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On Basing One-Way Functions on NP-Hardness

Adi Akavia∗ Oded Goldreich† Shafi Goldwasser‡ Dana Moshkovitz§

November 22, 2005

Abstract

We consider the question of whether it is possible to base the existence of one-way functions on
NP-hardness. That is we study the the possibility of reductions from a worst-case NP-hard decision
problem to the task of inverting a polynomial time computable function. We prove two negative
results:

1. For any polynomial time computable function f : the existence of a randomized non-adaptive
reduction of worst case NP problems to the task of average-case inverting f implies that
coNP ⊆ AM. It is widely believed that coNP is not contained in AM. Thus, this result may
be regarded as showing that such reductions cannot exist (unless coNP ⊆ AM).

This result improves previous negative results that placed coNP in non-uniform AM.

2. For any polynomial time computable function f for which it is possible to efficiently compute
pre-image sizes (i.e., |f−1(y)| for a given y): the existence of a randomized reduction of worst
case NP problems to the task of inverting f implies that coNP ⊆ AM. Moreover, this is also
true for functions for which it is possible to verify (via and AM protocol) the approximate size
of pre-image sizes (i.e., |f−1(y)| for a given y). These results holds for any reduction, including
adaptive ones.

The previously known negative results regarding worst-case to average-case reductions were
confined to non-adaptive reductions.

In the course of proving the above results, two new AM protocols emerge for proving upper bounds
on the sizes of NP sets. Whereas the known lower bound protocol on set sizes by [Goldwasser-Sipser]
works for any NP set, the known upper bound protocol on set sizes by [Aiello-Hastad] works in a
setting where the verifier knows a random secret element (unknown to the prover) in the NP set. The
new protocols we develop here, each work under different requirements than that of [Aiello-Hastad],
enlarging the settings in which it is possible to prove upper bounds on NP set size.
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1 Introduction
One-way functions are functions that are easy to compute but hard to invert, where the hardness
condition refers to the average-case complexity of the inverting task. The existence of one-way functions
is the cornerstone of modern cryptography: almost all cryptographic primitives imply the existence of
one-way functions, and many of them can be constructed based either on the existence of one-way
functions or on related (but seemingly stronger) versions of this assumption.

The hardness condition of one-way functions is an average-case complexity condition. Clearly, this
average-case hardness condition implies a worst-case hardness condition; that is, the existence of one-
way functions implies that NP is not contained in BPP. A puzzling question of fundamental nature is
whether or not the necessary worst-case condition is a sufficient one; that is, can one base the existence
of one-way functions on the assumption that NP is not contained in BPP.

More than two decades ago, Brassard [Br] observed that the inverting task associated with a one-way
permutation cannot be NP-hard under deterministic reductions, unless NP = coNP. Namely, it is
impossible to have a deterministic reduction from a worst-case NP-hard decision problem to the task
of inverting a polynomial time computable permutation unless NP = coNP.

Feigenbaum and Fortnow [FeFo] followed by Bogdanov and Trevisan [BoTr], shifted attention to the
question whether it is possible to have worst-case to average-case randomized reductions among NP-
hard decision problems. It was shown [BoTr] that any non-adaptive reduction of NP-hard worst case
problem to the average-case complexity of NP (with respect to any sampleable distribution) implies
that coNP ⊆ AMpoly. The non-uniform advice given to the verifier on input of length n is the number
of n-bit strings in the NP target language (i.e the language that the reduction maps to). Recall that
AM is the class of sets having two-round interactive proof systems, and it is widely believed that coNP
is not contained in AM (equiv., NP is not contained in coAM). Thus, we regard the above result as
a negative result showing such reductions cannot exist (unless coNP ⊆ AM).

Using known reductions between search and decision problems [BCGL, ImLe], [BoTr] also derive
conclusions on the possibility of basing the existence of one-way functions on NP-hardness as follows: If
there exists an NP-complete set for which deciding any worst case instance is non-adaptively reducible
to inverting any polynomial time computable function (or more generally, solving a search problem
with respect to a sampleable distribution) then coNP ⊆ AMpoly. However, the techniques of [BoTr]
refer explicitly only to decision problems, and do not exploit the extra structure of the task of invert-
ing polynomial-time computable functions (nor even the underlying extra structure of working with a
sampleable search problems).

In this paper, we return to fully focus on the question of whether it possible to base the existence
of one-way functions on the presumed worst case hardness assumption of NP-hard problems. Indeed,
we believe that the study of the possibility of basing one-way functions on worst-case NP-hardness
is the most important motivation for the study of worst-case to average-case reductions for NP. By
explicitly capitalizing on the additional “computational structure” of the search problem associated
with the inverting task of polynomial time computable problem, we are able to improve previous results
as follows.

1.1 New Results on OWF Complexity

• For any polynomial-time computable function f , the existence of a randomized non-adaptive
reduction of NP to the task of average-case inverting f implies that coNP ⊆ AM. This result
improves over the previous negative results of [BoTr] that placed coNP in non-uniform AM
(instead of in uniform AM).

• For any polynomial-time computable function f , such that |f−1(y)| is efficiently computable given
y, the existence of a (randomized) reduction of NP to the task of inverting f implies that coNP ⊆
AM. More generally, this extends to functions for which given y the pre-image size |f−1(y)| is
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efficiently verifiable via an AM protocol. These include, for example, regular functions (for which
all pre-image sizes are the same) with efficiently recognizable range.

We stress that the result holds for any reduction, including adaptive ones. Previously known
negative results regarding worst-case to average-case reductions were essentially confined to non-
adaptive reductions.1

We point out that, our proof in the case of general reductions and size-verifiable functions holds
not only for reductions from worst case NP problems to average case inverting of f , but also from
worst case NP problems to inverting f in the worst case. Since it is easy to construct polynomial time
computable functions f (not necessarily size verifiable ones) for which solving a worst case NP problem
is reducible to inverting f , our results yield a separation between inverting size-verifiable polynomial
time computable functions and inverting general polynmial time computable function (assuming as
usual coNP 6⊆ AM).

For a discussion of possible interpretations of these negative results see appendix A.

1.2 Upper Bound Protocols in New Settings
To prove our negative results AM protocols for verifying the size of various sets are necessary. For
example, in the context of non-adaptive reductions for general functions (i.e., functions that are not
necessarily size-verifiable), we need to design an AM protocol for verifying |f−1(y)| when y is sampled
by the randomized reduction. This requires both proving lower and upper bounds on the size of NP sets.
General AM protocols for lower bounds on the size of NP and AM sets were shown by Goldwasser-
Sipser[GoSi] in the context of proving that IP = AM. However, the only known AM protocol to
prove upper bounds on set sizes due to Aiello and Hastad [AiHa], works only when the verifier knows
a random element x ∈ f−1(y) where x is unknown to the prover. This condition does not usually hold
in our context.

We thus develop two new AM protocols for upper bounding the sizes of NP sets which work
in settings which arise within our work. These protocols can be utilized elsewhere and may be of
independent interest.

The intuition underlying the first protocol is inspired by the main idea of Feigenbaum and Fort-
now [FeFo]. The common thread is identifying a situation in which the prover may cheat (without being
detected) only in one direction, and deducing that frequent cheating by the prover leads to a (signifi-
cant) deviation from some expected statistic. The second protocol is inspired by the idea of [BoTr] of
“hiding” (from the prover) queries of interest among queries drawn from a close distribution for which
you know some statistics (given by a non-uniform advice).

The first protocol is titled confidence by comparison protocol (CBC) and is applicable when many
NP sets are drawn out of a distribution D for which some statistics on the sizes of the sets is known.
The statistics we use are (an approximation for) the expectation ES∼D[|S|], when the sets S drawn from
D are of polynomial size, and (an approximation for) expectations of the form ES∼D[⌊(log1+ρ(|S|))⌋]
when the sets S are potentially of super polynomial size. See appendix B for details.

The second protocoll titled the Hiding protocol for proving upper bound on on the size of NP sets
can be used whenever the NP set is drawn from a distribution D and the verifier can also sample sets
from another distribution D̃ that has the following two properties: (a) There exists an AM protocol
for proving upper bound on sets drawn from D̃ (this protocol could be, for example, the Aiello-Hastad
protocol, or the above CBC protocol), and (b) D̃ is statistically close to D in the sense that ∀S ⊆
{0, 1}n, PrS∼D[S] ≤ λ · Pr

S∼ eD
[S] for 1 ≤ λ ≤ poly(n). See appendix B for details.

We remark that both protocols can be used to upper bound AM sets as well an NP sets. AM sets
are sets for which membership can be verified via an AM protocol.

1[FeFo] also handles restricted levels of adaptivity, which are not extended in [BoTr].
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1.3 Relation to Feigenbaum-Fortnow and Bogdanov-Trevisan
We briefly overview the work of Feigenbaum and Fortnow [FeFo] and the work of Bogdanov and Tre-
visan [BoTr] and highlight the differences in our approach.

In [FeFo] the question of whether or not NP-complete problems can be random self-reducible is
addressed. That is, can (worst case) instances of NP-complete problems be reduced to one or more
random instances, where the latter instances are drawn according to a predetermined distribution. The
main result of [FeFo] is that if such (non-adaptive) reductions exist, then coNP is in a non-uniform
version of AM, denoted AMpoly. Non-uniformity was used in their work to encode statistics about the
target distribution of the reduction.

The work of [BoTr] points out that [FeFo] can be viewed as a result regarding the impossibility of
worst-case to average-case reductions (of a restricted type) for NP-complete problems. They note that
even if one cares about the average-case complexity of a problem with respect to a specific distribution
(e.g., the uniform one) then it needs not be the case that a worst-case to average-case reduction must
make queries according to this distribution, and that the distribution of queries may depend on the input
to the reduction, and so statistics regarding it cannot be given as advice. Nonetheless, combining the
ideas of [FeFo] with additional ideas (some borrowed from the study of locally-decodable codes [KaTr]),
Bogdanov and Trevisan showed that any non-adaptive reduction of (worst-case) NP to the average-case
complexity of NP (with respect to any sampleable distribution) implies that coNP ⊆ AMpoly (using
the non-uniformity to encode similar statistics as in [FeFo]).

