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Abstract—Although multi-frame super resolution has been extensively studied in past decades, super resolving real-world video
sequences still remains challenging. In existing systems, either the motion models are oversimplified, or important factors such
as blur kernel and noise level are assumed to be known. Such models cannot capture the intrinsic characteristics that may
differ from one sequence to another. In this paper, we propose a Bayesian approach to adaptive video super resolution via
simultaneously estimating underlying motion, blur kernel and noise level while reconstructing the original high-res frames. As a
result, our system not only produces very promising super resolution results outperforming the state of the art, but also adapts
to a variety of noise levels and blur kernels. To further analyze the effect of noise and blur kernel, we perform a two-step analysis
using the Cramer-Rao bounds. We study how blur kernel and noise influence motion estimation with aliasing signals, how noise
affects super resolution with perfect motion, and finally how blur kernel and noise influence super resolution with unknown motion.
Our analysis results confirm empirical observations, in particular that an intermediate size blur kernel achieves the optimal image
reconstruction results.

Index Terms—Super resolution, optical flow, blur kernel, noise level, aliasing

✦

1 INTRODUCTION

Multi-frame super resolution, namely estimating the high-

res frames from a low-res sequence, is one of the fundamen-

tal problems in computer vision and has been extensively

studied for decades. The problem becomes particularly

interesting as high-definition devices such as high definition

television HDTV (1920× 1080) dominate the market. The

resolution of various display has increased dramatically

recently, including the New iPad (2048 × 1536), 2012

Macbook Pro (2880 × 1800), and ultra high definition

television UHDTV (3840 × 2048 or 4K, 7680 × 4320 or

8k). As a result, there is a great need for converting low-

resolution, low-quality videos into high-resolution, noise-

free videos that can be pleasantly viewed on these high-

resolution devices.

Although a lot of progress has been made in the past

30 years, super resolving real-world video sequences still

remains an open problem. Most of the previous work

assumes that the underlying motion has a simple parametric

form, and/or that the blur kernel and noise levels are known.

But in reality, the motion of objects and cameras can be

arbitrary, the video may be contaminated with noise of

unknown level, and motion blur and point spread functions

can lead to an unknown blur kernel.

Therefore, a practical super resolution system should

simultaneously estimate optical flow [12], noise level [23]

and blur kernel [16] in addition to reconstructing the high-

res image. As each of these problems has been well

studied in computer vision, it is natural to combine all

these components in a single framework without making

simplified assumptions.

In this paper, we propose a Bayesian framework for

adaptive video super resolution that incorporates high-res
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image reconstruction, optical flow, noise level and blur ker-

nel estimation. Using a sparsity prior for the high-res image,

flow fields and blur kernel, we show that super resolution

computation is reduced to each component problem when

other factors are known, and the MAP inference iterates

between optical flow, noise estimation, blur estimation and

image reconstruction. As shown in Figure 1 and later exam-

ples, our system produces promising results on challenging

real-world sequences despite various noise levels and blur

kernels, accurately reconstructing both major structures and

fine texture details. In-depth experiments demonstrate that

our system outperforms the state-of-the-art super resolution

systems [1], [31], [36] on challenging real-world sequences.

We are also interested in theoretical aspects of super

resolution, namely to what extent the original high-res

information can be recovered under a given condition.

Although previous work [3], [19] on the limits of super

resolution provides important insights into the increasing

difficulty of recovering the signal as a function of the up-

sampling factor, most of the bounds are obtained for the

entire signal with frequency perspective ignored. Intuitively,

high frequency components of the original image are much

harder to recover as the blur kernel, noise level and/or up-

sampling factor increases.

In a preliminary conference version of the paper [22], we

theoretically analyzed the performance using Wiener filter

theory. With known ground truth motion, Our analysis pre-

dicts that a small blur kernel always produces better image

reconstruction results. However we empirically observed

that a medium-sized blur kernel achieves the best super

resolution results.

When the motion is unknown, our system estimates

the motion from low-res, aliased images. Aliasing causes

problem to motion estimation and is better suppressed by

a large blur kernel. A large blur kernel however boosts

the noise more in the image reconstruction process. In this

paper, we perform a two-step analysis to consider motion

estimation. Our theoretical results confirm our empirical

observations that the blur kernel has a two-fold effect on
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(a) Input low-res (b) Bicubic up-sampling ×4 (c) Output from our system (d) Original frame

Fig. 1. Our video super resolution system is able to recover image details after×4 up-sampling.
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Fig. 2. Video super resolution diagram. The original high-res video sequence is generated by warping the
source frame (enclosed by a red rectangle) both forward and backward with some motion fields. The high-res
sequence is then smoothed with a blur kernel, down-sampled and contaminated with noise to generate the
observed sequence. Our adaptive video super resolution system not only estimates the high-res sequence, but
also the underlying motion (on the lattice of original sequence), blur kernel and noise level.

the image reconstruction and a medium-size blur kernel

can reach a tradeoff between aliasing suppression and noise

reduction.

