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Abstract. Water imbibition is a critical mechanism of secondary oil recovery from
fractured reservoirs. Spontaneous imbibition also plays a significant role in storage
of liquid waste by controlling the extent of rock invasion.

In the present paper, we extend a model of countercurrent imbibition based
on Barenblatt’s theory of non-equilibrium two-phase flow by allowing the model’s
relaxation time to be a function of the wetting fluid saturation. We obtain two
asymptotic self-similar solutions, valid at early and late times, respectively. At a
very early stage, the time scale characterizing the cumulative volume of imbibed (and
expelled) fluid is a power function with exponent between one-half and one. At a later
stage, the time scaling for this volume approaches asymptotically classical square
root of time, whereas the saturation profile asymptotically converges to Ryzhik’s
self-similar solution. Our conclusions are verified against experiments. By fitting the
laboratory data, we estimate the characteristic relaxation times for different pairs
of liquids.

Keywords: Non-equilibrium two-phase flow, countercurrent imbibition, asymptotic
solution

Introduction

The model of non-equilibrium imbibition considered in the present
work was developed by G. I. Barenblatt and his co-authors (Baren-
blatt, 1971; Barenblatt and Vinnichenko, 1980; Barenblatt and Gilman,
1987). The basic concepts of two-phase immiscible flow in this model
are the same as in classical approach: the fluids flow through separate
systems of flow paths (Muskat and Meres, 1936; Leverett, 1939) and
the difference between the individual fluid pressures at a given location
is characterized by the capillary pressure (Leverett, 1941). The latter is
determined by the interaction between the fluids and the rock, and de-
pends on the pore space geometry, physical properties of the fluids and
the rock, and the fluid saturations. In classical approach, it is assumed
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that the phase permeabilities, as well as the capillary pressure, are
functions of fluid saturations only. The relative permeability functions
are usually obtained in steady-state flow experiments, and the capillary
pressure curves are measured statically. Therefore, the classical model
assumes an instantaneous redistribution of the fluids in the pore space
with changing saturation.

The distinctive feature of Barenblatt’s model is that the redistribu-
tion of the fluids in the pore space with changing saturations is not
instantaneous, but takes a certain time. Therefore, in transient pro-
cesses, where the redistribution time is comparable with the character-
istic transition time, the relative permeabilities and capillary pressure
cannot be universal functions of instantaneous fluid saturations only,
but are process-dependent quantities: at a given saturation, their values
are different from the relative permeabilities and capillary pressure
measured in steady-state flow experiments.

Using the properties of relative permeability and capillary pressure
functions, the concept of effective saturation was introduced in (Baren-
blatt, 1971; Barenblatt and Vinnichenko, 1980; Barenblatt and Gilman,
1987), so that the relative permeabilities and capillary pressure are
evaluated using the same curves as in the classical model, but at a cer-
tain effective saturation rather than at the actual one. It was assumed
that the effective and actual saturations are related through the rate
of change of the actual saturation. To characterize this relationship,
a kinetic equation was derived and added to the model. Dimensional
analysis and linearization of this equation leads to a simplified relation-
ship, where the difference between the effective and actual saturations
is equal to the product of the rate of growth of the actual saturation and
the characteristic relaxation time, see Barenblatt (1971) and Barenblatt
and Vinnichenko (1980). In the present paper, we use this linearized
relationship.

In (Barenblatt, 1971; Barenblatt and Vinnichenko, 1980; Barenblatt
and Gilman, 1987; Barenblatt et al., 1997b; Natalini and Tesei, 1999),
non-equilibrium two-phase flow was studied under the assumption that
the redistribution time does not depend on saturation. In particu-
lar, Barenblatt and Gilman (1987) investigated a mathematical model
of non-equilibrium countercurrent imbibition with constant relaxation
time. An asymptotic scaling of oil recovery at early times was obtained.
This scaling is different from the classical square root of time behavior
reported by Rapoport (1955).

In the present work, we assume that the relaxation time is not
a constant, but rather a function of instantaneous saturation. More
specifically, we assume that the relaxation time vanishes and blows up
to infinity at irreducible water and residual oil saturations, respectively.
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Other than near the end-point saturations, the relaxation time is close
to a constant. This assumption is partially justified by a heuristic argu-
ment in (Barenblatt et al., 1990), where the relaxation time is related
to the inverse of the capillary pressure derivative.

Here we assume zero initial water saturation. In such a case, the
water saturation profile is monotone and propagates with a finite speed.
We deduce that the asymptotic scalings of the actual and effective
saturation profiles are self-similar near the tip of the curve.

We obtain two asymptotic solutions, which are valid, respectively, at
early and late times. At early time, we neglect the actual saturation in
comparison with the effective saturation in the imbibed zone. At large
time, we drop the rapidly decreasing terms. As a result, we obtain two
approximate self-similar solutions. Using experimental data provided
to us by A. R. Kovscek (Zhou et al., 2001), we demonstrate that the
measured cumulative non-wetting fluid recoveries obtained for different
pairs of wetting-non-wetting fluids with different viscosities collapse to
a single curve derived from our solution.

The paper is organized as follows. In Section 1, we formulate the
initial and boundary value problem. In Section 2, we analyze the inlet
boundary condition, and in Section 3 we carry out the scaling of the
propagating fluid saturation profile near its front end. In Section 4,
we obtain a self-similar asymptotic solution valid at early times. In
Section 5, we obtain an asymptotic solution for large times. We verify
this solution by matching the oil recovery measurements in countercur-
rent imbibition of diatomite cores reported in (Zhou et al., 2001). By
matching the data, we also estimate the characteristic relaxation times
for these experiments. In the concluding section, we outline an appli-
cation of a boundary-layer method to the problem of countercurrent
imbibition considered in this paper.

Over the past 50 years, numerous attempts to develop an appropri-
ate model of spontaneous imbibition have been undertaken. A survey of
major contributions in this area has been presented elsewhere (Baren-
blatt et al., 2003).

1. Flow Equations

Assume that two immiscible fluids occupy the entire pore space, i.e.,
the sum of their saturations equals one. One fluid is wetting (water)
and the other one is nonwetting (oil or NAPL). We neglect gravity
as well as the compressibility of both fluids and of the rock. We also
assume that the processes under consideration are isothermal.
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Consider a horizontal half-infinite block of porous medium initially
filled with oil. In other words, we consider a situation where the bound-
ary conditions on the far end of the block play no significant role and
can be replaced by a zero Dirichlet condition at infinity. Initially, the
surface of the block is contacted by water, which starts imbibing spon-
taneously into the block. The advancing water displaces from the pore
space an equal volume of oil, which flows back to the surface of the
block and escapes through the inlet. Therefore, capillarity causes equal
and opposite flows of the fluids, and this process is called countercurrent
imbibition.

Denote by Sw, Pw and Sn, Pn the saturations and the pressures of
the wetting and non-wetting fluid, respectively. Clearly,

Sw + Sn ≡ 1 (1.1)

In what follows, we will omit the subscript w by setting S = Sw.
The wetting fluid saturation S can vary only between two end-point
values. For simplicity, we assume that for both the actual and effective
saturations the end-point values are 0 and 1. This assumption is not
restrictive because it can be always satisfied after a renormalization.

