . Arguments similar to those employedˆ1 is1 k js1 Ž iy1.lqj kqjy1

Ž . � † Ž .4 y4r5 2to derive 4.3 may be used to show that E sup V x F CL h . Also,2 n 1
writing V for the random variable obtained by replacing each « in theˆ11 n i

Ž .definition of V x by the respective « , and putting V s V y V and1n i 12 n 1n 11n

2b l
Yy1V x s N w x g x y g x y « . ,Ž . Ž . Ž . Ž .ˆ ˆ½ 5Ý Ý Ý121n 1 Ž iy1.lqj jqky1 jqky1 1

is1 k js1

we may prove by the Cauchy]Schwarz inequality that V F V q12 n 121n
Ž .1r2 � † Ž .42 V V . Furthermore, it is readily shown that E sup V x F11 n 121n 121n

y4r5 Ž .y1 Ž .CL l nh . The desired result 4.2 will follow these bounds if we prove
that, for some h ) 0 and all integers r ) 1,

† < < y4r54.6 sup EV x y var g x s o L ,Ž . Ž . Ž . Ž .ˆ11 n

2 r† y8 rr5 yh r4.7 sup E V x y EV x s O L n .� 4Ž . Ž . Ž . Ž .11 n 11n

Ž .To derive 4.6 , observe that

< <EV x y var g xŽ . Ž .ˆ11 n

lyjly1 b1

F 2 g l j rn w x w xŽ . Ž . Ž .Ý Ý Ý1 Ž iy1.lqj Ž iy1.lqj qj2 1 2½
j s1 j s1 is11 2

nyj1

y w x w xŽ . Ž .Ý j j qj2 1 2 5
j s12

nyjny1 1

q 2 g l j rn w x w x .Ž . Ž . Ž .Ý Ý1 j2 j qj1 2
j sl j s11 2

The fact that llrn ª ` may be used to prove that the second term on the
Ž y4r5. Ž .right-hand side equals o L . To bound the first term, let l s l n denote1 1

integers such that l rl ª 0 and ll rn ª `. Using the compactness of the1 1
support of K we may show that the first term is bounded above by

l l b1

< < < <2 g l j rn w x w xŽ . Ž . Ž .Ý Ý Ý1 Ž iy1.lqj Ž iy1.lqj qj2 1 2
j s1 j slyl is11 1 1

l n
2< <q 2 g l j rn w xŽ . Ž .Ý Ý1 i

j sl is11 1

y1 y4r5F C nh l rl q exp yC ll rn s o L ,� 4Ž . Ž . Ž . Ž .1 1 1 2 1

Ž . Ž .uniformly in x g d , 1 y d and h g H , completing the proof of 4.6 .n
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Ž . Ž . b Ž . Ž .To prove 4.7 , put w x; j , j s a Ý w x w x , where1 2 j1 is1 Ž iy1.lqj Ž iy1.lqj qj2 1 2

a s 1 or 2 according as j s 0 or j G 1, and putj 1 11

lyjly1 1

W x s w x ; j , j « « .Ž . Ž .Ý Ýk 1 2 kqj y1 kqj qj y12 1 2
j s0 j s11 2

In this notation, V s Ny1ÝY W . Write M y 1 for the integer part of N r8l.11 n 1 k k 1
Ž . Ž .If 1 F m F 2 M, let B denote the sum of W over 4 l m y 1 - k F 4 lm nm k

Ž . Ž .n q N . Using an argument similar to that employed to derive 4.5 , we1 1
may show that, for each integer r G 1,

lyj1 p4r 2 r 2 r
a2 rE B F w x ; j , j E « «Ž .Ž . Ý Ý Ł Ý Łm 1 p 2 k j1 p 1 pž /ps1 ps1ks1 k j s12

4r ly1
y2 r 2 r 2 r my2 rF C r nh l q l j exp yCl jrnŽ . Ž . Ž .Ý Ý1 1 ½ 5

ks2 rq1 js1

F C r 1 q ly1 n z 2 rŽ . Ž .2

Ž . auniformly in x g d , 1 y d and h g H , where Ý denotes summation overn k
Ž .integers j , . . . , j , k , . . . , k satisfying 0 F j F l y 1 and 4 l m y 111 1, 2 r 11 1, 2 r 1 p

- k F 4 lm and such that there are precisely k distinct indices among1 p
�Ž .y1 Ž .y14them, and where z s l nh q lh . For any 1 F m, m q k F M, the1 1

minimum separation between the indices of « ’s in B and B , respec-i 2 m 2Žmqk .
Ž .tively, is 2k y 1 4 l y l q 1. Hence, by Corollary A.2 of Hall and Heyde

wŽ . x Ž .1980 , page 278 and parallel to the argument used earlier to derive 4.5 ,
we may show that, for each integer r G 1,

2 r
E V x y EV x� 4Ž . Ž .11 n 11n

F C r , hX Ny2 r 1 q ly1 nŽ . Ž .1 1
X XŽ . Ž .X 2qh r 2q2hŽ . 1r41qh r4r 4 r 4 4Ž2 ry1.= M z q z zŽ . Ž .½ 5

Mr22 r
Xr kyr= M j exp yC h lljrn� 4Ž .Ý Ý 2

psrq1 js1

`yrX Xy1 Ž1yh .2 r rF C r , h 1 q l n z nl 1 q y exp yC h y dy� 4Ž . Ž . Ž . Ž .H3 2
llrn

rX y1 y8 rr5 2 rhF C r , h 1 q l n L lrn zŽ . Ž . Ž .4

Ž . X Ž X.uniformly in x g d , 1 y d and h g H for each h ) 0, where h s h h x0n
X Ž .as h x0. This proves 4.7 . I
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The proof of Theorem 2.3 is similar to that of Theorem 2.2 and so is not
given here.
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