The paper is organized as follows. After reviewing re-

lated work in Sect 2, we introduce our Bayesian super

resolution framework in Sect 3. We prove the performance

bounds in Sect 4, and show experimental results in Sect 5.

After in-depth discussion in Sect 6, we conclude our paper

in Sect 7.

2 RELATED WORK

Since the seminal work by Tsai and Huang [37], significant

progress has been made in super resolution. We refer

readers to [26] for a comprehensive literature review.

Early super resolution work focused on dealing with

the ill-posed nature of reconstructing a high-res image

from a sequence of low-res frames [13]. The lack of

constraints is often addressed by spatial priors on the high-

res image [30]. Hardie et al. [11] jointly estimated the

translational motion and the high-res image, while Bascle

et al. [4] also considered the motion blur using an affine

motion model. But these motion models are too simple to

reflect the nature of real-world sequences.
To deal with the complex motion of faces, Baker and

Kanade [2] proposed to use optical flow for super resolu-

tion, although in fact a parametric motion model was adopt-

ed. Fransens et al.[10] proposed a probabilistic formulation

and jointly estimated the image, flow field and Gaussian

noise statistics within an EM framework. They assumed

that the blur kernel was known, and used Gaussian priors

for both images and flow fields. However, Gaussian priors

tend to over-smooth sharp boundaries in images and flows.
While most of these motion-based super resolution mod-

els use somewhat standard flow estimation techniques,

recent advances in optical flow have resulted in much more

reliable methods based on sparsity priors e.g. [6]. Accurate

motion estimation despite strong noise has inspired Liu and

Freeman [21] to develop a high quality video denoising sys-

tem that removes structural noise in real video sequences.

In this paper, we also want to incorporate recent advances

in optical flow for more accurate super resolution.
Inspired by the successful non-local means method for

video denoising, Takeda et al. [36] avoided explicit sub-
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pixel motion estimation and used 3D kernel regression

to exploit the spatiotemporal neighboring relationship for

video up-sampling. However, their method still needs to

estimate a pixel-wise motion at regions with large motion.

In addition, its data model does not include blur and so its

output needs to be postprocessed by a deblurring method.

While most methods assume the blur kernel is known,

some work considers estimating the blur kernel under

simple settings. Nguyen et al.[24] used the generalized

cross-correlation method to identify the blur kernel using

quadratic formulations. Sroubek et al.[32] estimated the

image and the blur kernel under translational motion models

by joint MAP estimation. However, their models can barely

generalize to real videos due to the oversimplified motion

models.

Significant improvements on blur estimation from real

images have been made in the blind deconvolution com-

munity. Levin et al.[18] showed that joint MAP estimation

of the blur kernel and the original image favors a non-

blur explanation, i.e. , a delta blur function and the blurred

image. Their analysis assumes no spatial prior on the blur

kernel, while Joshi et al.[14] used a smoothness prior for

the blur kernel and obtained reliable estimates. Moreover,

Shan et al.[31] applied the recent development in image

deconvolution to super resolution and obtained promising

improvement, but their method only works on a single

frame and does not estimate the noise statistics.

On the theory side, there has been important work on

the limit of super resolution as the up-sampling factor

increases [3], [19]. Their analysis focused on the stability of

linear systems while ignoring the frequency aspects of the

limit. In fact, many useful tools have been developed in the

signal processing community to analyze the performance

of linear systems w.r.t. a particular frequency component.

Robinson and Milanfar [27] derived the Cramer-Rao bound-

s (CRB) [15] for each frequency bands using translational

motion model. Their analysis does not consider the aliasing

effect and their results suggest that a small blur kernel

always produces the best performance. Empirically we find

that a medium-sized blur kernel can achieve the optimal

performance.

Similar to our iterative system, we perform a two-step

analysis of the CRB for motion estimation and image recon-

struction. First, we analyze the estimation of motion on the

low-res input images with high frequency aliasing. Second,

we analyze the performance of image reconstruction with

errors in the estimated motion. Our analysis is closer to

the estimation procedure and consistent with the empirical

observations.

3 A BAYESIAN MODEL FOR SUPER RESO-
LUTION

Given the low-res sequence {Jt}, our goal is to re-

cover the high-res sequence {It}. Due to computational

issues, we aim at estimating It using adjacent frames

Jt−N , · · · , Jt−1, Jt, Jt+1, · · · , Jt+N . To make the nota-

tions succinct, we will omit t from now on. Our prob-

lem becomes to estimate I given a series of images

{J−N , · · · , JN}. In addition, we will derive the equations

using gray-scale images for simplicity although our imple-

mentation is able to handle color images.

The model of obtaining low-res sequence is illustrated

in Figure 2. A full generative model that corresponds to

Figure 2 is shown in Figure 3. At time i = 0, frame

I is smoothed and down-sampled to generate J0 with

noise. At time i = −N, · · · , N, i 6= 0, frame I is first

warped according to a flow field wi, and then smoothed

and down-sampled to generate Ji with noise and outlier

Ri (we need to model outliers because optical flow cannot

perfectly explain the correspondence between two frames).