Although [BoTr] state that a main motivation of their work is the question of basing one-way
functions on worst-case NP-hardness, its focus in technique (like that of [FeFo]) is on decision prob-
lems. Using known reductions between search and decision problems in the context of distributional
problems [BCGL, ImLe], Bogdanov and Trevisan [BoTr] also derive implications on the (im)possibility
of basing one-way functions on NP-hardness. In particular, they conclude that if there exists an
NP-complete set for which deciding any instance is non-adaptively reducible to inverting a one-way
function (or, more generally, to a search problem with respect to a sampleable distribution), then
coNP ⊆ AMpoly.

The works [BoTr, FeFo] fall short of a general impossibility result in two ways. First, they only
consider non-adaptive reductions, whereas the celebrated worst-case to average-case reductions of lattice
problems (cf. [Aj, MiRe]) are adaptive2, which seems to illustrate the power of adaptive versus non-
adaptive reductions.3 Second, [BoTr, FeFo] reach conclusions involving a non-uniform complexity class
(i.e., AMpoly). Non-uniformity seems an artifact of their techniques, and one may hope to conclude
that coNP ⊆ AM rather than coNP ⊆ AMpoly. (One consequence of the uniform conclusion is that
it implies that the polynomial time hierarchy collapses to the second level, whereas the non-uniform
conclusion only implies a collapse to the third level.)

We emphasize that the techniques of [BoTr] refer explicitly only to decision problems, and do not
relate to the underlying search problems (e.g., inverting a supposedly one-way function). In doing so,
they potentially lose twice: they lose the extra structure of search problems and they lose the additional
structure of the task of inverting polynomial-time computable functions.

We believe that the study of the possibility of basing one-way functions on worst-case NP-hardness
is the most important motivation for the study of worst-case to average-case reductions for NP. In
such a case, one should consider the possible gain from studying the former question directly, rather
than as a special case of a more general study. Let us begin by pointing out the differences between

2Interestingly, we note that the work of [Mi] separate Ajtai’s [Aj] reduction into two parts: non adaptive worst-case to
average-case reduction, and adaptive worst-case to worst-case reduction.

3We comment that the power of adaptive versus non-adaptive reductions has been studied in various works (e.g.,
[FFLS, HNOS, BaLa]). It is known that if NP 6⊆ BPE, then there exists a set in NP \ BPP that is adaptively random
self-reducible but not non-adaptively random self-reducible.
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NP-search problems and one-way functions.

1.4 NP Search Problems vs. One-Way Functions
To illustrate the difference between NP search problems and the finding an inverse of a polynomial time
computable function, we re-formulate the problem of inverting a polynomial-time computable function
as follows (or rather spell out what it means in terms of search problems). The problem of (average-case)
inverting f on the distribution f(Un), where Un denotes the uniform distribution over {0, 1}n, has the
following features:

1. The problem is in NP; that is, the solution is relatively short and given an instance of the problem
(i.e., y) and a (candidate) solution (i.e., x), it is easy to verify that the solution is correct (i.e.,
y = f(x)).

2. There exists an efficient algorithm that generates random instance-solution pairs (i.e., pairs (y, x)
such that y = f(x), for uniformly distributed x ∈ {0, 1}n).

3. We care about the average-case complexity of the problem; that is, the probability that an efficient
algorithm given a random (efficiently sampled) instance y (i.e., y ← f(Un)) finds x ∈ f−1(y).

Indeed, the first and third items are common to all average-case NP-search problems (with respect to
sampleable distributions), but the second item is specific to the context of one-way functions (cf. [Go,
Sec. 2.1]). A sampleable distribution of random instance-solution pairs is not necessarily implied by a
sampleable distribution of instances. Capitalizing on the second item is the source of our success to
obtain stronger (negative) results.

1.5 The Benefits of Direct Study of One-Way Functions
The results presented in this paper indicate the gains of studying the question of basing one-way
functions on NP-hardness directly, rather than as a special case of a more general study. The gains
being, getting rid of the non-uniformity altogether (and replacing non-uniform advice that provide
needed statistics with AM protocols designed to provide these statistics), and obtaining a meaningful
negative result for the case of general (adaptive) reductions.

Moreover, working directly with one-way functions allows us to consider natural special cases of
potential one-way functions and to establish stronger results regarding general (i.e non-adaptive) reduc-
tions for them.

In particular, our results isolate the ability to compute (and more generally the ability to verify via
an AM protocol) the number of inverses |f−1(y)| given y, as an important parameter in classifying the
complexity of inverting f . We call such functions size-verifiable.

The simplest case of size-verifiable functions is obviously a permutation. Another interesting special
case of regular functions. Loosely speaking, in such a function f , each image of f has a number of
preimages that is (easily) determined by the length of the image. We prove that any reduction (which
may be fully adaptive) of NP to inverting a regular polynomial-time computable function that has an
efficiently recognizable range (possibly via an AM-protocol) implies coNP ⊆ AM.

We remark that it was already known in the context of cryptographic constructions (e.g., [GKL,
GIL+, DiIm, HHK+]), that it is easier to work with regular functions than with general one way
functions. For example, the original construction of cryptographically strong pseudo random generators
required one-way permutation[BlMi], followed by a construction which was able to use regular functions
by [GKL], and finally culminated in the [HILL] complex construction which could use any one-way
function. Our work shows that regularity of a function (or, more generally, size-verifiability) is important
also for classifying the complexity of inverting f , and not only the ease of using it within cryptographic
constructions.

Finally, we point out that the result we prove for size-verifiable functions holds even if we restrict
the reduction to be a worst-case reduction. Namely, unless coNP ⊆ AM, there exist no reductions
from worst case NP problems to inverting a size-verifiable polynomial time computable function (This
is easily seen as the proof of Theorem 3 never utilizes the fact that the oracle accessed by the reduction
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is allowed to err on some of the queries). In contrast, it is known that reductions do exist from worst
case NP problems to inverting some (general) polynomial time computable function (see [Go]). This,
on one hand, indicates that further ideas will be required to extend our results concerning adaptive
reductions to general one-way functions, and on the other hand yields a separation between inverting
size-verifiable polynomial time computable functions and inverting general polynmial time computable
function (assuming as usual coNP 6⊆ AM).

In summary, we hope that this framework of working directly in the context of one-way functions,
will lead to resolving the general question of the possibility of basing any one-way function on worst-case
NP-hardness via any reduction. In light of the results of this paper, we are tempted to conjecture an
impossibility result (pending, as usual, on coNP 6⊆ AM).

Organization of the rest of this work. In Section 2, we provide an overview of our proofs as
well as a formal statement of our main results. Appendix A we discuss possible interpretations of our
negative results (as well as those of [FeFo, BoTr]). Details of our upper bounds protocols are found in
Appendix B.

2 Overview of Results and Proofs
Having observed the potential benefit of working explicitly with the inverting task of a function f ,
materializing this benefit is the bulk of the technical challenge and the technical novelty of this work.

Let us first clarify what we mean by saying that a decision problem L is (efficiently and randomly)
reducible to the problem of inverting a one-way function f . We take the straightforward interpretation
(while using several arbitrary choices, like in the threshold determining an inverting oracle):

Definition 1 (inverting oracles and reductions). A function O : {0, 1}∗ → {0, 1}∗ is called a (average-
case) f -inverting oracle if, for every n, it holds that Pr[O(f(x)) ∈ f−1(f(x))] ≥ 1/2, where the probability
is taken uniformly over x ∈ {0, 1}n. For a probabilistic oracle machine R, we denote by RO(w) a random
variable representing the output of R on input w and access to oracle O, where the probability space
is taken uniformly over the probabilistic choices of machine R (i.e., its randomness). A probabilistic
polynomial-time oracle machine R is called a reduction of L to (average-case) inverting f if, for every
w ∈ {0, 1}∗ and any f -inverting oracle O, it holds that Pr[RO(w) = χL(w)] ≥ 2/3, where χL(w) = 1
if w ∈ L and χL(w) = 0 otherwise. A reduction R, on input w, may ask polynomially many queries to
the inverting oracle. In adaptive reductions, later queries may depend on the oracle answers to earlier
queries. In non-adaptive reductions all queries are computed in advance (based solely on the input w
and the random coins of the reduction). For simplicity of presentation, we assume all queries are of
length |w|.

A reduction as in Definition 1 may only establish that f is a weak one-way function (i.e., that f
cannot be inverted with probability exceeding 1/2 on every input length), which makes our impossibility
results even stronger.4 Throughout this work, the function f will always be polynomial-time computable,
and for simplicity we will also assume that it is length preserving (i.e., |f(x)| = |x| for all x).

High-level structure of our proofs and their challenges. Our proofs all work via the contra-
positive. Suppose, that there exists a reduction R from deciding an (NP-complete language) L to
inverting the function f . We aim to use this reduction to give an AM-protocol for L. (A similar
AM-protocol can be given for L itself, but there is no point in doing so because L ∈ NP by hypothesis.)

The main backbone of our AM-protocol for L is for the verifier to emulate the reduction R on input
w and decide whether or not w ∈ L according to R’s output. Of course, the verifier cannot run the
reduction fully on its own, because the reduction requires access to an f -inverting oracle. Instead, the

4In contrast, the standard definition of one-way function requires that any efficient inverting algorithm succeeds with
negligible probability (i.e., probability that is smaller than 1/poly(n) on all but finitely many n’s). Here we relax the
security requirement in two ways (by requiring more of a successful inverting algorithm): first, we require that the inverting
algorithm be successful on any input length, and second that the success probability exceeds 1/2 rather than 1/poly(n).
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prover will play the role of the inverting oracle, thus enabling the emulation of the reduction. Needless
to say, the verifier will check that all answers are actually f -preimages of the corresponding queries.
Since we aim at a constant-round protocol, we send all queries to the prover in one round, which in the
case of an adaptive reduction requires to send the randomness r of the reduction to the prover. Note
that also in the non-adaptive case, we may as well just send r to the prover, because the prover may
anyhow be able to determine r from the queries.