At local equilibrium, the non-wetting fluid pressure is higher than
that of the wetting fluid and the capillary pressure Pc = Pn − Pw is
positive. In the classical two-phase flow model, it is assumed that Pc is
a function of S:

Pn − Pw = Pc(S) (1.2)

The capillary pressure, Pc(S), decreases monotonically to zero as S
approaches complete saturation, and increases indefinitely as S tends
to irreducible saturation. Leverett et al. (1942) represented Pc(S) in
the form

Pc (S) = σ

√
φ

k
J (S) (1.3)

where σ is the oil-water interfacial surface tension coefficient, and φ and
k are, respectively, the porosity and the permeability of the rock. The
dimensionless Leverett’s J-function is often assumed to be universal,
although there is little evidence that it is the same for different types
of rocks and different pairs of fluids.

The horizontal flow of each fluid is characterized by the superfi-
cial velocity u. The latter depends on the respective pressure gradient
according to Darcy’s law:

ui = −kkri (S)
µi

∇Pi (1.4)
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Here i = w, n and kri and µi are, respectively, the relative permeability
and viscosity of fluid i. In immiscible flow, each fluid flows along its own
system of flow paths. The configurations of these paths are different at
different saturations. Therefore, in the classical model, both relative
permeability coefficients kri are functions of S.

Equation (1.4) holds true for immiscible flow at steady-state condi-
tions, where the wetting fluid flows in narrower pores and corners. Such
a configuration corresponds to the minimal possible permeability at a
given saturation. If the fluid saturations change, the fluids rearrange
themselves accordingly in the pore space. During the transition, the
wetting fluid relative permeability is different from the one at steady-
state conditions at the same saturation. Therefore, the non-equilibrium
relative permeability of the wetting fluid is higher than the steady-state
one. Similarly, during the redistribution of the flow paths both the rela-
tive permeability of the non-wetting fluid and the capillary pressure are
lower than in steady-state flow. Strictly speaking, this reasoning implies
that the relative permeability and capillary pressure functions obtained
in steady-state flow experiments cannot be used in transient processes
whose characteristic transition times are comparable with characteristic
fluid redistribution times. However, due to the monotonicity of these
functions, Figure 1, they still can be used to characterize transient
flow. To do so, the relative permeabilities and the capillary pressure
must to be evaluated not at actual instantaneous values of saturation
S, but at some effective saturations η ≥ S, see Figure 1. In general,
the effective saturation η can be different for each function kri and
J . Following Barenblatt, Barenblatt and Vinnichenko, Barenblatt and
Gilman (1971, 1980, 1987), we assume that the effective saturation is
the same for all three functions.

Thus, relationships (1.2) and (1.4) transform into the following equa-
tions:

Pn − Pw = Pc(η) (1.5)

and

ui = −kkri (η)
µi

∇Pi (1.6)

where i = w, n as above.
Due to the non-equilibrium effects, the relationship between η and S

must be a process-dependent function. We adopt the hypothesis (Baren-
blatt, 1971; Barenblatt and Vinnichenko, 1980) that there is a relation-
ship between the local effective saturation η and the actual saturation
S and its rate of change ∂S/∂t. Dimensional analysis suggests that
such a relationship must include a characteristic redistribution time.
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Figure 1. Effective saturation is higher than the actual one due to the monotonicity
of the curves.

Further, linearization of this relationship yields

τ
∂S

∂t
= η − S (1.7)

Here τ is a coefficient having the dimension of time. If effective satura-
tion η were fixed and τ were constant, then the difference η − S would
decay exponentially as exp (−t/τ). Therefore, τ is a characteristic re-
laxation time needed for the rearrangement of the menisci and flow
paths to a new steady state configuration. Note that in spontaneous
imbibition such a steady state is never attained.

Generally speaking, the redistribution time may depend on the prop-
erties of the rock and fluids. In the case of spontaneous imbibition,
where the driving force is the capillary pressure, we assume τ = τ (S).
At low saturations, a small volume of the wetting fluid flows through the
narrowest flow paths along the pore corners and the capillary pressure
is high. Therefore, the time needed to reconfigure water distribution is
small and the relaxation time goes to zero as S → 0+. At a mature
stage of imbibition, as the oil saturation approaches its residual value,
the capillary forces weaken and the connectivity of the oil clusters
grows sparse. Hence, the redistribution time blows up to infinity. Across
most of the interval between the endpoint saturations, the variation of
relaxation time is relatively small. Let us denote the relaxation time
on the major part of the saturation interval by τ0, see Figure 2.
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Figure 2. Qualitative plot of τ(S) normalized by constant τ0.

We assume that both fluids are incompressible and there is no in-
ternal source or sink of either fluid. Thus, the mass balance equations
are:

φ
∂S

∂t
+ ∇ · uw = 0 (1.8)

φ
∂ (1 − S)

∂t
+ ∇ · un = 0 (1.9)

Equations (1.5)–(1.9) are coupled and involve six unknown functions:
the effective and instantaneous water saturations, the water and oil
pressures, and the water and oil superficial velocities.

Now, let us exclude the pressures in order to obtain a unique equa-
tion involving the saturations and volumetric fluxes only. We assume
that initially the porous block is fully saturated with the non-wetting
fluid and is later imbibed by the wetting fluid through an inlet face. The
porous block is large enough, therefore, far from the lateral boundaries
and the edges of the inlet face, the flow is only in the direction orthogo-
nal to the inlet face. Denote by x the coordinate in this direction. After
replacing ∇ with ∂/∂x, let us sum up equations (1.6) for i = w, n:

uw + un = −λn
∂Pn

∂x
− λw

∂Pw

∂x
(1.10)
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where

λw(η) =
kkrw(η)

µw
and λn(η) =

kkrn(η)
µn

(1.11)

Let us further transform the right-hand side of equation (1.10) by
introducing an “average” pressure P , defined in such a way that

λn(η)
λn(η) + λw(η)

∂Pn

∂x
+

λw(η)
λn(η) + λw(η)

∂Pw

∂x
=

∂P

∂x
(1.12)

Using equality (1.2), one infers that

∂P

∂x
=

∂Pw

∂x
+

λn(η)
λn(η) + λw(η)

∂Pc

∂x
=

∂Pn

∂x
− λw(η)

λn(η) + λw(η)
∂Pc

∂x
(1.13)

Therefore, up to a constant,

P = Pw −
1∫

η

P ′
c (ζ)

(
λn (ζ)

λn (ζ) + λw (ζ)

)
dζ (1.14)

Equivalently,

P = Pn +
1∫

η

P ′
c (ζ)

(
λw (ζ)

λo (ζ) + λw (ζ)

)
dζ (1.15)

Now, combining Eqs. (1.14) and (1.15) with (1.6) for i = w, n, and
using the identities

λw(η)∇
1∫

η

P ′
c(ζ)

(
λn(ζ)

λn (ζ) + λw (ζ)

)
dζ

= ∇
1∫

η

P ′
c (ζ)

(
λw (ζ) λn (ζ)

λn (ζ) + λw (ζ)

)
dζ

= λn (η)∇
1∫

η

P ′
c (ζ)