The unknown parameters in the generative models include

the smoothing kernel K, which corresponds to point spread

functions in the imaging process, or smoothing filter when

video is down-sampled, and parameter θi that controls the

noise and outlier when I is warped to generate adjacent

frames.

We use Bayesian MAP to find the optimal solution

{I∗, {wi}∗,K∗, {θi}∗} = argmax
I,{wi},K,{θi}

p(I, {wi},K, {θi}|{Ji}),
(1)

where the posterior is the product of prior and likelihood:

p(I, {wi},K, {θi}|{Ji}) ∝ p(I)p(K)
∏

i

p(wi)
∏

i

p(θi) ·

p(J0|I,K, θ0)
∏

i 6=0

p(Ji|I,K,wi, θi). (2)

Sparsity on derivative filter responses is used to model

the priors of image I , optical flow field wi and blur kernel

K

p(I)=
1

ZI(η)
exp

{

−η
∥

∥∇I
∥

∥

}

, (3)

p(wi)=
1

Zw(λ)
exp

{

−λ
(

∥

∥∇ui

∥

∥+
∥

∥∇vi
∥

∥

)}

, (4)

p(Kx)=
1

ZK(ξ)
exp

{

−ξ
∥

∥∇Kx

∥

∥

}

, (5)

where ∇ is the gradient operator,
∥

∥∇I
∥

∥ =
∑

q

∥

∥∇I(q)
∥

∥ =
∑

q(|Ix(q)|+ |Iy(q)|) (Ix = ∂
∂x

I, Iy = ∂
∂y

I) and q is the

pixel index. The same notation holds for ui and vi, the

horizontal and vertical components of the flow field wi. For

computational efficiency, we assume the kernel K is x- and

y-separable: K=Kx ⊗Ky , where Ky has the same pdf as

Kx. ZI(η), Zw(λ) and ZK(ξ) are normalization constants

only dependant on η, λ and ξ, respectively.

To deal with outliers, we assume an exponential distri-

bution for the likelihood

p(Ji|I,K, θi) =
1

Z(θi)
exp

{

−θi

∥

∥

∥Ji − SKFwi
I
∥

∥

∥

}

, (6)

where the parameter θi reflects the noise level of frame i
and Z(θi) = (2θi)

−dim(I). Matrices S and K correspond

to down-sampling and filtering with blur kernel K, respec-

tively. Fwi
is the warping matrix corresponding to flow wi.

Naturally, the conjugate prior for θi is a Gamma distribution

p(θi;α, β) =
βα

Γ(α)
θα−1
i exp{−θiβ}. (7)

Now that we have the probability distributions for both

prior and likelihood, and the Bayesian MAP inference
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Fig. 3. The graphical model of video super resolution.
The circular nodes are variables (vectors), whereas the
rectangular nodes are matrices (matrix multiplication).
We do not put priors η, λ, ξ, α and β on I, wi, K, and
θi for succinctness.

is performed using coordinate descend. Note that in this

model there are only five free parameters: η, λ, ξ, α and

β.

3.1 Image Reconstruction

Given the current estimates of the flow field wi, the blur

kernel K and the noise level θi, we estimate the high-res

image by solving

I∗ = argmin
I

θ0
∥

∥SKI − J0
∥

∥+ η
∥

∥∇I
∥

∥

+

N
∑

i=−N,i6=0

θi
∥

∥SKFwi
I − Ji

∥

∥. (8)

To use gradient-based methods, we replace the L1 norm

with a differentiable approximation φ(x2) =
√
x2 + ǫ2

(ǫ = 0.001), and denote the vector Φ(|I|2)=[φ(I2(q))].
This objective function can be solved by the iterated

reweighted least squares (IRLS) method [20], which itera-

tively solves the following linear system:
[

θ0K
T
S
T
W0SK+ η

(

D
T
xWsDx +D

T
y WsDy

)

+

N
∑

i=−N,i6=0

θiF
T
wi
K

T
S
T
WiSKFwi

]

I

= θ0K
T
S
T
W0J0 +

N
∑

i=−N,i6=0

θiF
T
wi
K

T
S
T
WiJi, (9)

where the matrices Dx and Dy correspond to the x- and

y- derivative filters. IRLS iterates between solving the

above least square problem (through conjugate gradient)

and estimating the diagonal weight matrices

W0 = diag(Φ′(|SKI − J0|2)),
Ws = diag(Φ′(|∇I|2)), (10)

Wi = diag(Φ′(|SKFwi
I − Ji|2))

based on the current estimate.

3.2 Motion and Noise Estimation

Given the high-res image and the blur kernel, we jointly

estimate the flow field and the noise level in a coarse-to-

fine fashion on a Gaussian image pyramid. At each pyramid

level noise level and optical flow are estimated iteratively.