The fact that r is given (explicitly or implicitly) to the prover is the source of all difficulties that
follow. It means that the prover need not answer the queries obliviously of other queries (or of r), but
may answer the queries depending on r. In such a case, the prover behavior is not consistent with
any single oracle, and thus the verifier should not trust the prover to emulate the reduction. More
concretely, the problem is that whereas an inversion oracle for f on query y provides an inverse in
f−1(y) independently from other queries, a prover may choose which inverse to provide depending on
other queries and more generally on r. This is no problem when f is 1-1, as the only a single inverse
exists and prover’s answer is determined by the query. Indeed, in the special case that f is 1-1 and
length preserving, inverting f cannot be NP-hard for rather obvious reasons (as has been well-known
for a couple of decades; cf. [Br]).5 The difficulties arise only in case f is not 1-1.

To illustrate what may happen in case f is not 1-to-1, consider a 2-to-1 function f . Given an
arbitrary reduction of L to inverting f , consider a modified reduction that tosses n additional coins
ρ1, ..., ρn, issues n additional queries, and halts without output if and only if for i = 1, ..., n the i-th
additional query is answered with the (ρi + 1)-st corresponding preimage (in lexicographic order). This
reduction works with probability that is very close to the original one, but a cheating prover can always
cause its emulation to halt without output.

Forcing the Prover to Act as an Inversion Oracle. Our idea is to force the prover to give an
inverse of y which is independent of the randomness r. In particular, we will require that the prover
answers each query y with the smallest inverse in f−1(y). The difficulty naturally will be in verifying
that the inverse provided is indeed the smallest one.

For the rest of this extended abstract, we provide an outline of how this is achieved. First, when the
function is size-verifiable, and second when the reduction is non-adaptive. In the following, we denote
by q the number of queries made by R, by R(w, r, a1, ..., ai−1) the i-th query made by R on input w and
randomness r after receiving the oracle answers a1, ..., ai−1, and by R(w, r, a1, ..., aq) the corresponding

final decision. Recall that for simplicity, we assume that all queries are of length n
def
= |w|.

2.1 Size-Verifiable Functions (Adaptive Reductions)
Our aim is to present an AM-protocol for L, when we are given a general (adaptive) reduction R of the
worst-case decision problem of L to average-case inverting f .

Definition 2 (Size Verifiable). We say that a function f : {0, 1}∗ → {0, 1}∗ is size verifiable if ∃AM
proof system for the set6 {(y, |f−1(y)|) : y ∈ {0, 1}∗}.

A natural example of a function that is size verifiable (and for which the relevant set is not known
to be in BPP) is the integer multiplication function. That is, we consider the function that maps pairs
of integers (which are not necessarily prime or of the same length) to their product. In this case the set
{(y, |f−1(y)|) : y ∈ {0, 1}∗} is in NP (where, the NP-witness is the prime factorization) but is widely

5Intuitively, inverting such an f (which is a search problem in which each instance has a unique solution) corresponds
to a decision problem in NP ∩ coNP (i.e., given (y, i) determine the i-th bit of f−1(y)). Thus, the fact that inverting f
cannot be NP-hard (unless NP = coNP) is analogous to the fact that sets in NP ∩ coNP cannot be NP-hard (again,
unless NP = coNP). In contrast, in case f is not 1-1, the corresponding decision problems are either not known to be
in NP ∩ coNP or are promise problems (cf. [ESY]) in the “promise problem class” analogue of NP ∩ coNP. Recall that
promise problems in the latter class may be NP-hard even if NP 6= coNP (see [ESY]).

6Or, more generally, f is size verifiable if ∃AM proof system for the set {(y, s) : y ∈ {0, 1}∗, s ∈ (1 ± Θ(1))
˛

˛f−1(y)
˛

˛}.
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believed not to be in BPP (e.g., it is believed to be infeasible to distinguish product of two (n/2)-bit
random primes from the product of three (n/3)-bit long random primes).

Another example of a size-verifiable function are regular functions with efficiently recognizable range
(possibly via an AM-protocol). Recall that, loosely speaking, for regular functions the number of pre-
images is efficiently determined by the input length. More generally, f is size-verifiable, when the number
of pre-image is determined by the input length, even if the number of pre-images cannot be efficiently
computed7 Likewisse, the “approximable preimage-size” function of [HHK+]) are size verifiable.

We show it is unlikely that size-verifiable one-way functions can be based on NP-hardness.

Theorem 3 (Adaptive Reductions). Unless coNP ⊆ AM, there exists no reduction (even not an
adaptive one) from deciding an NP-complete language to inverting a size-verifiable polynomial-time
computable function.

Let us proceed to give an outline of the proof. We will make the simplifying assumption throughout
this outline that the verifier can even compute size of the set of f -preimages for any string y on its own.
The analysis can be easily extended to the case that the verifier can only check the correctness of the
size claimed and proved by the prover.

Protocol for a very simple case: As a warm-up we first assume that |f−1(y)| ≤ poly(|y|), for every
y. In this case, on common input w, the parties proceed as follows.

1. The verifier selects uniformly coins r for the reduction, and sends r to the prover.

2. Using r, the prover emulates the reduction as follows. When encountering a query y, the prover
uses the lexicographically first element of f−1(y) as the oracle answer (and uses ⊥ if f−1(y) = φ).
Thus, it obtains the corresponding list of queries y1, ..., yq, which it sends to the verifier along with
the corresponding sets f−1(y1), ..., f

−1(yq).

3. Upon receiving y1, ..., yq and A1, ..., Aq, the verifier checks, for every i, that |Ai| = |f−1(yi)| and
that f(x) = yi for every x ∈ Ai. Letting ai denote the lexicographically first element of Ai, the
verifier checks that R(w, r, a1, ..., ai−1) = yi for every i. The verifier accepts w (as a member of
L) if and only if all checks are satisfied and R(w, r, a1, ..., aq) = 0.

Note that the checks performed by the verifier “force” the prover to emulate a uniquely determined
(perfect) inverting oracle (i.e., one that answers each query y with the lexicographically first element of
f−1(y)). Thus, the correctness of the reduction implies the completeness and soundness of the above
AM-protocol.

The idea when the size of f−1(y) is not bounded by a polynomial: In general, however, the
size of f−1(y), for y in the range of f may not be bounded by a polynomial in n (where n = |y| = |w|).
In this case, the prover cannot send the entire set f−1(y) to the verifier. The natural idea is to have
the verifier send an adequate random hash function h : {0, 1}n → {0, 1}ℓ and let the prover answer
with h−1(0ℓ) ∩ f−1(y) (rather than with f−1(y)), where ℓ = ⌊(log2 |f

−1(y)|/poly(n))⌋. The problem is
that in this case the verifier cannot check the “completeness” of the list of preimages (because it cannot
compute |h−1(0ℓ) ∩ f−1(y)|), which allows the prover to omit a few members of h−1(0ℓ) ∩ f−1(y) at its
choice. This freedom of choice (of the prover) may obliterate the soundness of the protocol.

To overcome this difficulty, we will require the prover to prove sizes
∣∣h−1(0ℓ) ∩ f−1(y)

∣∣; that is,
prove both lower and upper bounds on this size. For proving lower bounds we use the Goldwasser-
Sipser protocol, whereas for proving upper bounds we use the confidence-by-comparison (aka, CBC)
protocol as follows. Although we have no way of determining the size of h−1(0ℓ) ∩ f−1(y), we do
know that its expected size is exactly |f−1(y)|/2ℓ, where the expectation is taken over the choice of h
(assuming indeed that a random h maps each point in {0, 1}n uniformly on {0, 1}ℓ). Furthermore, the

7Let us sketch a size verification protocol for such functions. Since the number of pre-images is equal over all y’s, it
suffices to estimate

˛

˛f−1(y)
˛

˛ on any arbitrary y. So, the verifier may choose a random x and send y = f(x), for which the
prover claims and proves the size of

˛

˛f−1(y)
˛

˛ by utilizing the lower and upper bound protocols of [GoSi, AiHa] respectively.
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prover cannot add elements to h−1(0ℓ)∩f−1(y) (because the verifier can verify membership in this set),
it can only omit elements. Repeating the process many times, if the prover cheats (that is, omits at least
one element) in many of the sets, then it ends-up sending sets that are –on average– noticeably8 smaller
than their expected size; whereas, for honest prover, the average should roughly match the expectation.
The verifier rejects if the averages deviate from the expectation by too much. This guarantees that the
on most repetitions, the prover does not cheat (with high probability).

We remark that the intuition underlying the CBC protocol is inspired by the main idea of Feigenbaum
and Fortnow [FeFo]. The common thread is identifying a situation in which the prover may cheat
(without being detected) only in one direction9, and deducing that frequent cheating by the prover
leads to a (significant) deviation from some expected statistic. In [FeFo, BoTr] the necessary statistics
were gives as advice, thus yielding an AMpoly protocol; while, in our work, no statistics are given, and
instead, we acquire them via an AM protocol. The required statistics for our settings are, naturally,
completely different than those used in [FeFo, BoTr].