(
λw (ζ)

λn (ζ) + λw (ζ)

)
dζ

(1.16)

one infers that

uw = −λw(η)
∂P

∂x
− φa2 ∂Φ(η)

∂x
(1.17)

un = −λn(η)
∂P

∂x
+ φa2 ∂Φ(η)

∂x
(1.18)
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Here, by virtue of equation (1.3),

Φ (η) = Φ0 +
1∫

η

J ′ (ζ) krw (ζ)
krn (ζ)

krw (ζ)
µn

µw
+ krn (ζ)

dζ (1.19)

is a dimensionless function and

a2 =
σ

µw

√
k

φ
(1.20)

We select the constant Φ0 in such a way that Φ (0) = 0. A simple
calculation yields

Φ (η) = −
η∫

0

J ′ (ζ) krw (ζ)
krn (ζ)

krw (ζ)
µn

µw
+ krn(ζ)

dζ (1.21)

¿From Eq. (1.21), the function Φ increases between η = 0 and η = 1.
Since the product krw (η) krn (η) vanishes only at η = 0 and η = 1,
and the derivative of Leverett’s J-function is negative, function Φ(η)
increases monotonically. It attains the minimum at η = 0 and the
maximum at η = 1. At both endpoints the derivative of function Φ
vanishes. This behavior is implied by the finite speed of the wetting
fluid propagation.

Since the fluids flow only in the x-direction, the total volumetric flux
is identically equal to zero1:

uw + un ≡ 0 (1.22)

Hence, equations (1.10) and (1.12) imply that ∂P/∂x ≡ 0 and equa-
tions (1.17) and (1.18) reduce to

uw = −φa2 ∂Φ(η)
∂x

(1.23)

un = φa2 ∂Φ(η)
∂x

(1.24)

Substitution of equality (1.23) into (1.8) in combination with (1.7)
yields a system of two equations

τ (S)
∂S

∂t
= η − S (1.25)

∂S

∂t
= a2 ∂2Φ (η)

∂x2
(1.26)

1 The authors are grateful to Prof. V. Ryzhik for pointing out in his review that
if the flow is not essentially one-dimensional, the total flux may be different from
zero.
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Using Eq. (1.7), the last equation can be reformulated as

η − S

τ
= a2 ∂2Φ(η)

∂x2
(1.27)

Either system of equations, (1.25) and (1.26), or (1.25) and (1.27),
constitutes the mathematical model of non-equilibrium countercurrent
imbibition.

Note that by virtue of Eq. (1.25), at any t > 0 and an arbitrary
location inside the block, effective and actual saturations are both
positive or equal to zero simultaneously. Indeed, if at a certain time
t0 the effective saturation is positive on an interval where S = 0, then
according to Eq. (1.25) the derivative ∂S/∂t > 0 also must be positive
on the same interval, and the actual saturation S must be greater than
zero for all t > t0. Hence, one obtains an infinite speed of the wetting
fluid propagation, which is non-physical. Thus, if one of the functions
is nonzero on an interval (0, x (t)) and is equal to zero elsewhere, then
the other one is positive on the same interval and vanishes everywhere
else.

For constant relaxation time, Barenblatt and Gilman (1987) pro-
posed a transformation reducing this system of two partial differential
equations to a single equation of third order. Such a transformation, in
general, does not yield a single equation if τ = τ(S).

The differential equations must be complemented by initial and
boundary conditions. Initially, the block is saturated by the non-wetting
fluid, therefore

S(x, 0) = 0, x ≥ 0 (1.28)

If initial effective saturation at a certain distance from the inlet were
positive, then by virtue of Eq. (1.7) the actual saturation would instan-
taneously become positive at the same distance. This, in turn, implies
an infinite speed of propagation, which is impossible. Hence,

η(x, 0) = 0, x > 0 (1.29)

At the inlet surface, the block contacts the wetting fluid from the very
beginning of the process. Equation (1.26) implies that the effective
saturation must be continuous with respect to x. Immediately outside
the inlet face the actual saturation is identically equal to one. Hence,
the effective saturation at the inlet also equals one:

η (0, t) = 1 (1.30)

We consider the flow while the influence of all boundaries of the block
except the inlet can be neglected. Therefore, one can formulate the
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boundary condition at infinity:

S(∞, t) = η(∞, t) = 0 (1.31)

Eq. (1.26) admits a solution that is nonzero only on a finite interval
adjacent to the inlet, and the length of this interval grows with time. In
order to be a solution to a differential equation (1.26) of second order,
the composite function Φ(η) must be differentiable in x for all t > 0.
Denote by x (t) the coordinate of the tip of the saturation profile at time
t. Then, at x = x (t) one gets the following two boundary conditions:

S(x, t)|x=x(t) = η(x, t)|x=x(t) = 0 (1.32)

and
∂Φ (η (x, t))

∂x

∣∣∣∣
x=x(t)

= 0 (1.33)

2. The inlet boundary condition

In classical approach, the inlet boundary condition is usually formu-
lated as constant wetting fluid saturation equal to one (Ryzhik, 1960).
In particular, this implies that the non-wetting phase relative perme-
ability vanishes at the inlet face of the block, which is non-physical.

In the model considered in this paper, the actual saturation S has a
discontinuity at x = 0. It is identically equal to 1 outside the block and
the interior limiting value is a function of time. Indeed, equation (1.7)
reduces to an ordinary differential equation

τ (S (t))
dS (t)

dt
= 1 − S (t) (2.1)

where S (t, 0) is denoted by S (t) for brevity. Initially, the wetting fluid
saturation is zero. Therefore, one needs to solve a Cauchy problem with
the initial condition

S (0) = 0 (2.2)

It is easier to solve Eq. (2.1) with respect to t (S), i.e. calculate the
time when a particular saturation level at the inlet face is attained.
Therefore, the Cauchy problem takes on the following form

dt (S)
dS

=
τ (S)
1 − S

, t (0) = 0 (2.3)

The solution is easily obtained by explicit integration

t (S) =
S∫

0

τ (ζ)
1 − ζ

dζ (2.4)
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For small values of S, one has

t (S) ≈
S∫

0

τ (ζ) dζ (2.5)

If the relaxation time is constant: τ(S) ≡ τ0, then one deduces from
Eq. (2.4) that

S (t) = 1 − e
− t

τ0 (2.6)

We have thus arrived at the boundary condition obtained by Barenblatt
and Gilman (1987).

Bech et al. (1991) called a condition similar to (2.6) “delayed imbibi-
tion” and used it for numerical simulations. In the simulations, though,
the flow equations were based on the classical model.

3. Scaling of the wetting fluid saturation profile near the tip

In this section, we obtain the scaling of the wetting fluid saturation
profile at the tip. As we have already mentioned in Section 1, at any
given time t > 0 the solution is nonzero only on a finite interval (0, x (t))
and vanishes for all x ≥ x (t). Let us introduce new variables:

ϑ = t/τ0 (3.1)

and
ξ =

x

x (t)
(3.2)

Here τ0 is the constant value of the relaxation time over the major
part of the saturation interval, see figure 2. As we have demonstrated
above, τ(S) tends to zero as S → 0. Assume, further, that near S = 0
the function T (S) = τ (S) /τ0 can be expanded as

T (S) /τ0 = T∗Snτ + . . . (3.3)

where nτ , T∗ are positive numbers and the dots denote terms of higher
order. Similarly, let us assume that the following approximation of Φ
holds true at S close to zero:

Φ (S) = Φ∗SnΦ + . . . (3.4)

As in Eq. (3.3), Φ∗ and nΦ are positive numbers and the terms of higher
order are denoted by the dots.