The Bayesian MAP estimate for the noise parameter θi has

the following closed-form solution

θ∗i =
α+Nq − 1

β +Nqx
, x=

1

Nq

Nq
∑

q=1

∣

∣

∣

(

Ji−SKFwi
I
)

(q)
∣

∣

∣
, (11)

where x is sufficient statistics. When noise is known, the

flow field wi is estimated as

w∗
i =argmin

wi

θi
∥

∥SKFwi
I − Ji

∥

∥+λ
∥

∥∇ui

∥

∥+λ
∥

∥∇vi
∥

∥, (12)

where we again approximate |x| by φ(x2). Notice that this

optical flow formulation is different from the standard ones:

the flow is established from high-res I to low-res Ji.
By first-order Taylor expansion

Fwi+dwi
I ≈ Fwi

I + Ixdui + Iydvi, (13)

where Ix = diag(Fwi
Ix) and Iy = diag(Fwi

Iy), we can

approximate the first (data) term in Eqn. 12 as
∥

∥SKFwi
I − Ji

∥

∥ ≈ (Fwi
I + Ixdui + Iydvi − Ji)

T

W̃i(Fwi
I + Ixdui + Iydvi − Ji), (14)

where W̃i =K
T
S
T
WiSK, the second (spatial) term for

the horizontal flow as
∥

∥∇ui

∥

∥ ≈ (ui + dui)
T
L(ui + dui)

T , (15)

where

L = D
T
x diag(Φ′(|∇ui|2))Dx +D

T
y diag(Φ′(|∇ui|2))Dy (16)

is a weighted Laplacian matrix, and similarly for the third

term. Taking derivative w.r.t. the unknown flow increment

(dui, dvi) and setting it to be zero, we can derive
[

I
T
xW̃iIx + ζiL I

T
xW̃iIy

I
T
y W̃iIx I

T
y W̃iIy + ζiL

] [

dui

dvi

]

=

−
[

ζiLui

ζiLvi

]

−
[

I
T
x

I
T
y

]

(

W̃iFwi
I −K

T
S
T
WiJ

)

, (17)

where ζi=
λ
θi

. Again, we use IRLS [20] to solve the above

equation iteratively.

One may notice that it is more expensive to solve

Eqn. 17 than ordinary optical flow because in each iteration

smoothing and down-sampling as well as the transposes

need to be computed. We estimate optical flow from Ji
to J0 on the low-res lattice, and up-sample the estimated

flow field to the high-res lattice as initialization for solving

Eqn. 17.

3.3 Kernel Estimation

Without loss of generality, we only show how to estimate

the x-component kernel Kx given I and J0. Let each row

of matrix A be the concatenation of pixels corresponding

to the filter K, and define My : MyKx =Ky ⊗Kx =K.

Estimating Kx leads to

K∗
x = argmin

Kx

θ0

∥

∥

∥
SAMyKx − J0

∥

∥

∥
+ ξ

∥

∥

∥
∇Kx

∥

∥

∥
, (18)
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which is optimized by IRLS.

Although similar Bayesian MAP approach performed

poorly for general debluring problems [18], the spatial

smoothness prior on the kernel prevents kernel estimation

from converging to the delta function, as shown by [14].

Our experiments also show that our estimation is able to

recover the underlying blur kernel.

TABLE 1
The coordinate descent algorithm for Bayesian

inference on video super resolution

Input: low-res frames {Ji}Ni=−N and upsampling factor s

• Initialize k = 1, I(0) = J0 ↑ s (bicubic upsampling)

• Loop until |I(k−1) − I(k)| < ǫ (outer iteration)

- Estimate motion w
(k)
i by solving Eqn. 17

- Estimate noise θ
(k)
i by solving Eqn. 11

- Initialize m = 1, I(k,0) = I(k−1)

- Loop until |I(k,m) − I(k,m−1)| < ǫ (inner iteration)

- Compute weight W0, Ws, Wi using Eqn. 10

- Estimate I(k,m) by solving Eqn. 9

- m = m+ 1

- Estimate kernel K
(k)
x and K

(k)
y by solving Eqn. 18

- k = k + 1

Output: I = I(k)

3.4 Coordinate Descent

Our optimization algorithm iterates between estimating the

high-res frame I , flow fields {wi}, noise level {θi}, and

blur kernel K. As shown in Table 1, our optimization

strategy is coordinate descent, namely sequentially optimiz-

ing each of the four sets of variable, and sweep through

the entire sets several times until convergence. One sweep

is called an outer iteration, whereas one IRLS step in

optimizing a particular set of variable is called an inner

iteration.

Although more details of the experiments will be dis-

cussed in Sect 5, we show the convergence of our system

in Figure 4. In the beginning (the first row), the high-res

image I is blurry (initialized as bicubic up-sampling of

the low-res input), so the estimated motion {wi} is not

very accurate. However, because of the propagation from

nearby frames, the image still gets sharper in the end. As

soon as a new high-res I is estimated, motion estimation,

noise estimation and kernel estimation are performed, and

we enter the next inner iteration of estimating I . Clearly,

with more accurate estimates of other variables (especially

motion), we are able to achieve sharper images.