Protocol for the general case: In the following protocol we use families of hash functions of very
high quality (e.g., poly(n)-wise independent ones). Specifically, in addition to requiring that a random
h : {0, 1}n → {0, 1}ℓ maps each point uniformly, we require that, for a suitable polynomial p and for
any S ⊆ {0, 1}n of size at least p(n) · 2ℓ, with overwhelmingly high probability over the choice of h it
is the case that |h−1(0ℓ) ∩ S| < 2|S|/2ℓ. In particular, the probability that this event does not occur is
so small that, when conditioning on this event, the expected size of |h−1(0ℓ) ∩ S| is (1 ± 2−n) · |S|/2ℓ.
(Thus, under this conditioning and for S as above, the variance of 2ℓ|h−1(0ℓ) ∩ S|/|S| is less than 2.)

1. The verifier selects uniformly m = n · q2p(n)2 = poly(n) sequences of coins, r(1), ..., r(m) for the
reduction, and sends them to the prover. In addition, for each k = 1, ..., m, i = 1, ..., q and
ℓ = 1, ..., n, it selects and sends a random hash function hk,i,ℓ : {0, 1}n → {0, 1}ℓ.

To streamline the following description, for j ≤ 0, we artificially define hk,i,j such that h−1
k,i,j(0

j)
def
=

{0, 1}n. In such a case, S ∩ h−1
k,i,j(0

j) = S, and so an instruction to do something with the former
set merely means using the latter set.

2. For every k = 1, ...,m, the prover uses r(k) to emulate the reduction as follows. When encountering

the i-th query, y
(k)
i , it determines ℓ

(k)
i = ⌊(log2 |f

−1(y
(k)
i )|/p(n))⌋, and uses the lexicographically

first element of f−1(y
(k)
i )∩h−1

k,i,ℓ
(k)
i

(0ℓ
(k)
i ) as the oracle answer (and uses ⊥ if the latter set is empty).

Thus, it obtains the corresponding list of queries y
(k)
1 , ..., y

(k)
q , which it sends to the verifier along

with the corresponding sets f−1(y
(k)
1 ) ∩ h−1

k,1,ℓ
(k)
1

(0ℓ
(k)
1 ), ..., f−1(y

(k)
q ) ∩ h−1

k,q,ℓ
(k)
q

(0ℓ
(k)
q ).

We assume that none of the latter sets has size greater than 4p(n). Note that the bad event occurs
with negligible probability, and in such a case the prover halts and the verifier rejects. (Otherwise,
all mq sets are sent in one message.)

3. Upon receiving y
(1)
1 , ..., y

(1)
q , ..., y

(m)
1 , ..., y

(m)
q and A

(1)
1 , ..., A

(1)
q , ..., A

(m)
1 , ..., A

(m)
q , the verifier con-

ducts the following checks:

(a) For every k = 1, ..., m and i = 1, ..., q, the verifier checks that for every x ∈ A
(k)
i it holds that

f(x) = y
(k)
i and h

k,i,ℓ
(k)
i

(x) = 0ℓ
(k)
i , where ℓ

(k)
i = ⌊(log2 |f

−1(y
(k)
i )|/p(n))⌋. Letting a

(k)
i be the

lexicographically first element of A
(k)
i , it checks that R(w, r(k), a

(k)
1 , ..., a

(k)
i−1) = y

(k)
i .

(b) For every i = 1, ..., q, it checks that

8We remark that additive deviations are interchangeable with multiplicative ones, for
˛

˛h−1(0ℓ) ∩ f−1(y)
˛

˛ = poly(n).
9More concretely, in this work as well as in [FeFo], there are some NP-sets (e.g., h−1(0ℓ) ∩ f−1(y), in the above) s.t.

the prover cannot claim a non-member of the set is a member (because it is required to provide a witness).
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1

m
·

m∑

k=1

2ℓ
(k)
i · |A

(k)
i |

|f−1(y
(k)
i )|

> 1 −
1

100q · p(n)
(1)

where 0/0 is defined as 1.
The verifier accepts w if and only if all the foregoing checks are satisfied and it holds that

R(w, r(k), a
(k)
1 , ..., a

(k)
q ) = 0 for a uniformly selected k ∈ {1, ..., m}.

For the analysis of the protocol we refer the reader to Appendix C

2.2 Non-Adaptive Reductions, General Functions
We now turn to outline the proof of our second main result. Throughout this section R is always
non-adaptive.

Theorem 4 (General Functions). Unless coNP ⊆ AM, there exists no non-adaptive reduction from
deciding an NP-complete language to inverting a polynomial-time computable function.

Overall idea. In the previous section we showed a protocol which worked when f was size verifiable.
Ideally, we would like to show that any polynomial time computable function f is size verifiable. Namely,
prove both a lower and upper bound on the size of f−1(y) for a given y. Whereas, known lower-bound
protocols (cf. [GoSi]) could be applied to these sets, known upper-bound protocols (cf. [AiHa]) cannot
be applied because they require that the verifier has, or can obtain, a random (and secret) member of
these sets. In our setting the verifier may not know any inverse let alone a random and secret one.

Still, we will be able to use the protocol of the previous section, when it is combined with an idea of
[BoTr] of dividing queries into light and heavy ones. We say y is light if Prr[y = R(x, r)] ≤ λ · Prz[y =
f(z)] (for λ ∈ [2, 3] to be chosen at random by the verifier), and y is heavy otherwise. Then: (1) we show
how to prove upper bounds on |f−1(y)| when the y queried is light; (2) we show how to detect which
queries are light and which are heavy via an AM protocol. Finally, (3) we adapt the protocol of the
previous section so that the prover answers light queries y –as before– by the smallest inverse in f−1(y),
and answers heavy queries by ⊥. Size verification is then applied only to light queries. We claim that
the adapted protocol still provides an AM proof for x ∈ L, since there exists an oracle O which answers
as the prover did above, which still has good success probability: Pry∼f(Un)[O(y) ∈ f−1(y)] ≥ 1− 1

λ
≥ 1

2 ,
and thus, the reduction correctly decides L (w.h.p), even when accessing such an oracle.

The idea of dividing queries into light and heavy ones is due to [BoTr]. What we mean by light is
different than in [BoTr]: In our case y is light if the probability it is selected by the reduction R(x,Un)
is smaller than (some constant times) the probability that y was selected according to f(Un). While, in
[BoTr], y is light if the probability it is selected by the reduction R(x,Un) is greater than some constant
threshold. This difference, makes detecting heavy (or, light) queries harder in our settings, because it
simultaneously requires both lower and upper bound for the corresponding sets.

We will be able to preform (1) and (2) only for non-adaptive reductions, and thus the theorem is
achieved for general functions and non-adaptive reductions.

A central difference between our case and the case of [BoTr], is that while they use non-uniform
advice, we “gather” the statistics required for accomplishing tasks (1) and (2) above. For the sake of
this extended abstract, we focus on showing how we gather the required statistics. For a description of
the entire protocol we refer the reader to Appendix D.

Gathering Statistics. Denote by coins(y)
def
= {r |R(w, r) = y} the number of coins leading to a

query y. The statistics we need are (approximations of) (a) expectations on |coins(y)| over reduction
queries y, (b) expectations on |f−1(y)| over light reduction queries y, and (c) the probability that a
reduction query is light.

We accomplish (a), i.e., obtain (approximation of) expectations on |coins(y)| over reduction queries
y as follows. The verifier samples many independent y = R(w, r) (i.e., distributed by R(w,Un′)). For
each such y lower and upper bound are proved using the known protocols of [GoSi, AiHa] (note that r
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is a random and secret element in coins(y)). The needed statistics are then estimated by averages on
these proved sizes.

We now describe how to accomplish (b) and (c). To gather these statistics the verifier samples
many independent y = R(w, r) (i.e., distributed by R(w,Un′)). We show (below) how to detect whether
the sampled y is heavy or light, as well as to prove sizes of f−1(y) for the light ones. Once this
is accomplished, the statistics are estimated as follows: The expectations on |f−1(y)| over light are
estimated by averages over the light y. The probability that a reduction query is light is estimated by
the fraction of light queries among those y’s.

We next elaborate on how to detect whether y is heavy or light, and how to prove sizes of f−1(y)

for the light y’s. First, we address detection of heavy queries. Recall y is heavy if coins(y)

2n′ > λ · |f−1(y)|
2n ,

so to prove y heavy, we need to lower bound f−1(y) and upper bound coins(y). The lower bound is
obtained using known protocols (cf. [GoSi]). The upper bound is obtained as follows. We are in settings
where we want to upper bound many sets coins(y), such that: (i) we have statistics on the expected
size of these sets, and (ii) roughly speaking, these sizes can only be underestimated (this is guaranteed
by applying [GoSi]). The latter property imlies that if the prover cheats (i.e., underestimate the size)
often, then the average over the claimed values should be noticeably smaller than the expectation. Thus
the verifier compares the known statistics to average over values claimed by the prover, and rejects if
there is a significant gap between them. This, essentially10, guarantees that (most) heavy queries are
detected.

Second, we address detection of light queries. Recall y is light if coins(y)

2n′ ≤ λ · |f−1(y)|
2n , so to prove

y light, we need to lower bound coins(y) and upper bound f−1(y). The lower bound is obtained using
known protocols (cf. [GoSi]). The upper bound on f−1(y) we show how to obtained below. This,
essentially, guarantees that (most) light queries are detected.

Finally, we show how to prove sizes of f−1(y) for light queries. (This, in particular, provides the
upper bound we needed for the detection of light queries.) The idea, following [BoTr], is to “hide” the
light queries among (many) queries drawn from f(Un). Namely, the verifier sends all these queries,
together, in random order. Note that for queries y = f(z) drawn from f(Un) we can upper bound
|f−1(y)| using [AiHa]) (because z is a random secret element in the set f−1(y)). For the light queries,
the two distributions (R(w, Un′) and f(Un)) are statistically close, and thus –when y is light– the prover
cannot tell what is the distribution from which it was drawn. So, if the prover cheats on a light query,
it is likely to cheat on y drawn from f(Un) –in which case the verifier rejects. Therefore, the prover is
forced to be truthful on all light queries, and in particulary, on the y’s of interest (that is, the y’s drawn
from R(w, Un′)), w.h.p..