In what follows, we will use approximations like (3.3) and (3.4) many
times. We will use the following rule for the notations. For an asymp-
totic expansion near the zero of a function of saturation, the power will
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be denoted by n with the respective subscript index, as in Eq. (3.4). For
an asymptotic power expansion of a function of dimensionless variable
ξ introduced in Eq. (3.2), we will use d with the respective subscript.
In variables (ϑ, ξ), the partial derivatives take the following form:

τ0
∂

∂t
=

∂

∂ϑ
− ξ

X (ϑ)
dX (ϑ)

dϑ

∂

∂ξ
(3.5)

and
∂2

∂x2
=

1
X (ϑ)2

∂2

∂ξ2
(3.6)

where
X (ϑ) = x (τ0ϑ) (3.7)

Substitution of Eqs. (3.5) and (3.6) into Eqs. (1.25) and (1.26) yields

T (S)
(

∂S (ϑ, ξ)
∂ϑ

− ξ

X (ϑ)
dX (ϑ)

dϑ

∂S (ϑ, ξ)
∂ξ

)
= η − S (3.8)

∂S (ϑ, ξ)
∂ϑ

− ξ

X (ϑ)
dX (ϑ)

dϑ

∂S (ϑ, ξ)
∂ξ

(3.9)

=
τ0a

2

X (ϑ)2
∂2

∂ξ2
Φ (η)

From (1.32), at ξ = 1 both η (ϑ, ξ) and S (ϑ, ξ), as functions of ϑ,
are identically equal to zero. Let us investigate the behavior of these
functions in a small left neighborhood of ξ = 1. More specifically, let
us calculate the scalings of both actual and effective saturation profiles
near the tip. For each ϑ, assume

S (ϑ, ξ) = S∗ (ϑ) (1 − ξ)dS + . . . (3.10)

and
η (ϑ, ξ) = η∗ (ϑ) (1 − ξ)dη + . . . (3.11)

where the exponents dS and dη, as well as functions S∗ (ϑ) and η∗ (ϑ),
ϑ > 0, are as yet unknown. Let us substitute Eqs. (3.10)–(3.11) along
with (3.3) and (3.4) into Eqs. (3.8) and (3.9):

T∗
(
S∗(ϑ)(1 − ξ)dS

)nτ
(

dS∗ (ϑ)
dϑ

(1 − ξ)dS

+S∗ (ϑ) dS(1 − ξ)dS−1 ξ

X(ϑ)
X (ϑ)
dϑ

)

= η∗(ϑ)(1 − ξ)dη − S∗(ϑ)(1 − ξ)dS + . . .

(3.12)
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dS∗ (ϑ)
dϑ

(1 − ξ)dS + S∗ (ϑ) dS (1 − ξ)dS−1 ξ

X (ϑ)
dX (ϑ)

dϑ

=
τ0a

2

X (ϑ)2
Φ∗η∗ (ϑ)nΦ nΦdη (nΦdη − 1) (1 − ξ)nΦdη−2 + . . .

(3.13)

Equating the lowest order terms in Eqs. (3.12) and (3.13), one obtains

dS =
nΦ + 1

nΦ (nτ + 1) − 1
and dη =

nτ + 2
nΦ (nτ + 1) − 1

(3.14)

In the original dimensional variables, near the tip of the saturation
profile, one has

S (t, x) = S∗
(

t

τ0

) (
x (t) − x

x (t)

)dS

+ . . . (3.15)

and

η (t, x) = η∗
(

t

τ0

) (
x (t) − x

x (t)

)dη

+ . . . (3.16)

As usual, the dots denote terms of higher order. Physically, as the
instantaneous wetting fluid saturation is delayed with respect to the
effective saturation, one must have

dS � dη (3.17)

and so, from Eq. (3.14), nΦ � nτ + 1. Dividing Eqs. (3.12) and (3.13)
by (1 − ξ)dη and (1 − ξ)dS−1, respectively, and passing to the limit as
ξ → 1 − 0, one obtains

1
X(ϑ)

dX(ϑ)
dϑ

=
η∗(ϑ)

T∗dSS∗(ϑ)1+nτ
(3.18)

dX (ϑ)2

dϑ
= τ0a

2Φ∗nΦdη (nΦdη − 1)
η∗(ϑ)nΦ

dSS∗(ϑ)
(3.19)

Eliminating the derivative of X (ϑ), one gets

S∗ (ϑ)nτ =
τ0a

2

X (ϑ)2
T∗Φ∗nΦdη (nΦdη − 1) η∗ (ϑ)nΦ−1 (3.20)

Thus, from the three functions X (ϑ), S∗ (ϑ) and η∗ (ϑ), each one de-
termines the other two through the algebraic relationships (3.20), and
any one of the differential equations (3.18)–(3.19).
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Spontaneous countercurrent imbibition 15

4. Self-similar asymptotic solution at early times

In this section, we obtain an approximate early-time self-similar so-
lution to the system of equations (1.25)–(1.26) with the initial and
boundary conditions (1.28)–(1.33).

Let us seek a solution in the following form:

S (t, x) = ϑαSfS (ξ) (4.1)
η (t, x) = fη (ξ) (4.2)

where ϑ and ξ are the parameters defined in Eqs. (3.1) and (3.2) and αS

is an unknown parameter. Both fS and fη are unknown dimensionless
functions of a scalar variable. Such form of solution is suggested by the
incomplete similarity method (Barenblatt, 1996). We further assume
that

x (t) = aB

(
t

τ0

)β

(4.3)

so that
ξ =

x

aB (t/τ0)
β

(4.4)

and
X(ϑ) = aBϑβ (4.5)

The the coefficient B and exponent β are yet to be determined. Among
all the unknown parameters only B is dimensional: [B] = [t]1/2. Let us
substitute equations (4.1)–(4.2) into (1.25) and (1.26), and write the
resulting equations in variables ϑ and ξ:

T (ϑαSfS (ξ))
(

αSϑαS−1fS (ξ) − βϑαSf ′
S (ξ)

ξ

ϑ

)
= fη (ξ) − ϑαSfS(ξ)

(4.6)(
αSϑαS−1fS (ξ) − βϑαSf ′

S (ξ)
ξ

ϑ

)
=

τ0a
2

X (ϑ)2
d2

dξ2
Φ (fη (ξ)) (4.7)

According to our assumptions, both functions fS and fη take posi-
tive values only for ξ varying between zero and one, whereas ϑ is a
small number. After substitution of expansion (3.3) into Eq. (4.6), the
comparison between the powers of ϑ on both sides of equations (4.6)
and (4.7) yields