4 PERFORMANCE BOUNDS

Intuitively super resolution becomes more challenging

when noise level increases. It may be futile to perform super

resolution if the blur kernel is too large and smoothes out

all the high frequency components. Hence we are interested

in theoretically analyzing the performance bound. Such an

TABLE 2
Notations for deriving the performance bounds.

A(ω) magnitude of signal at frequency ω

A1=A(ω1) magnitude of low frequency signal
A2=A(ω2) magnitude of aliasing signal
Gσk

(ω) DFT of Gaussian blur kernel
NH length of high-res signal
NL length of low-res signal

M downsampling ratio, M = NH

NL

ω1 low frequency
ω2=ω1+NL aliasing high frequency
σn standard deviation of imaging noise
σk standard deviation of Gaussian blur kernel
u2 translation between two high-res signals

analysis can serve as a good guideline for building up

practical systems.

It is difficult, however, to exactly analyze the proposed

non-linear system that iteratively estimates the motion and

the image. Hence we simplify both the problem setting and

the algorithm. The generative imaging process is the same

as in Section 3. The input are 1D signals whose spectrum

follows the power law for natural images, i.e. the magnitude

of signal decreases w.r.t. frequency. We assume that the

motion is a global translation.

In addition, we analyze the errors produced by one

iteration to solve the proposed non-linear system. Given the

input low-res signals, the algorithm first performs motion

estimation using the input signals and then reconstructs

the high-res signal using the estimated motion. For the

motion estimation step, we want to analyze how noise

and blur kernel affect motion estimation. For the image

reconstruction step, we analyze how the imaging noise

and the error in the estimated motion affect the image

reconstruction. Such a semi-quantitative analysis illustrates

the tradeoff we need to consider for building up the system.

The influence of the noise is easy to understand. A

small noise level always results in better motion and image

estimates. The influence of the blur kernel is more subtle

because several factors are involved, particularly aliasing.

High frequency components in the original signal become

aliasing after downsampling, as shown in Figure 5. The

aliasing signals appear to have different motion than the

low frequency components at the low resolution grid (see

analysis below) and cause errors in motion estimation. We

need a large blur kernel to reduce the influence of aliasing.

However, a large blur kernel boosts the noise more in

image reconstruction. An optimal blur kernel should reach

a tradeoff between these two conflicting requirements.

To better describe these relationships, we analyze the

Cramer-Rao bounds (CRB) for both the motion estimation

and the image reconstruction problems. The CRB gives

the minimum mean square error (MSE) that any unbiased

estimator can achieve [8], [15]. For certain problems the

bounds can be achieved by the maximum likelihood esti-

mator.
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Fig. 4. The convergence of our video super resolution algorithm. The outer iteration consists of sweeping
through estimating motion, noise level, blur kernel and the high-res frame. The inner iteration here consists of
updating high-res frame, namely the iteratively reweighted least square (IRLS) procedure in solving Eqn. 9. The
index (#i,#j) shows the reconstruction result for outer iteration i and inner iteration j.

(a) Time domain (b) Frequency domain

Fig. 5. Aliasing in downsampling. With low sampling
rates, the high frequency signal (solid blue) appears to
be a low frequency signal (dash red) both in the tem-
poral domain (left) and the frequency domain (right).
Note that downsampling also decrease the energy of
the signal, as shown in the frequency domain.

4.1 Performance Bound for Motion Estimation
with Aliasing and Noise

4.1.1 Problem Setting

A basic approach to analyze a linear system is to study the

response of a particular frequency input [25]. To analyze the

effect of aliasing, we pair each low frequency component of

the original signal with the corresponding high frequency

aliasing component. We study the effects of the noise and

the blur kernel on motion estimation in Sections 4.1.2

and 4.1.3. We then combine the analysis for all the pairs

to obtain the performance bound for the whole signal in

Section 4.1.4. Such analysis is exact for linear systems and

can also be used to analyze non-linear systems [5].

We assume the spectrum of the original signal follows

a power-law distribution [28], i.e. |A(ω)| = |ω|−1.64, as

shown in Figure 6.

Fig. 6. Assumed spectra of natural images. High
frequency components tend to have smaller magni-
tude.

We pair each low frequency component ω1 with a

corresponding high frequency aliasing component ω2. i.e. ,

ω2 = ω1 + kNL [25], where NL is the length of the input

low-res signal. The lowest aliasing frequency component

tends to have a much larger magnitude than the other

aliasing frequencies. Hence we assume that there is only

one aliasing frequency component ω2 = ω1+NL, as shown

in Figure 7.
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The original signal with two frequency components in

the time domain is

I1(n) =
A1

NL

e
−

i2πω1n

NH +
A2

NL

e
−

i2πω2n

NH

=
A1

NL

W−ω1n +
A2

NL

W−ω2n, (19)

where NL and NH are the lengths of the low-res and

original signals, ω1 is the low frequency and ω2 is the

aliasing high frequency, and 1
NL

serves as a normalization

constant. To make the derivation more succinct, we use

W = e
i2π
NH . We are using complex signals here. For real

signals, the DFT coefficient at ω is the conjugate of that at

−ω and we have the same number of unknowns to estimate.