Acknowledgments
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10We note that in the above description we neglected to account for the inaccuracy in the lower/upper bound protocols.
This inaccuracy may, for example, lead to size estimates c, s for coins(y), f−1(y), respectively, such that c

2n′ ≤ λ s
2n while

coins(y)

2n′ > λ f−1(y)
2n (or vice versa). In this case, we fail to detect y as heavy (or light). Nonetheless, this issue is resolved

(as in [BoTr]) by our random choice of λ: with high probability (over our choice of λ), there is a large enough gap between
coins(y)

2n′ and λ f−1(y)
2n , thus the direction of the above inequality cannot be reversed by the small inaccuracy incurred by the

lower/upper bound protocols. This inaccuracy could also be problematic when comparing averages to gathered statistics.
This, again, is resolved by randomizing the statistics we gather (for details, see Appendix B).
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Appendix

A Discussion: interpretations of our negative results

Negative results of the type obtained in this work (as well as in [FeFo, BoTr]) can be interpreted in
several ways: The straightforward view is that such results narrow down the means by which one can
base one-way functions on NP-hardness. Namely, under the assumption that coNP is not contained
in AM, our results show that (1) non-adaptive randomized reductions are not suitable for basing one-
way functions on NP-hardness, and (2) that one-way functions based on NP-hardness can not be size
verifiable (e.g., cannot be regular with an efficiently recognizable range).

Another interpretation is that these negative results are an indication that (worst-case) complexity
assumptions regarding NP as a whole (i.e., NP 6⊆ BPP) are not sufficient to base one-way functions
on. But this does not rule out the possibility of basing one-way functions on the worst-case hardness of a
subclass of NP (e.g., the conjecture that NP ∩ coNP 6⊆ BPP). This is the case because our results (as
previous ones) actually show that certain reductions of the (worst-case) decision problem of a set S to
(average-case) inverting of f imply that S ∈ AM∩coAM. But no contradiction is obtained if S belongs
to NP ∩ coNP anyhow. Indeed, the decision problems related to lattices that are currently known to
have worst-case to average-case reductions belong to NP ∩ coNP (cf. [Aj, MiRe] versus [AhRe]).

Yet another interpretation is that these negative results suggest that we should turn to a more
relaxed notion of a reduction, which is uncommon in complexity theory and yet is applicable in the
current context. We refer to “non black-box” reductions in which the reduction gets the code (of the
program) of a potential probabilistic polynomial-time inverting algorithm (rather than black-box access
to an arbitrary inverting oracle). The added power of such (security) reductions was demonstrated a
few years ago by Barak [Ba01, Ba02].

B Size Verification AM-Protocols

In this section we present AM protocols for proving lower and upper bounds on the size of NP sets.
We are often satisfied with approximate bounds, namely, s such that s ≤ (1 + ρ) |S| or (1 − ρ) |S| ≤ s
for small ρ > 0. For proving s is a lower bound we have the Goldwasser-Sipser [GoSi] protocol, which
is applicable to any NP set S. In contrast, there is no known protocol for proving s is an upper bound
on S. Nevertheless, when imposing extra conditions on S such protocols do exist. We present two new
AM protocols for proving upper bound, each requiring a different extra condition on S, and is thus
applicable in different settings. For completeness, we also include the Aiello-Hastad [Fo, AiHa] upper
bound protocol (which is applicable in yet other settings). We shall make use of all these protocols in
subsequent sections.

Notations: For any NP set S, we denote by RS its corresponding NP relation, namely, RS(x,w) = 1
iff w is an NP-witness for x ∈ S, and RS(x,w) = 0 otherwise.

B.1 Lower Bound Protocol

For completeness, we briefly describe the lower bound protocol of Goldwasser and Sipser [GoSi] proving
the size of S is at least some number s (or more precisely, that s ≤ (1 + ρ) |S|). The idea behind it
is the following: pick a random hash function h mapping {0, 1}n to a range Γ of size slightly smaller
than s. If |S| ≥ s, then, with high probability, any member of Γ will have a pre-image by h. If |S| is
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significantly smaller than s, an arbitrary member of Γ is not likely to have a pre-image by h in S. The
exact parameters are detailed in the following theorem.

Theorem 5 (Goldwasser-Sipser [GoSi]). ∀n, ρ, δ and NP set S ⊆ {0, 1}n, there is an AM protocol
that, on common input (1n, (RS , s)) (where RS is the NP-relation corresponding to S), the following
holds: For honest prover, if s = |S|, the verifier accepts, w.p. at least 1 − δ; and converesely, for any
prover strategy, if s > (1 + ρ) |S|, the verifier rejects, w.p. at least 1 − δ.

B.2 Upper Bound Protocol

There is no known AM protocol for proving upper bound on the size of arbitrary NP sets S. Neverthe-
less, imposing extra conditions on S such protocols do exist. We present three different such protocols,
each requiring a different extra condition on S. The first protocol is by Aiello and Hastad [AiHa], and
can be applied to sets S for which the verifier has a random and secret (i.e., not known to the prover)
member x ∈ S. The next two protocols –confidence by comparison (CBC) and hiding protocol– are
novelties of this work. The CBC protocol is applicable in settings where some (approximate) statistics
on the size of sets S drawn from D is known to the verifier. The hiding protocol is applicable in settings
where there is another distribution D̃ which is statistically close to D such that there is an AM protocol
for proving upper bound for sets S̃ drawn from D̃.

B.2.1 Aiello-Hastad Upper Bound Protocol

For completeness, we briefly describe the upper bound protocol of Aiello and Hastad [Fo, AiHa]. The
work of Aiello and Hastad showed that if the verifier is able to sample uniformly a member x within the
set, then the verifier can also upper-bound the size of the set. The idea is again to use hash functions:
pick a random hash function h mapping {0, 1}n to a range Γ of size slightly smaller than the claimed
size, s. Given h(x), let the prover guess a short list of candidates for x. If |S| = s, there exists such
short list with high probability. On the other hand, if |S| is much larger than s, there should many z’s
in S with h(z) = h(x), and thus the prover has a not-very-high chance to output a list containing x.

This protocol uses significantly the fact it has a uniform x in S and the fact this x is private (i.e.,
not known by the prover). By the work of Goldwasser and Sipser [GoSi], if the Aiello-Hastad protocol
is plugged into an AM protocol in a setting where the specific NP set S can indeed be sampled, the
private sampling can be replaced by usage of public coins.

The exact parameters of the protocol (taken from [BoTr]) are detailed in the following theorem:

Theorem 6 (Aiello-Hastad [AiHa]). ∀n, ρ, δ, k > 0 and NP set S ⊆ {0, 1}n, there is an AM protocol
that, given: (i) common input (1n, (S, s)), and (ii) (secret) verifier’s input z s.t. z ∈R S: for honest
prover, if s ≥ |S|, then the verifier accepts, w.p. at least 1 − 9

ρ2k
; and conversely, for any prover’s

strategy, if s < (1− ρ) |S|, the verifier rejects, w.p. at least 1
6 −

9
k

(where the probabilities are taken over
the random coin tosses of the verifier, as well as over the z uniformly distributed within S).

Note that the verifier may erroneously accept with a very high probability (roughly 5
6). Nevertheless,

it suffices for our needs. In the settings we consider, there are several NP sets, S1, . . . , St for which the
prover claims upper bounds s1, . . . , st; we’d like the verifier to reject if si < (1 − ρ) |Si| w.p. at least p
where the probability is taken over a random choice of a set Si as well as the coins of the protocol. The
next corollary shows that such an AM protocol exists.

Corollary 7. ∀n, ρ < 1
3 , δ and NP sets S1, . . . , St ⊆ {0, 1}n, there is an AM protocol that, on common

input (1n, {(RSi
, si)}

t
i=1) (where RSi

is the NP-relation corresponding to Si), and (secret) verifier input
{zi}

t
i=1 s.t. zi ∈R Si, the following holds: For honest prover, if si = |Si| ∀i, the verifier accepts, w.p.
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at least 1 − δ; and converesely, for any prover strategy, if si > (1 + ρ) |Si| for more than log 18
17

1
δ

of the

Si’s, the verifier rejects, w.p. at least 1 − δ.

Proof. The AM protocol runs the Aiello-Hastad upper bound protocol t times (in parallel, with inde-
pendent randomness) with parameter k ≥ 9t

ρ2δ
, and accept iff the verifier accepts on each of the parallel

executions. We show that completeness and soundness hold. For honest prover, if si ≥ |Si| ∀i, then the
verifier accepts w.p. at least (1− 9

ρ2k
)t ≥ 1− t · 9

ρ2k
≥ 1−δ. Conversely, for any prover’s strategy, denote

tbad = log 18
17

1
δ
, and let si < (1 − ρ) |Si| for at least tbad of the Si’s. Then the verifier rejects w.p. at

least 1− (1− 1
18)tbad ≥ 1− δ, because on each of the tbad (independent) executions of the Aiello-Hastad

upper bound protocol, the verifier rejects w.p. at least 1
6 − 9

k
≥ 1

18 (where the last inequality is by the
choice of k, δ ≤ 1, t ≥ 1 and ρ < 1/3). ¤

B.2.2 Confidence By Comparison (CBC) Protocol for Proving Sizes of NP-sets

The confidence by comparison protocol is applicable when there are many NP sets S1, . . . , St drawn
out of some distribution D for which some statistics on the sizes of these sets is known. Specifically,
the statistics we use are (an approximation for) the expectation ES∼D[|S|], when the sets S are of
polynomial size, and (an approximation for) expectations of the form ES∼D[⌊(log1+ρ(|S|))⌋] (or, more

precisely, ES∼D[⌊(log1+ρ
|S|

1+ ρ
P

ℓ
)⌋] ∀ℓ ∈ 0, . . . , P − 1 for P = poly(n) large enough), when the sets S are

of super polynomial size. We stress that the CBC protocol proves (appoximate) sizes of sets, namely,
it simultaneously proves both a lower and an upper bound.