αS =
1

1 + nτ
(4.8)

and
β =

1
2

nτ

1 + nτ
(4.9)
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16 D. Silin and T. Patzek

In particular, for small times, the inlet condition (2.5) transforms into

S (t) =
(

t/τ0

(nτ + 1) T∗

) 1
nτ +1

+ . . . (4.10)

Due to relations (4.8) and (4.9), the similar powers of t in (4.6)–(4.7)
cancel, and one obtains the following system of ordinary differential
equations for the unknown functions fS and fη:

T∗fS(ξ)nτ
[
αSfS(ξ) − βf ′

S(ξ)ξ
]

= fη(ξ) − ϑαSfS(ξ) (4.11)

B2 [
αSfS(ξ) − βf ′

S(ξ)ξ
]

= τ0
d2

dξ2
Φ (fη(ξ)) (4.12)

For small ϑ, the second term on the right-hand side of equation (4.11)
can be neglected in comparison with the other terms. Therefore, this
equation can be approximated with its truncated form independent of
ϑ:

T∗fS(ξ)nτ
[
αSfS(ξ) − βf ′

S(ξ)ξ
] ≈ fη(ξ) (4.13)

The boundary conditions (1.32) along with the definition of x(t) and
ξ imply

fS(1) = fη(1) = 0 (4.14)

To satisfy the inlet boundary condition (1.29), put

fη(0) = 1 (4.15)

Then, by setting ξ = 0 in equation (4.13), one infers that

fS (0) =
(

nτ + 1
T∗

) 1
nτ +1

(4.16)

It follows from (1.33) that

d

dξ
Φ (fη (ξ))

∣∣∣∣
ξ=1

= 0 (4.17)

For ξ close to 1, we have obtained expansions (3.15) and (3.16). For
small times, one can neglect the variation of the coefficients S∗ and η∗.
Thus, one obtains the following asymptotic expansions for the function
fS and fη:

fη (ξ) = η∗ (1 − ξ)dη + . . . (4.18)

fS (ξ) = S∗ (1 − ξ)dS + . . . (4.19)
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Spontaneous countercurrent imbibition 17

Here η∗, dη, S∗ and dS are positive real numbers and the dots, as
usual, denote higher order terms. The exponents dη and dS are ob-
tained in Eqs. (3.14). Substitution of these results into the system of
equations (4.12)–(4.13) yields

T∗Snτ+1
∗ (1 − ξ)(nτ+1)dS−1 [αS (1 − ξ) + βdS ] = η∗(1 − ξ)dη (4.20)

B2 [αS(1 − ξ) + βdS ] S∗ (1 − ξ)dS−1

= τ0nΦdη (nΦdη − 1) Φ∗ηnΦ∗ (1 − ξ)nΦdη−2 (4.21)

By passing in Eqs. (4.20)–(4.21) to the limit as ξ → 1, one infers that

βdST∗ (S∗)nτ+1 = η∗ (4.22)
B2βdSS∗ = τ0nΦdη (nΦdη − 1) Φ∗ηnΦ∗ (4.23)

Hence,

S∗ =

[
B2

τ0nΦdη (nΦdη − 1) Φ∗ (βdS)nΦ−1 TnΦ∗

] 1
(nτ +1)nΦ−1

(4.24)

η∗ =

[
B2(nτ+1) (βdS)nτ

T∗ [τ0nΦdη (nΦdη − 1) Φ∗]nτ+1

] 1
(nτ +1)nΦ−1

(4.25)

Now, let us investigate the behavior of the functions fS and fη near
ξ = 0. We assume the following expansions:

fη (ξ) = 1 − f∗
η ξeη + . . . (4.26)

fS (ξ) = fS (0) − f∗
SξeS + . . . (4.27)

Φ (fη (ξ)) = Φ (1) − Cξ + . . . (4.28)

and
Φ (S) = Φ (1) − Φ∗∗ (1 − S)mΦ + . . . (4.29)

The coefficients f∗
η , f∗

S , A and Φ∗∗, as well as the exponents mΦ, eS and
eη, are all positive numbers to be determined. Substituting Eqs. (4.26)–
(4.29) into the system of equations (4.12)–(4.13) and accounting for
Eq. (4.16), one obtains the following relationships:

T∗ (fS(0) − f∗
SξeS )nτ [αSfS(0) − f∗

SξeS + f∗
SβeSξeS ]

= 1 − f∗
η ξeη + . . .

(4.30)

B2 (αSfS (0) − f∗
SξeS + f∗

SβeSξeS + . . .)
= τ0

d2

dξ2 Φ (fη (ξ)) (4.31)

Φ (1) − Cξ = Φ (1) − Φ∗∗ (η∗∗ξeη)mΦ + . . . (4.32)
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18 D. Silin and T. Patzek

¿From the last equation one immediately deduces that

eη = 1/mΦ (4.33)

and
C = Φ∗∗

(
f∗

η

)mΦ
(4.34)

From Eqs. (4.30) and (4.16) one infers that

eS = eη (4.35)

and
T∗fS (0)nτ f∗

S (−1 + βeS − nταS) = f∗
η (4.36)

For a given function fη, the function fS can be calculated by solving
the ordinary differential equation (4.12) with the terminal condition

fS (1) = 0 (4.37)

To simplify this calculation, put

w(ξ) = fS (ξ)nτ+1 (4.38)

Then, from Eq. (4.13), one obtains

T∗
[
αSw (ξ) − β

nτ + 1
w′ (ξ) ξ

]
= fη (ξ) (4.39)

The last equation can also be written as

w′ (ξ) ξ =
αS (nτ + 1)

β
w (ξ) − nτ + 1

T∗β
fη (ξ) (4.40)

¿From the terminal condition (4.37) one infers that

w (ξ) =
1

2T∗nτ
ξ2+ 2

nτ

1∫
ξ

fη (z)

z3+ 2
nτ

dz (4.41)

Thus, one obtains

fS (ξ) =
1

(2T∗nτ )
1

nτ +1

ξ
2

nτ




1∫
ξ

fη (z)

z3+ 2
nτ

dz




1
nτ +1

(4.42)

Therefore, the actual instantaneous saturation of water at early times
can be expressed through the effective saturation:

S (t, x) =
(

t/τ0

2T∗nτ

) 1
nτ +1

x
2

nτ




aB(t/τ0)β∫
x

η (t, ς)

ς3+ 2
nτ

dς




1
nτ +1

(4.43)
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Spontaneous countercurrent imbibition 19

Equations (4.42) and (4.43) characterize the relationship between effec-
tive and instantaneous saturations at early times. To find both profiles,
one needs to find the solution to the system of ordinary differential
equations (4.12)–(4.13) subject to the four boundary conditions (4.14),
(4.15) and (4.17). To solve this system, one needs only three condi-
tions. Nevertheless, the above-formulated boundary-value problem is
not overdetermined because system (4.12)–(4.13) also includes two un-
known parameters: S∗ and B. To determine these parameters, one can
use one of the boundary conditions and Eq. (4.24). Since the coefficients
in front of the derivatives in Eqs. (4.12)–(4.13) vanish at the boundaries,
the asymptotic representations (4.18)–(4.19) and (4.26)–(4.27) can be
used to find the solution numerically.