The derivation is the same but involves the DFT coefficients

at both the positive and the negative frequencies.

The translated signal is

I2(n) =
A1

NL

W−ω1(n−u2) +
A2

NL

W−ω2(n−u2), (20)

where u2 is the motion on the high-res grid.

In the Discrete Fourier transforms (DFT) domain, the

shift in time becomes a change in the phase of the signal.

The DFTs of the original signals are

Ĩ1(ω)=M [A1δ(ω−ω1) +A2δ(ω − ω2)], (21)

Ĩ2(ω)=M [A1δ(ω−ω1)W
u2ω1+A2δ(ω−ω2)W

u2ω2 ], (22)

where M = NH

NL
is the downsampling ratio.

The effect of downsampling causes the low frequency

and other frequency components to overlap with each other.

The DFTs of the low-res signals are

J̃1(ω)=[Gσk
(ω1)A1+Gσk

(ω2)A2]δ(ω−ω1)+n1(ω),(23)

J̃2(ω)=[Gσk
(ω1)A1W

u2ω1+Gσk
(ω2)A2W

u2ω2 ]δ(ω−ω1)

+n2(ω), (24)

where n1 and n2 are assumed to be additive white Gaussian

noise (AWGN) with variance σ2
n, and the DFT of the

Gaussian blur kernel is Gσk
(ω) = e−

ω2σ2
k

2 , where σk is

the standard deviation of the Gaussian blur kernel.

We can obtain the pixel-wise motion estimate by correla-

tion methods [27] but need to solve for the subpixel motion

on the low-res signals. The phase of the low frequency

signal is linear w.r.t. the unknown motion. However the

phase of the aliasing high frequency component ( 2πu2ω2

NH
)

has a nonlinear relationship w.r.t. the motion u2, if we

treat the aliasing component as a part of the low frequency

signal.

4.1.2 Treating Aliasing as Noise

We propose to model aliasing as random noise in the

motion estimation process because the magnitude of the

aliasing signal is relatively small compared to the low

frequency signal. For natural images, their power spectra

follow a power law |A(ω)|2 = |ω|−1.64 [28] and the

magnitude of the low frequency coefficient is larger than

the high frequency one (the ratio between ω1 = 1 and

ω2 = 9 is larger than 30 for NH = 16 and M = 2) . In

addition, the Gaussian blur kernel also attenuates the high

frequency components more than the low frequency ones

(the ratio between ω1 = 1 and ω2 = 9 is about 2). Hence

|Gσk
(ω1)A1| ≫ |Gσk

(ω2)A2| and it is reasonable to treat

the aliasing component as AWGN.

Now the problem settings become

J̃1(ω)=[Gσk
(ω1)A1+Gσk

(ω2)A2]δ(ω−ω1)+n1(ω),

=Gσk
(ω1)A1δ(ω − ω1) + n

′

1(ω), (25)

where n
′

1 = n1 + Gσk(ω2)A2 has variance σ2
n
′ =

G2
σk
(ω2)A

2
2 + σ2

n. Similarly

J̃2(ω) = Gσk
(ω1)A1δ(ω − ω1)W

u2ω1

NH
+ n

′

2(ω), (26)

where n
′

2 has the same variance as n
′

1.

4.1.3 Cramer Rao bounds (CRB) for motion estima-
tion

The CRB is the inverse of the Fisher information and

provides a bound for unbiased estimators [8]. The Fisher

information matrix describes the sensitivity of the likeli-

hood function to the unknown parameters. We can obtain

the Fisher information by taking the derivatives of the log

likelihood function w.r.t. the unknown parameters. The neg-

ative log likelihood function for the input low-res signals

is

− log p(J̃1, J̃2|A1, u2) =
1

2σ2
n′

{

||J̃1(ω1)−Gσk
(ω1)A1||2

+||J̃2(ω1)−Gσk
(ω1)A1W

u2ω1

NH
||2

}

, (27)

where || ∗ ||2 evaluates the L2 norms for complex signals.

The Fisher information matrix for the unknown parame-

ters θ = {Re{A1}, Im{A1}, u2} is

Iθ=
G2

σk
(ω1)

σ2
n′







2 0 A1ω12π
NH

0 2 A1ω12π
NH

A1ω12π
NH

A1ω12π
NH

A2
1ω

2
14π

2

N2
H






, (28)

and its inverse is

I
−1
θ =

σ2
n′

2G2
σk
(ω1)







1 −3 − NH

πA1ω1

−3 1 − NH

πA1ω1

− NH

πA1ω1
− NH

πA1ω1

N2
H

π2A2
1ω

2
1






. (29)