At the heart of the CBC protocol lies the following basic statistical principal.

Lemma 8 (Technical Lemma). Let n1, . . . , nt ∈ {0, . . . , M} be random variables of expectation µ. Let
s1, . . . , st be integers such that si ≤ ni. Then, ∀δ > 0, η ≥ 2M

t
√

δ
, w.p. at least 1 − δ, it holds that: if

si = ni ∀i, then Avg[si] ≥ µ−η, and conversely, if Avg[si] ≥ µ−η, then si 6= ni for at most 2η-fraction

of the ni’s (where Avg[si]
def
= 1

t

∑t
i=1 si).

Proof. By Chebyshev inequality, Pr[|Avg[ni] − µ| > η] < σ2

η2 ≤ δ (where the last inequality is derived

by bounding the variance of the ni by 4M2

t2
≤ δη2). So, if si = ni ∀i, then Avg[si] > µ−η, w.p. at least

1−δ. Conversely, if si 6= ni for more than 2η-fraction of the ni’s, then Avgi[si] ≤ Avgi[ni]−2η (because
si ≤ ni − 1 whenever si 6= ni). Applying Chebyshev, again, we get that Avgi[si] < µ + η − 2η ≤ µ− η,
w.p. at least 1 − δ. ¤

Remark 9. For settings where we only know µ′ that approximates the expectation µ, we shall use the
following variant of the above lemma. Let ni, si, δ, η as above, and µ′ s.t. |µ′ − µ| < η, then w.p. at
least 1 − δ, it holds that: if si = ni ∀i, then Avg[si] ≥ µ′ − 2η, and conversely, if Avg[si] ≥ µ′ − 2η,
then si 6= ni for at most 4η-fraction of the ni’s.

For settings where –in addition to the above– we are only guaranteed that (1− p)-fraction of the si’s
satisfy si ≤ ni, while the rest of the si’s are arbitrary in {0, . . . , M}, we use the following variant of the
above lemma. Let ni, δ, η, µ′ as above, and si ∈ {0, . . . ,m} s.t. si ≤ ni for at least (1 − p)-fraction of
the si’s, then, w.p. at least 1− δ, it holds that: if si = ni ∀i, then Avg[si] ≥ µ′ − 2η, and conversely, if
Avg[si] ≥ µ′ − 2η, then si 6= ni for at most (4η + pM)-fraction of the ni’s

Our CBC protocol for estimating sizes for NP sets relates to the above principal in the sense that,
when the prover can only underestimate the size of S1, . . . , St, then cheating on many of those sets
results in a noticible gap between known statistics on |Si| and averages over the sizes claimed by the
provers. In the following, we first consider sets of polynomial size (that is, sets for which the prover can
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efficiently send all their elements to the verifier), and later consider sets of arbitrary size. For polynomial
size sets, we give a protocol that proves the exact sizes, while for arbitrary size sets, the protocol we
give only prover approximate sizes.

Theorem 10 (CBC proving exact sizes for polynomial size sets). ∀n, t, let S1, . . . , St be NP sets
drawn from a distribution Dn over S ⊆ {0, 1}n; denote by RSi

the corresponding NP relations.

∀δ > 0, η ≥ 2 max|Si|
t
√

δ
, there is an AM protocol that, given common input (1n, {(RSi

, si)}
t
i=1, µ

′), if

|µ′ − ES∼Dn [|S|]| < η, then the following hold:

• Completeness: For honest prover, if si = |Si| ∀i, then the verifier accepts, w.p. at least 1 − δ

• Soundness: For any prover, if si 6= |Si| for at least a 4η-fraction of the Si’s, then the verifier
rejects, w.p. at least 1 − δ.

(where the probabilities are taken over the coins of the protocol as well as the random Si ∼ Dn).

Proof. We first give the AM protocol and the prove its correctness.

The Protocol

1. P: ∀Si, send all pairs (x,w) of elements x ∈ Si with their NP witnesses w.

2. V: Accept iff the two following conditions hold:

• For each Si, and each (x,w), w is indeed a witness for x ∈ Si, and

• For each Si, denote by si the number of pairs (x,w) sent for Si, then

Avg[si] ≥ µ′ − 2η

(where Avg[si]
def
= 1

t

∑t
i=1 si)

We rely on the Lemma 8 for proving the correctness of this protocol (where the si’s correspond to the
si’s in the lemma, and the true sizes |Si|’s correspond to the ni’s in the lemma). The conditions of

the lemma hold: si’s are integers s.t. si ≤ |Si|, |µ
′ − ES∼Dn [|S|]| ≤ η, and η ≥ 2 max|Si|

t
√

δ
. Therefore,

if si = |Si| ∀i, then the verifier accept, w.p. at least 1 − δ; and conversely, if si 6= |Si| for at least
4η-fraction of the Si’s then the verifier rejects, w.p. at least 1 − δ. ¤

We now address NP sets of (potentially) super-polynomial size. Note that for such sets, the prover
can no longer send all their elements to the verifier. Our result for these sets is weaker than the one in
Theorem 10 in the sense that we prove only approximate sizes (w.h.p.), and not exact sizes.

We now point out two difficulties that arise in generalizing the above protocol as to handle sets of
super polynomial size, and explain our approach for resolving them. The first difficulty arises already
when considering the completeness of the above protocol. For completeness to hold, we need the
averages to be close to the expectation (w.h.p.). However, when we have polynomially many sets of
super polynomial size, their average size |Si| is not guaranteed to be close enough to the expected size.
This difficulty can be resolved fairly easily. Observe that it suffices to know ⌊(log1+ρ |Si|)⌋ for obtaining
(1+ρ)-approximate value for |Si|. Therefore, to have good completeness, we –essentially– augument the
above protocol as to compare averages of ⌊(log1+ρ |Si|)⌋ to their expected value (instead of comparing
averages over |Si|). Note that this requirs changing the statistics that are given to our protocol as input
to be ES∼Dn [⌊(log1+ρ |S|)⌋] (instead of ES∼Dn [|S|]). We actually use a slightly different translation of
|Si| to smaller values that allows us to also handle the second difficulty, as we describe next.
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The second difficulty is that we can no longer prevent the prover from somewhat overestimating |Si|.
This is because now only know how to establish approximate lower bounds s ≤ (1 + ρ′) |S| using the
Goldwasser-Sipser protocol. This is in contrast to the exact lower bounds that we established in the
former case by having the prover send all elements in the set to the verifier. To resolve this problem,
recall that it suffices to know sizes of the form ⌊(log1+ρ |S|)⌋ (and not the exact size |S|); and observe
that, as long as ⌊(log1+ρ |S|)⌋ = ⌊(log1+ρ(1 + ρ′) |S|)⌋, the potential overestimation of |S| makes no
difference. Therefore, we only need to handle the case that |S| falls in this “bad interval” in which
⌊(log1+ρ |S|)⌋ 6= ⌊(log1+ρ(1 + ρ′) |S|)⌋. To avoid having S1, . . . , St fall in a bad interval we randomize
the location of those bad intervals so that with high probability no S ∈ S1, . . . , St falls in a bad interval.
Specifically, we translate the sizes |S| to ⌊(log1+ρ

|S|
1+ℓ ρδ

t

)⌋ for random ℓ ∈ 0, . . . , t
δ
− 1.

Theorem 11 (CBC proving approximate sizes). ∀n, t, let S1, . . . , St be NP sets drawn from a distri-

bution Dn over S ⊆ {0, 1}n; denote by RSi
the corresponding NP relations. ∀δ, ρ > 0 and η ≥

2n log1+ρ 2

t
√

δ
,

there is an AM protocol that, given common input (1n, {(RSi
, si)}

t
i=1, {µ

′
ℓ}), if µ′

ℓ = ES∼Dn [⌊(log1+ρ
|S|

1+ℓ δρ
t

)⌋] ∀ℓ =

0, . . . , ⌈( t
δ
)⌉ − 1 (or, more generally,

∣∣∣∣µ′
ℓ − ES∼Dn [⌊(log1+ρ

|S|
1+ℓ δρ

t

)⌋]

∣∣∣∣ < η ∀ℓ), then the following hold:

• Completeness: For honest prover, if si = |Si| ∀i, then the verifier accepts, w.p. at least 1 − δ

• Soundness: For any prover, if si /∈ (1±ρ) |Si| for at least a 4η-fraction of the Si’s, then the verifier
rejects, w.p. at least 1 − 3δ.

(where the probabilities are taken over the coins of the protocol as well as the random Si ∼ Dn).

Proof. We first give the AM protocol and then prove its correctness.

The Protocol

1. V: Choose random ℓ ∈ 0, . . . , P − 1 for P = ⌈( t
δ
)⌉ uniformly at random.

2. P,V: For each Si, run the Goldwasser-Sipser lower bound protocol to prove si ≤ (1 +
ρ′) |Si| for ρ′ ≤ ρ

P (1+ρ) , with confidence 1 − δ
t
.

3. V: Let Iℓ(si) = ⌊(log1+ρ
si

1+ℓ ρ
P

)⌋. The verifier accepts iff

Avgi[Iℓ(si)] ≥ µ′
ℓ − 2η

We remark that to help visualize the situation, for each ℓ = 0, . . . , P − 1 we think of a partition of the
range {0, . . . , 2n} of possible sizes into buckets Bℓ

k = [τ ℓ
k−1, τ

ℓ
k) with thresholds τ ℓ

k = (1 + ρ)k(1 + ℓ ρ
P

).

The Iℓ(s) are then simply the index k of the bucket Bℓ
k into which s falls.

Completeness: Note that si = |Si| implies Iℓ(si) = Iℓ(|Si|). Therefore, applying Lemma 8 (on the
Iℓ(si)’s and the Iℓ(|Si|)’s), we see that if si = |Si| ∀i, then the verifier accepts, w.p. at least 1 − δ.