An example of calculation of the wetting fluid saturation profiles
using the self-similar solution (4.1)–(4.2) is presented in Figure 3. The
saturation profile has the shape of an expanding tongue whose slope
increases indefinitely both at the inlet face of the block and at the tip.
In the calculations above we used a model function

Φ (η) =
η∫

0

30S3 (1 − S)2 dS (4.44)

cf. Eq. (27) (Barenblatt and Gilman, 1987).
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Figure 3. An example of calculation of self-similar solution (4.1)–(4.2): dashed lines
– effective saturation, solid lines – instantaneous saturation (for nτ = 2). The
dimensionless time ϑ is much less than one.

To estimate the volume of non-wetting fluid displaced by the ad-
vancing wetting fluid from a portion of the block of cross-sectional area
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20 D. Silin and T. Patzek

A at early times, one needs to evaluate the integral of solution (4.1)
between 0 and S0 (t) = S (T0 (t)):

R (t) = A

x(t)∫
0

S (t, x) dx = A

(
t

τ0

)αS+β

B

√√√√ σ

µw

√
k

ϕ

1∫
0

fS (ξ) dξ (4.45)

By virtue of Eqs. (4.8)–(4.9), oil recovery at early times has the follow-
ing asymptotics:

R (t) ∼ t
1
2
+ 1

2(1+nτ ) (4.46)

If nτ = 0, i.e., if the relaxation time does not depend on wetting
fluid saturation, the volume of imbibed water and, respectively, oil
recovery, is linear in time. This linear scaling is in agreement with the
result reported earlier by Barenblatt and Gilman (1987). In contrast,
as nτ → ∞, i.e., the relaxation time becomes close to zero, the non-
wetting fluid production by early-time imbibition is proportional to
the square root of time. We conclude this section with the following
remark regarding the magnitude of the time interval where neglecting
the actual saturation in Eq. (1.25) is admissible. Clearly, only the last
term in equation (4.11) depends on time. For example, if nτ = 2, then
from Eqs. (4.8)–(4.9) αS = β = 1/3, i.e., the last term in (4.11) is
proportional to the cube root of time.

5. Asymptotic solution at large times

In this section, we obtain an asymptotic solution to problem (1.25)–
(1.26), (1.28)–(1.33), valid at large times. Namely, we assume that on a
large portion of the interval where the actual instantaneous saturation
is nonzero, it exceeds the threshold above which the relaxation time
is close to a constant value τ0, see Figure 2. For such values of S,
Eq. (1.25) becomes

τ0
∂S

∂t
= η − S (5.1)

Let us seek a solution to the initial and boundary-value problem (1.25)–
(1.26), (1.28)–(1.33) in the form

S (t, x) = ϕ (ϑ) fS (ξ) (5.2)
η (t, x) = fη (ξ) (5.3)

where ϑ and ξ are defined in Eqs. (3.1)–(3.2). Functions ϕ (ϑ), X(ϑ)
(see Eq. (3.7)), fS (ξ), and fη (ξ) are yet to be determined. The reason
why we use the same similarity variable ξ for both instantaneous and
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effective saturations is the same as above: at t > 0, both saturations
are either positive or equal to zero simultaneously. As above, fη(0) = 1
by virtue of boundary condition (4.15). Clearly,

x (t) → ∞ as t → ∞ (5.4)

whereas function ϕ (ϑ) is uniformly bounded. Formal substitution of
Eqs. (5.2)–(5.3) into Eqs. (1.25)–(1.26) yields

T (ϕ(ϑ)fS(ξ))
(

dϕ(ϑ)
dϑ

fS(ξ) − ϕ(ϑ)f ′
S(ξ)

ξ

X(ϑ)
dX(ϑ)

dϑ

)
= fη(ξ) − ϕ(ϑ)fS(ξ)

(5.5)

dϕ (ϑ)
dϑ

fS (ξ) − ϕ (ϑ) f ′
S (ξ)

ξ

X (ϑ)
dX (ϑ)

dϑ

=
τ0a

2

X (ϑ)2
d2

dξ2
Φ (fη (ξ))

(5.6)

At later times, the interval of values of x, where the wetting fluid sat-
uration is nonzero but still smaller than the threshold Sτ , above which
the relaxation time is almost constant, is small in comparison with the
wetting fluid penetration depth. Therefore, in an overwhelmingly large
portion of the imbibed part of the porous block, the relaxation time is
equal to τ0 (see Figure 2). Taking this observation into account, one
can rewrite Eq. (5.5) in a slightly modified form:(

dϕ (ϑ)
dϑ

+ ϕ (ϑ)
)

fS (ξ) + f ′
S (ξ)

ξ

X (ϑ)
dX (ϑ)

dϑ
= fη (ξ) (5.7)

Furthermore, the rate of wetting fluid propagation decays in time.

Therefore, due to (5.4), the ratio
1

X (ϑ)
dX (ϑ)

dϑ
is negligibly small in

comparison with two other terms in Eq. (5.7). Hence, at large ϑ, equa-
tion (5.5) reduces to(

dϕ (ϑ)
dϑ

+ ϕ (ϑ)
)

fS (ξ) = fη (ξ) (5.8)

Dividing both sides of the last equation by fS (ξ), one obtains

dϕ (ϑ)
dϑ

+ ϕ (ϑ) =
fη (ξ)
fS (ξ)

(5.9)

As the left-hand side does not depend on ξ and the right-hand side
does not depend on ϑ, both must be constant. Clearly, this constant is
positive. It can be easily demonstrated that the choice of this constant
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22 D. Silin and T. Patzek

does not matter: by virtue of equation (5.2), the saturation depends
only on the product of ϕ and S. Therefore, whatever positive constant
is selected, it cancels after the substitution into Eq. (5.2). Hence, let us
put this constant equal to one, then

fS (ξ) = fη (ξ) (5.10)

For consistency with the initial conditions (1.28)–(1.29), put

ϕ (ϑ) = 1 − e−ϑ (5.11)

cf. Eq. (2.6). Due to Eq. (5.10), we can skip the subscripts S and η in
fS (ξ) and fη (ξ) without confusion. Now, let us analyze Eq. (5.6). The

contribution of the first term
dϕ

dϑ
= e−ϑ is negligibly small at large ϑ.

Neglecting this term, one obtains from Eq. (5.6):

ASϕ (ϑ)
τ0a2

d (X (ϑ))2

dϑ
=

d2

dξ2 Φ (f (ξ))

f ′ (ξ) ξ
(5.12)

Just as for Eq. (5.9), one infers that both sides of Eq. (5.12) are equal
to a nonnegative constant, which we denote by Ξ2. Then, for X (ϑ) one
obtains an ordinary differential equation

d (X (ϑ))2

dϑ
=

τ0a
2Ξ2

1 − e−ϑ
(5.13)

whose solution is

X (ϑ) = aΞ
√

τ0 (ϑ + ln (1 − e−ϑ)) (5.14)

or, equivalently,

x (t) = aΞ

√
t + τ0 ln

(
1 − e

− t
τ0

)
(5.15)

For the function f (ξ) one gets

−Ξ2

2
f ′ (ξ) ξ =

d2

dξ2
Φ (f (ξ)) (5.16)

where the coefficient Ξ has to be chosen in such a way that the three
boundary conditions

f (0) = 1, f (1) =
∂

∂ξ
Φ (f (ξ))

∣∣∣∣
ξ=1

= 0 (5.17)

TiPM1812b.tex; 15/05/2003; 12:15; p.22



Spontaneous countercurrent imbibition 23

implied by Eqs. (1.29), (1.32) and (1.33), are fulfilled simultaneously.
By analogy with a linear case, coefficient Ξ is often called a nonlinear
eigenvalue.