We obtain the following CRB for estimating the motion
u2 as

var[û2] ≥ I
−1

θ
(3, 3)=

N2

H

2π2A2

1
ω2

1

(

σ
2

ne
ω4
1σ4

k
4 +A

2

2e
(ω4

1−ω4
2)σ4

k
4

)

(30)

The effect of the blur kernel (σk) on the motion es-

timation is two-fold. A small blur kernel preserves the

effective low frequency components for matching, boosts

less the imaging noise (first term), but suppresses less the

aliasing component (second term). A large blur kernel, on

the other hand, preserves less the effective low frequency

components, boosts more the imaging noise, but reduces the

aliasing artifacts. An intermediate size blur kernel achieves

the optimal performance. In addition, as shown in Figure 8,

the optimal blur kernel becomes smaller as the noise level

increases. When the noise dominates the aliasing signal, a
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(a) Low frequency signal (b) ↓ Low frequency signal

(c) High frequency signal (d) ↓ High frequency signal

(e) Summed signal (f) ↓ Summed signal

(g) Frequency component of (e) (h) ↓ Frequency component of (f)

Fig. 7. Effect of aliasing on motion estimation. Both the low frequency and the aliasing have the same shift
at the original resolution (top row). However, after downsampling, the low frequency signal has the same shift
(second row left) but the downsampled aliasing appears to have a different shift (second row right). Aliasing
causes incorrect interpretations of these signals and thereby cause errors to the estimated shift (third row right).
After downsampling, the aliasing component has the same frequency as the low frequency signal (bottom). Note
that downsampling results in a reduction in magnitude in the frequency domain.
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small blur kernel will preserve the low frequency signal.

When the aliasing signal dominates the noise, a large blur

kernel will reduce the aliasing to help motion estimation.

4.1.4 Summing Contributions from All Frequencies

Each frequency pair provides an estimate of the unknown

motion. Because of the AWGN assumption, the imaging

noises at different frequencies are independent. We can

obtain the final motion estimate by computing a weighted

average of all the estimates from each frequency pair.

The weighted average in uncorrelated noise problem is

discussed in Example (6.2) in [15]. The optimal estimator

combines the motion estimates at each frequency band

according to their inverse variances. The CRB for the

variance of the optimal estimator is

var[û2]≥





NL−1
∑

ω=0

2π2A2(ω)ω2/N2
H

σ2
ne

ω4σ4
k

4 +A2(ω+NL)e
(ω4

−(ω+NL)4)σ4
k

4





−1

(31)

The estimate from the DC frequency will be automatical-

ly excluded because the variance from the DC frequency is

infinite (we cannot estimate motion using the DC frequen-

cy: translating the DC signal by any amount results in the

same signal).

4.2 Performance Bound for Image Reconstruc-
tion with Errors in Motion

4.2.1 Maximum Likelihood (ML) Estimator with Per-
fect Motion

Given the perfect motion u2, we want to estimate the

unknown θ1 = {Re{A1}, Im{A1},Re{A2}, Im{A2}}.

For this parameter estimation in white Gaussian noise

problem, the maximum likelihood estimator achieves the

lower bound predicted by the CRB [15]. The nega-

tive log likelihood function for the unknown parameters

− log p(J̃1, J̃2|A1, A2) =

1

2σ2
n

{

||J̃1(ω1)−Gσk
(ω1)A1−Gσk

(ω2)A2||2+ (32)

||J̃2(ω1)−Gσk
(ω1)A1W

u2ω1−Gσk
(ω2)A2W

u2ω2 ||2
}

.

We can derive the Fisher information matrix and its

derivatives similarly and obtain the CRB for recovering A1

is

var[Â1] ≥
2σ2

n

(1− cos( 2u2π
M

))
· e

ω4
1σ4

k
4 (33)

which means that, with perfect motion, a smaller blur kernel

leads to better results and a higher noise level results in

worse performance, as shown in Figure 9.

4.2.2 Performance of the ML Estimator with Motion
Error

Given the estimated motion û2, we want to reconstruct

the original signal, including both the low and the high

frequency components. Note that although the aliasing high

frequency component behaves like noise in the motion

estimation process, it can be estimated once we have

obtained an estimate of the motion.

Let û2 = u2+nu2
. Because we are performing subpixel

motion estimation, the motion error nu2 tends to be small

and we treat the error as AWGN.

We can perform Taylor expansion around the perfect mo-

tion, ignore higher-order term, and incorporate the motion

estimation error into the noise term. Note that the motion

estimation error has been averaged over all the frequencies

and tends to be uncorrelated with the imaging noise at a

particular frequency.