Soundness: Assume the verifier accepts, and that si ≤ (1 + ρ′) |Si| (this holds w.p. at least
1 − δ by the soundness of the Goldwasser-Sipser protocol). We show si ∈ (1 ± ρ) |Si| for at least
(1 − 4η)-fraction of the Si’s, w.p. at least 1 − 3δ. To prove si ∈ (1 ± ρ) |Si|, it suffices to show that
Iℓ(si) = Iℓ(|Si|) (because Iℓ(si) = Iℓ(|Si|) implies si ≥ (1 − ρ) |Si|, whereas, si ≤ (1 + ρ) |Si| is proven
by the Goldwasser-Sipser protocol). To show Iℓ(si) = Iℓ(|Si|), consider first the case where the prover
can only underestimate Iℓ(Si), namely, Iℓ(si) ≤ Iℓ(|Si|) ∀i. In this case, by Lemma 8, Iℓ(si) = Iℓ(|Si|)
for at least (1 − 4η)-fraction of the Si’s, w.p. at least 1 − δ. We next show that indeed the prover can
only underestimate Iℓ(|Si|), w.p. at least 1 − δ. Observe that the prover can overestimate Iℓ(|Si|) only
if Iℓ(|Si|) 6= Iℓ((1 + ρ′) |Si|) (because in this case, the slight overestimation in the Goldwasser-Sipser
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protocol may lead to a false value: Iℓ(si) 6= Iℓ(|Si|)). By Lemma 11.1 below, for each fixed Si, this
happens with probability at most 1

P
(where the probability is taken over the random choice of ℓ), thus,

the prover cannot overestimate any Si ∈ S1, . . . , St, w.p. at least 1 − t 1
P

≥ 1 − δ. Put together, we
conclude that Iℓ(si) = Iℓ(|Si|) for at least (1−4η)-fraction of the Si’s, w.p. at least 1−3δ, and therefore,
si ∈ (1 ± ρ) |Si| for at least (1 − 4η)-fraction of the Si’s, w.p. at least 1 − 3δ

Lemma 11.1. For a fixed S, Iℓ(|S|) 6= Iℓ((1 + ρ′) |S|) w.p. at most 1
P

(where the probability is taken
over the random choice of ℓ ∈ 0, . . . , P − 1).

Proof. We say that a threshold τ = τ ℓ
k is bad with respect to S if |S| ≤ τ but (1 + ρ′) |S| > τ . Then, it

suffices to show that for each S, there is at most one ℓ ∈ 0, . . . , P − 1 such that τ is bad with respect
to S. To show this, we show that if τ is bad for S then no other threshold τ ′ is bad for S. Specifically,
denote by τ− the threshold closest to τ from the left, then we show that if τ is bad w.r. to S then
|S| > τ−. This implies that: (i) τ ℓ′

k′ is not bad w.r. to S for any τ ℓ′

k′ < τ (because |S| 6≤ τ ℓ′

k′ for any
τ ℓ′

k′ ≤ τ−); and (ii) τ ℓ′

k′ is not bad w.r. to S for any τ ℓ′

k′ > τ (because otherwise, |S| > τ in contradiction
to τ being bad w.r. to S). To see that |S| > τ− we note that when S is bad for τ then (1 + ρ′) |S| > τ ,
or equivalently, |S| > τ

1+ρ′
. So, it suffices to show that τ− ≤ τ

1+ρ′
. A simple check shows that this is

indeed the case (for our choice of ρ′ ≤ ρ
(1+ρ)P ). ¤

B.2.3 Hiding Protocol for Proving Upper Bound

The hiding protocol is used for proving upper bound on a random NP set S that is not given as common
input, but rather, S is known only to the verifier, who draws it out of some distribution Dn. The hiding
protocol is applicable when the verifier can also sample sets from another distribution D̃n that has the
following two properties: (a) There exists an AM protocol for proving upper bound on sets drawn from
D̃ (this protocol could be, for example, the Aiello-Hastad protocol, or our CBC protocol), and (b) D̃n

is statistically close to Dn in the sense that ∀S ⊆ {0, 1}n, PrS∼Dn [S] ≤ λ ·Pr
S∼ eDn

[S] for 1 ≤ λ = O(1).
The Hiding Protocol essentially runs as follows. The verifier sends the set of interest S “hidden”

within many sets drawn from D̃n. The prover sends claims for the sizes of all these sets (including
the set S). Subsequently, the verifier reveals which sets were drawn from D̃n, and for those sets upper
bound is proven (using the upper bound protocol for sets drawn from D̃n).

We now explain why this protocol proves upper bound on the set S drawn from Dn, and not only
on the sets drawn from D̃n. The heart of the matter is that, for any set Si received by the prover, the
probability that Si was drawn from D̃n is at least as high as the probability it was drawn from D. (This
is true, infomation theoretically.) Therefore, a dishonest prover is just as likely to cheat on samples
from D̃n as on S. But, when the prover cheats on samples from D̃n, the verifier rejects, w.h.p. (by the
soundness of the upper bound protocol for sets drawn from D̃n); thus, if the prover cheats on S, then
the verifier rejects, w.h.p..

For simplicity of the presentation, in the Theorem below, we describe settings that do not work with
using the CBC protocol as the upper bound protocol for sets drawn from D̃n. (This is because, the
AM-protocol for D̃n described there succeed on input of a single set and not many sets as in our CBC
protocol). Nonetheless, the theorem can easily be generalized, to work with the CBC protocol as well.

Theorem 12 (Hiding Protocol). For any n, ρ, δ > 0, the settings for the Hiding Protocol are as follows.
Let Dn, D̃n be two sampleable distributions on NP sets S ⊆ {0, 1}n, such that: (a) There exists an AM
protocol that, on input (1n, (ReS

, s̃)) (where ReS
is the NP-relation for an NP set S̃ drawn at random

from D̃), for honest prover, if s̃ =
∣∣∣S̃

∣∣∣, the verifier accepts, w.p. at least 1 − δ, and conversely, for any

prover strategy, if s̃ < (1− ρ)
∣∣∣S̃

∣∣∣, the verifier rejects, w.p. at least 1− δ. (b) D̃n is statistically close to

Dn in the sense that ∀S ⊆ {0, 1}n, PrS∼Dn [S] ≤ λ · Pr
S∼ eDn

[S] for 1 ≤ λ = O(1).
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In settings as above, there is an AM protocol that, given common input 1n, the prover claims and
proves an upper bound s ≥ (1 − ρ) |S| for a random set S sampled from D by the verifier, that is:

• Completeness: For honest prover, s = |S| and the verifier accepts, w.p. at least 1 − δ

• Soundness: For any prover, if s < (1 − ρ) |S|, then the verifier rejects, w.p. at least 1 − δ.

Proof. We first give the AM protocol and then prove its correctness. Denote k = ⌈(λ)⌉ and k′ = ⌈(2k
δ

)⌉.

The Protocol

1. V: Sample S ∼ Dn and S̃1, . . . , S̃k′ ∼ D̃n; send all k′ + 1 sets in random order.

2. P: Upon receiving S1, . . . , Sk′+1, send sizes s1, . . . , sk′+1 s.t. si = |Si|.

3. V: Send the index i0 of the set sample from D, i.e., Si0 = S.

4. P,V: Run (in parallel) the AM upper bound protocol for sets sampled from D̃n on the
sets Si ∀i 6= i0, with confidence 1 − δ

k′ . Accept iff all parallel runs accept.

Completeness: Completeness follows from the completeness of the AM protocol for sets sampled
from D̃: if si = |Si| ∀i, then the verifier accept, w.p. at least (1 − δ

k′ )k′
≥ 1 − δ.

Soundness: We first show that Pr[i 6= i0|Si] ≥
1
2 ∀i, and thus, prior to step 3, the prover cannot

identify the target set S (i.e., the set S that was drawn from D). Since Pr[i 6= i0|Si]+Pr[i = i0|Si] = 1,
it suffices to show Pr[i 6= i0|Si] ≥ Pr[i = i0|Si]. By Bayes Rule, the former is equivalent to showing
that Pr[Si|i 6= i0] Pr[i 6= i0] ≥ Pr[Si|i = i0] Pr[i = i0]. Now, noticing that the left hand side is
Pr

Si∼ eDn
[Si] ·

k′

k′+1 and the right hand side is PrSi∼Dn [Si] ·
1

k′+1 , and recalling that k′ ≥ k, we conclude

that this inequality holds for any Dn, D̃n for which k · Pr eDn
[Si] ≥ PrDn [Si].

In view of the above, even if the prover “cheats” only on one set Si (i.e., sends si s.t. si < (1−ρ) |Si|),
then i 6= i0, w.p. at least 1− 1

k′+1 ≥ 1− δ
2 . When this is the case, the verifier rejects, w.p. 1− δ

k′ ≥ 1− δ
2 .

Put together, the verifier rejects, w.p. at least 1 − δ. ¤

C Analysis of the Protocol for the Adaptive Case

We first note that the additional checks added to this protocol have a negligible effect on the completeness

condition: the probability that either |f−1(y
(k)
i )∩ h−1

k,i,ℓ
(k)
i

(0ℓ
(k)
i )| > 4p(n) for some i, k or that Eq. (1) is

violated for some i is exponentially vanishing.11 Turning to the soundness condition, we note that the

checks performed by the verifier force the prover to use A
(k)
i ⊆ T

(k)
i

def
= f−1(y

(k)
i ) ∩ h−1

k,i,ℓ
(k)
i

(0ℓ
(k)
i ). Also,

with overwhelmingly high probability, for every i = 1, ..., q, it holds that

1

m
·

m∑

k=1

2ℓ
(k)
i · |f−1(y

(k)
i ) ∩ h−1

k,i,ℓ
(k)
i

(0ℓ
(k)
i )|

|f−1(y
(k)
i )|

< 1 +
1

100q · p(n)
(2)

Combining Eq. (1) and Eq. (2), and recalling that A
(k)
i ⊆ T

(k)
i (and |f−1(y

(k)
i )| < 2p(n) ·2ℓ

(k)
i ), it follows

that (1/m) ·
∑m

k=1(|T
(k)
i \ A

(k)
i |/2p(n)) < 2/(100q · p(n)) for every i. Thus, for each i, the probability

over a random k that A
(k)
i 6= T

(k)
i is at most 1/25q. It follows that for a random k, the probability that

A
(k)
i = T

(k)
i for all i’s is at least 1 − (1/25). In this case, the correctness of the reduction implies the

soundness of the foregoing AM-protocol.