By a change of variable ξ̃ = Ξξ, equation (5.16) becomes identical to
the one obtained by Ryzhik (1960). The only difference is that we look
for a solution to Eq. (5.16) on a fixed interval, whereas in Ryzhik (1960)
the coefficient Ξ is fixed and the length of the interval where the solution
is nonzero is an unknown parameter. Clearly, both the function f (ξ)
and the coefficient Ξ depend on the relative permeabilities and capillary
pressure. For the particular function (4.44), the plot of the solution to
boundary-value problem (5.16)–(5.17) is presented in Figure 4, and the
obtained value of coefficient Ξ is equal to

√
2.0.
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Figure 4. Solution to boundary-value problem (5.16)–(5.17).

Summarizing the calculations above, one obtains the following ex-
pressions for the actual and effective saturations at later times:

S (t, x) =
(

1 − e
− t

τ0

)
f




x

aΞ

√
t + τ0 ln

(
1 − e

− t
τ0

)

 (5.18)

η (t, x) = f




x

aΞ

√
t + τ0 ln

(
1 − e

− t
τ0

)

 (5.19)
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The imbibition rate and the non-wetting fluid recovery can be calcu-
lated in a way similar to Eq. (4.45):

R (t) = A

x(t)∫
0

S (t, x) dx = Aϕ

(
t

τ0

)
x (t)

1∫
0

f (ξ) dξ (5.20)

Therefore,

R (t) = A

(
1 − e

− t
τ0

)
aΞ

√
t + τ0 ln

(
1 − e

− t
τ0

) 1∫
0

f (ξ) dξ (5.21)

For ϑ 	 1, equation (5.21) admits a simplification because√
ϑ + ln (1 − e−ϑ) ≈

√
ϑ − e−ϑ ≈

√
ϑ (5.22)

and the logarithm can be neglected. Thus,

R (t) ≈ V0

(
1 − e

− t
τ0

) √
t

τ0
(5.23)

where

V0 = aΞ
√

τ0A

1∫
0

f (ξ) dξ (5.24)

In other words, at a later time, the recovery is approximately propor-
tional to the square root of time, i.e. to the time scale suggested by the
classical model of Ryzhik et al. (1961). An empirical coefficient with an
exponential function in front of the radical in Eq. (5.23) was earlier used
to match experimental data, see, e.g., (Ma et al., 1997). The coefficient
V0 has the dimension of volume. Through the function f , which, in
turn, is the solution of the boundary-value problem (5.16)–(5.17), V0

depends on all parameters of the problem: the fluid viscosities, the
relative permeability functions, etc.

To verify the model described above, we used the laboratory data
kindly provided to us by Prof. A. R. Kovscek, see (Zhou et al., 2001).
Experiments were performed with cores from the near-surface diatomite
formation in Lompoc, California. The cores were cut in a direction
parallel to the bedding plane, and shaped into cylinders with diam-
eters of 2.5 cm and length of 9.5 cm. The porosity was measured to
be about 70%, and the absolute permeability was about 6 mD. For
the imbibition experiments, the cores were dried and oil was pumped
into the pore space. After fully saturating the core with oil, water was
pumped through an endcap while the other endcap was sealed. The
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oil recovered by countercurrent imbibition was removed by the flowing
water.

We have matched the measured fractional oil recovery versus time.
Our fitting parameters were the relaxation time τ0 and the coefficient
V0, see Eqs. (5.23) and (5.24). In Figure 5, the data points from different
experiments reported by Zhou et al. (2001) are collapsed into a single
curve generated by the dimensionless solution (5.23). The relaxation
time τ0 was estimated at about 8 s for imbibing a core filled with air,
at about 220 s for a core filled with blandol and at approximately 1230
s for decane. Dimensionless ratio φV/V0, where V is the total volume of
the diatomite core, was estimated at 51.2, 47.0 and 10.6, respectively.

Clearly, equation (5.23) becomes invalid as oil recovery approaches
its maximum and the advancing water approaches the opposite end-
surface of the core.
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Figure 5. Matching scaled oil recovery. Data reported in Kovscek et al., (2001).

6. Boundary-layer type solution

In this section, we outline another approach to solving system (1.25)–
(1.26). We assume that the character of dependence of relaxation time
τ (S) on S is as shown in Figure 2. As the imbibing wetting fluid reaches
a particular location, its saturation quickly overcomes the threshold af-
ter which the relaxation time can be assumed constant. To characterize
the solution near the tip of the propagating water saturation profile,
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we employ a method similar to the one developed by Barenblatt et al.
(1997a). The dynamics of the rest of the profile is described by the
model developed by Barenblatt and Gilman (1987). To combine the
two solutions, specific boundary conditions are required. If τ (S) ≡ τ0

is constant, then the system of equations (1.25)–(1.26) can be reduced
to a single partial differential equation of third order:

∂η

∂t
= a2 ∂2

∂x2
Φ (η) + τ0a

2 ∂3

∂t∂x2
Φ (η) (6.1)

see (Barenblatt and Gilman, 1987). The initial condition η0 (x) can be
found from the equation

η0 (x) = τ0a
2 ∂2

∂x2
Φ (η0 (x)) (6.2)

Since at the inlet of the block is contacted by the wetting fluid, at ξ = 0
one obtains the boundary condition

η (t, 0) = 1 (6.3)

At the right end-point one formally has

η (t,∞) = 0 (6.4)

However, in fact, the solution vanishes at a finite x (t) where the coor-
dinate of the tip of the wetting fluid saturation profile propagates with
the velocity

v (t) =
dx (t)

dt
(6.5)

Moreover, as the value of the function η (t, x) approaches zero, the
function S (t, x) vanishes as well. If we denote the smallest wetting fluid
saturation where τ (S) = τ0 by δ, then the boundary condition (6.4)
can be replaced with

η (t, xδ (t)) = δ (6.6)

where xδ (t) is the distance from the inlet where the effective saturation
is equal to δ. Thus, in equation (6.6) the tip velocity (6.5) is related to
the threshold saturation propagation, rather than to the tip of the pro-
file. To be able to determine xδ (t), one needs an additional boundary
condition. To obtain such a condition at x = xδ (t), let us replace
the partial derivative ∂S/∂t with respect to t in the mass balance
equation (1.8) by the right-hand side of equation (1.26). By integrating
the result with respect to x and using Eq. (1.23), one obtains

φa2 ∂

∂x
Φ (η) + uw = 0 (6.7)
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The flux at the threshold saturation level is a function of the advancing
fluid velocity:

∂

∂x
Φ (η)

∣∣∣∣
x=xδ(t)

= F (v (t)) (6.8)

If the wetting fluid flux at the threshold saturation is negligibly small,
i.e., F (v) ∼= 0, condition (6.8) reduces to

∂

∂x
Φ (η)

∣∣∣∣
x=xδ(t)

= 0 (6.9)

and we end up with the initial and boundary-value problem, which was
considered by Barenblatt and Gilman (1987).