11Recall that here we refer to the case that A
(k)
i = f−1(y

(k)
i ) ∩ h−1

k,i,ℓ
(k)
i

(0ℓ
(k)
i ). Thus, regarding Eq. (1), we note that

the l.h.s is the average of m independent random variables, each having constant variance. Applying Chernoff bound, the
probability that Eq. (1) is violated is upperbounded by exp(−Ω(m/(100q · p(n))2)) = exp(−Ω(n)).
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D Non-Adaptive Reductions (General Functions)

We now turn to outline the proof of our second result.

Theorem 13 (General Functions). Unless coNP ⊆ AM, there exists no non-adprtive reduction from
deciding an NP-complete language to inverting a polynomial-time computible function.

Considering the AM-protocol used in the adaptive case, we note that in the current case the verifier
cannot compute (or even directly verify claims about) the size of sets of f -preimages of the reduction’s
queries. Fortunately, adapting the ideas of [BoTr] to the current setting, allows not only to present a
non-uniform AM-protocol for coNP, but even to present a unifom one.

Here R is a non-adaptive reduction of some set L ∈ NP to the average-case inverting of an arbitrary
(polynomial-time computible) function f , and our goal again is to show that L ∈ AM. We may assume,
without loss of generality, that the queries of R(x, ·) are identically (but typically not independently)
distributed, and represent this distribution by the random variable Rw; that is, Pr[Rx = y] = |{r ∈
{0, 1}n′

: R(x, r)}|/2n′
, where n′ denotes the number of coins used by R(x, ·).

A simple case (analogous to [FeFo]): We first consider the case that R’s queries are distributed

identically to Fn
def
= f(Un), where Un denotes the uniform distribution over {0, 1}n. In this case, we ask

the prover to provide |f−1(y
(k)
i )| along with each query y

(k)
i made in the emulation of R(x, r(k)), and

ask for lower-bound proofs (cf., [GoSi]) regarding the claimed sizes. To prevent the prover from under-

stating these sizes, we compare the value of (1/qm) ·
∑q

i=1

∑m
k=1 log2 |f

−1(y
(k)
i )| to the expected value of

log2 |f
−1(f(Un))|. Mimicing [FeFo], one may suggest that the latter value (i.e., Exp[log2 |f

−1(Fn)|])
can be given as a non-uniform advice, but we can di better: We may ask the prover to supply
Exp[log2 |f

−1(f(Un))|] and prove its approximate correctness using the following protocol.

The verifier selects x1, ..., xm, computes yi = f(xi) for every i, sends y1, ..., ym to the prover
and asks for |f−1(y1)|, ..., |f−1(ym)| along with lower and upper bound constant-round inter-
active proofs. (As usual, the lower-bound AM-protocol of [GoSi] (or [GVW]) can be applied
because membership in the corresponding sets can be easily verified.) The upper-bound
protocol of [AiHa] can be applied, because the verifier have secret random elements of the
corresponding sets.

We note that if the prover understates the set size by more than an E factor in at least n/ E executions
then it gets detected with overwhelmingly high probability. Using a suitable setting of parameters, this
establishes the value of Exp[log2 |f

−1(f(Un))|] up to a sufficiently small aditive error, which suffices for

our purposes. Specifically, this will force the prover not to understate the value of |f−1(y
(k)
i )| by more

than a 1/10p(n) factor for more than m/10 of the possible pairs (i, k).

A special case of all light queries : We now allow Rw to depend arbitrarily on w, but restrict
our attention to the natural case in which the reduction does not ask a query y with probability that
exceeds Pr[Fn = y] by too much. Specifically, for a threshold parameter t to be determined later, we
call a query y t-heavy if Pr[Rw = y] > t · Pr[Fn = y]. Suppose that all queries of Rw are light. The
idea of dividing queries inot light vs. heavy is due to [BoTr], our definition of light/heavy is, however,
different. In this case, we modify the foregoing protocol as follows.

Here it makes no sense to compare (1/qm)·
∑q

i=1

∑m
k=1 log2 |f

−1(y
(k)
i )| to Exp[log2 |f

−1(Fn)|].
Instead we should compare the former (empirical) average to Exp[log2 |f

−1(Rw)|]. Thus, the
verifier needs to obtain a good approximation to the latter value. This is done by generating
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many yi’s as before (i.e., yi = f(xi) for uniformly selected xi ∈ {0, 1}n) along with many
more yi’s sampled from Rw, and sending all these yi’s (in random order) to the prover.
Specifically, for t = maxy∈{0,1}∗{Pr[Rw = y]/Pr[Fn = y]}, we generate t times more yi’s
from Rw, and each yi received by the prover is more likely to come from Fn than from Rw.

The prover will be asked to provide all |f−1(yi)|’s along with lower-bound proofs, and af-
terwards (i.e., only after commiting to the |f−1(yi)|’s) the verifier will ask for upper-bound
proofs for those yi’s generated via Fn (for which the verifier knows a random xi ∈ f−1(yi)).

Recall that the prover cannot significantly overstate the size of any |f−1(yi)| (i.e., overstate it by
more than an E = 1/poly(n) factor). If the prover significantly understates the sizes of too many of
the |f−1(yi)|’s, then it is likely to so overestimate also the sizes of many |f−1(yi)|’s such that yi was
generated by sampling Fn. But in this case, with overwhelimingly high probability, the prover will fail
at least one of the corresponding upper-bound proofs.

The general case (both light and heavy queries) : We now allow Rw to depend arbitrarily on
w, without any restrictions whatsoever. Observe that the probability that Fn is t-heavy is at most 1/t,
and thus modifying an inverting oracle such that it answers t-heavy queries by ⊥ effects the inverting
probability of the oracle by at most 1/t. Thus, for t ≥ 2, if we answer t-heavy queries by ⊥ (and
answer other f -images with a preimage), then we emulate a legitimate inverting oracle (which inverts
f with probability 1/2) and the reduction is still supposed to work well. Referring to y as t-light it it
is not t-heavery, we note that t-light queries can be handled as in the foregoing special case (provided
t = poly(n)), wheraes t-heavy queries are deal by the previous discussion. The problem is to determine
whether a query is t-heavy or t-light, and certainly we have no chance of going so if many (reduction)
queries are very close to the threshold (e.g., Pr[Rw = y] = (t±n− log n) ·Pr[Fn = y]). Thus, as in [BoTr],
we select the threshold at random (say, uniformly in the interval [2, 3]). Next, we augment the foregoing
protocol as follows.

• We ask the prover to provide for each query y
(k)
i , also the value of Pr[Rw = y

(k)
i ], or equivalently

the size of {r : R(w, r) = y
(k)
i }. In addition, we ask for lower-bound proofs of these sizes.

• Using lower and upper bound protocols (analogously to the simple case)12, we get estimates of
Exp[log2 |{r : R(w, r) = Rw}|]. We let the verifier check that this value is sufficiently close to

(1/qm) ·
∑q

i=1

∑m
k=1 log2 |{r : R(w, r) = y

(k)
i }|, thus preventing an understating of the sizes of the

latter.

Hence, combining these two items, the verifier gets a good estimate of the size of {r : R(w, r) =

y
(k)
i } for all but few (i, k)’s.

• Assuming that the value of Pr[Rw = y
(k)
i ] are approximalely correct, the verifier makes tentative

decisions regarding which of the y
(k)
i ’s is t-light.

Using a protocol as in the special case, the verifier obtains estimates of Exp[log2 |f
−1(R′

w)|], where
R′

w denotes Rw conditioned on being t-light. The verifier checks that this value is sufficiently close

to the average of log2 |f
−1(y

(k)
i )|, taken only over t-light y

(k)
i ’s.

Recall that the verifier accepts w if and only if all the foregoing checks are satisfied and R(w, r(k), a
(k)
1 , ..., a

(k)
q ) =

0 for a uniformly selected k ∈ {1, ...,m}.

12In the simple case we got a got estimate of Exp[log2 ||f
−1(Fn)|], while relying on our ability to generate samples of

Fn along with a uniformly distributed member of |f−1(Fn)|. Here we rely on our ability to generate samples of Rw along
with a uniformly distributed member of {r : R(w, r) = Rw}.
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Ignoring the small probability that we selected a bad threshold t as well as the small probability
that we come accross a query that is close to the threshold, we analyze the foregoing protocol as follows.
We first note that for almost all t-light queries, we obtain correct estimates of the size of their f -image.
Recalling that, for almost all queries y, we obtained correct estimates of the size of {r : R(w, r) = y},
it follows that we correctly characterize almost all t-light queries as such. As for (almost all) t-heavy
queries y, we may wrongly consider them t-light only if we overestimate the size of their preimage (which
is highly improbible in light of the lower-bound proofs and recalling that we have a good estimate of
{r : R(w, r) = y} for these t’s). Thus, except for few queries, all decisions made about these queries
are correct, where we refer to the decisions of whether or not they are t-light, and for t-light queries
the approximate size of their set of preimages. In particular, for a random k ∈ {1, ..., m}, with high

probability all decisions regarding all y
(k)
i ’s are correct, in which case the correctness of the reduction

implies the completeness and soundness of the foregoing AM-protocol.
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