To conclude this section, we remark that Zimmerman and Bodvars-
son (1989) applied a boundary-layer method for obtaining an approxi-
mate solution to the problem of imbibition in unsaturated media in the
classical formulation.

Conclusions

Barenblatt’s model of non-equilibrium countercurrent imbibition has
been investigated. We considered the spontaneous imbibition of a wet-
ting fluid into a porous block initially saturated with a non-wetting
fluid. The model is based on the approach proposed in (Barenblatt,
1971; Barenblatt and Vinnichenko, 1980). Namely, to characterize the
modification of relative permeabilities and capillary pressure in sponta-
neous imbibition, an effective water saturation and a relaxation time are
introduced. The main feature of the approach proposed in the present
work is the assumption that the relaxation time is a function of the
instantaneous water saturation. As the water saturation approaches
its minimum value, the relaxation time approaches zero. Conversely,
as the water saturation approaches its maximum value, the relaxation
time goes to infinity.

Two asymptotic solutions have been obtained. The first one cor-
responds to early times, when water saturation is still close to zero
throughout the porous block, including a domain next to the inlet
face. At later time, the water saturation profile approaches the shape
obtained with the classical model (Ryzhik et al., 1961). Therefore, the
result obtained numerically by Barenblatt and Gilman (1987) has been
confirmed analytically. The time dependence of the recovered oil volume
does not follow the square-root-of-time scaling rule suggested by the
classical models. Instead, it follows the pattern observed in numerous
experiments. In particular, the data provided to us by Kovscek (Zhou
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et al., 2001), obtained on similar core samples for different pairs of
fluids, collapse to a single dimensionless curve derived from the model
considered in the present work. Finally, a derivation of the boundary
condition at the tip of water saturation profile based on the boundary
layer method has been outlined.

Acknowledgements

The authors are deeply grateful to Prof. G. I. Barenblatt for an in-
troduction to the problem, and valuable suggestions and recommen-
dations that were essential at every stage of this research. We thank
Prof. R. Zimmerman who carefully reviewed the manuscript and sug-
gested valuable improvements. We thank the anonymous reviewers and,
particularly, Prof. V. Ryzhik for their remarks that helped to im-
prove the presentation. We also thank Prof. A. R. Kovscek for kindly
providing experimental data of superb quality. This work was sup-
ported by the Laboratory Directed Research and Development Program
of Lawrence Berkeley National Laboratory under the Department of
Energy Contract No. DE-AC03-76SF00098.

References

Barenblatt, G. and A. Gilman: 1987, ‘A Mathematical Model of Non-Equilibrium
Countercurrent Capillary Imbibition’. Eng. Phys. Journal 52(3), 46–461.

Barenblatt, G.: 1971, ‘Filtration of Two Nonmixing Fluids in a Homogeneous Porous
Medium’. Soviet Academy Izvestia. Mechanics of Gas and Fluids (5), 857–864.

Barenblatt, G.: 1996, Scaling, Self- Similarity, and Intermediate Asymptotics.
Cambridge: Cambridge University Press.

Barenblatt, G., E. Beretta, and M. Bertsch: 1997a, ‘The Problem of the Sreading of
a Liquid Film along a Soilid Surface: A New Mathematical Formulation’. Proc.
Natl. Acad. Sci. USA 94, 10024–10030.

Barenblatt, G., V. Entov, and V. Ryzhik: 1990, Theory of Fluid Flows through
Natural Rocks. Dordrecht: Kluwer Academic Publishers.

Barenblatt, G., T. Patzek, and D. Silin: 2003, ‘The Mathematical Model of Non-
Equilibrium Effects in Water-Oil Displacement’. SPE Journal (submitted).

Barenblatt, G. I., J. Garcia-Azorero, A. De Pablo, and J. L. Vazquez: 1997b, ‘Mathe-
matical Model of the Non-Equilibrium Water-Oil Displacement in Porous Strata’.
Applicable Analysis 65, 19–45.

Barenblatt, G. I. and A. P. Vinnichenko: 1980, ‘Non-Equilibrium Seepage of
Immiscible Fluids’. Advances in Mechanics 3(3), 35–50.

Bech, N., O. K. Jensen, and B. Nielsen: 1991, ‘Modeling of Gravity-Imbibition and
Gravity-Drainage Processes: Analytic and Numerical Solutions’. SPE Reservoir
Engineering (February), 129–136.

Leverett, M. C.: 1939, ‘Flow of Oil-water Mixtures through Unconsolidated Sands’.
Trans. AIME (Reprinted) 132, 381–401.

TiPM1812b.tex; 15/05/2003; 12:15; p.28



Spontaneous countercurrent imbibition 29

Leverett, M. C.: 1941, ‘Capillary Behavior in Porous Solids’. Trans. AIME 142,
152–169.

Leverett, M. C., W. B. Lewis, and M. E. True: 1942, ‘Dimensional-model Studies of
Oil-field Behavior’. Trans. AIME (Reprinted) 146, 217–234.

Ma, S., N. R. Morrow, and X. Zhang: 1997, ‘Generalized Scaling of Spontaneous
Imbibition Data for Strongly Water-Wet Systems’. Journal of Petroleum Science
and Engineering 18, 165–178.

Muskat, M. and M. W. Meres: 1936, ‘The Flow of Hetereogeneous Fluids Through
Porous Media’. Physics 7(Sept.), 346–363.

Natalini, R. and A. Tesei: 1999, ‘On the Barenblatt model for non-equilibrium
two phase flow in porous media’. Archive for Rational Mechanics and Analysis
150(4), 349–367.

Rapoport, L. A.: 1955, ‘Scaling Laws for Use in Design and Operation of Water-Oil
Flow Models’. Trans. AIME 204, 143–150.

Ryzhik, V.: 1960, ‘On Capillary Imbibibtion by Water of an Oil-Saturated Reservoir’.
Soviet Academy Izvestia. Mechanics of Gas and Fluids (2), 149–151.

Ryzhik, V., I. A. Charny, and C. Zhung-Tsang: 1961, ‘On Certain Exact Solutions
of Equations of Non-Stationary Filtration of Two Fluids’. Izv. AN SSSR. Mekh
i Mash. (1), 121–126.

Zhou, D., L. Jia, J. Kamath, and A. R. Kovscek: 2001, ‘An Investigation of Counter-
Current Imbibition Processes in Diatomite. SPE 68837’. In: 2001 SPE Western
Regional Meeting. Bakersfield, CA, SPE.

Zimmerman, R. W. and G. S. Bodvarsson: 1989, ‘An Approximate Solution for
One-Dimensional Absorption in Unsaturated Porous Media’. Water Resources
Research 25(6), 1422–1428.

TiPM1812b.tex; 15/05/2003; 12:15; p.29



TiPM1812b.tex; 15/05/2003; 12:15; p.30