J̃2(ω1)=Gσk
(ω1)A1W

(u2+nu2
)ω1 (34)

+Gσk
(ω2)A2W

(u2+nu2
)ω2 +n2(ω)

≈Gσk
(ω1)A1W

u2ω1(1+
2πnu2ω1

NH

)

+Gσk
(ω2)A2W

u2ω2(1+
2πnu2

ω2

NH

)+n2(ω)

=Gσk
(ω1)A1W

u2ω1+Gσk
(ω2)A2W

u2ω2+n
′′

2 (ω),

where the new noise term is n
′′

2 (ω)=

n(ω)+
2π

NH

(

Gσk
(ω1)A1ω1+Gσk

(ω2)ω2A2

)

nu2
, (35)

with variance

σ
2

n′′ =σ
2

n+
4π2

N2

H

(

G
2

σk
(ω1)A

2

1ω
2

1+G
2

σk
(ω2)ω

2

2A
2

2

)

var[û2]. (36)

We can replace the new noise variance into Eqn. 33 and

obtain the CRB for recovering A1 as

var[Â1] ≥
2σ2

n′′

(1− cos( 2u2π
M

))
· e

ω4
1σ4

k
4 . (37)

Using Eqns (31) and (36), we can obtain the bound for

reconstructing the low frequency component in terms of

the noise level and the blur kernel in Eqn. 38. A small blur

kernel will reduce the influence of noise (first term), but

suppresses less the aliasing component (second term). A

large blur kernel plays the opposite role. Hence an inter-

mediate size blur kernel achieves the optimal performance,

as shown in Figure (10).

Discussions. In this section, we have analyzed how the

noise level and the blur kernel affect the performance of

super resolution, using CRB analysis from signal process-

ing. Our results confirm the intuition that a higher noise

level makes super resolution harder (Eqn 33). We also

show the blur kernel has the following influence: a small

blur kernel boosts less imaging noise but suppresses less

aliasing, while a large blur kernel boosts more imaging

noise but suppresses more aliasing (Eqn 38). In the next

section, we will empirically validate the prediction of the

theoretical analysis. We show that our super resolution

system has degraded performance with higher noise levels

(Figure 11). We also find that the effect of the blur kernel

is consistent with our theoretical analysis (Figure 12).
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var[Â1] ≥
2σ2

n

1−cos( 2u2π
M

)
e

ω4
1σ4

k
4 +

2(A2
1ω

2
1+A2

2ω
2
2e

(ω4
1−ω4

2)σ4
k

4 )

(1−cos( 2u2π
M

))
×





NL−1
∑

ω=0

A2(ω)ω2

σ2
ne

ω4
1σ4

k
4 +A2(ω+NL)e

(ω4
−(ω+NL)4)σ4

k
4





−1

(38)

σn = 0.003 σn = 0.01 (c) σn = 0.03

Fig. 8. Effect of Gaussian blur kernel on motion estimation. An intermediate sized blur kernel achieves the
optimal performance. Red star marks the position for the optimal blur kernel. As the noise level increases, the
optimal blur kernel becomes smaller to preserve the effective signal component. Noise level from left to right:
σn = 0.003, σn = 0.01, and σn = 0.03. For the left plot, a very large blur kernel has rather low motion estimation
error because of the low noise level (σn = 0.003).

σn = 0.003 σn = 0.01 (c) σn = 0.03

Fig. 9. Effect of Gaussian blur kernel on image reconstruction with perfect motion. A smaller blur kernel
produces better image reconstruction results, because such a kernel “boosts” less noise during the inverse
filtering process.

σn = 0.003 σn = 0.01 (c) σn = 0.03

Fig. 10. Effect of Gaussian blur kernel on image reconstruction with unknown motion. Red star marks the
position for the optimal blur kernel, which becomes smaller as the noise level increases. An intermediate sized
blur kernel achieves the optimal performance.
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(a) σ=0.00 (26.05db, 0.790) (b) σ=0.01 (24.77db, 0.717) (c) σ=0.03 (24.40db, 0.675) (d) σ=0.05 (23.94db, 0.634)

Fig. 11. Our video super resolution system is robust to noise. We added synthetic additive white Gaussian
noise (AWGN) to the input low-res sequence, with the noise level varying from 0.00 to 0.05 (top row, left to right).
The super resolution results are shown in the bottom row. The first number in the parenthesis is PSNR score
and the second is SSIM score.

(a) σk=1.2 (25.41db, 0.832) (b) σk=1.6 (26.05db, 0.790) (c) σk=2.0 (24.58db, 0.713) (d) σk=2.4 (24.06db, 0.654)

Fig. 12. Our video super resolution system is able to estimate the PSF. We varied the standard deviation of
the blur kernel (PSF) σk = 1.2, 1.6, 2.0, 2.4, and our system is able to estimate the underlying PSF. Aliasing
causes performance degradation for the small blur kernel σk = 1.2 (see text for detail), consistent with the
theoretical prediction of our performance analysis. Top: bicubic up-sampling (×4); middle: output of our system;
bottom: the ground truth kernel (left) and estimated kernel (right). The first number in the parenthesis is PSNR
score and the second is SSIM score.
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(a) Input (b) Bicubic×4 (c) 3DKR [36] (d) Our system (e) Original

Fig. 13. Super resolution results. From top to bottom are city, calendar, foliage and walk sequences. The
3DKR implementation does not have valid output for pixels near the image boundaries and we fill in the gaps
using gray pixels. Please view this figure on the screen.

5 EXPERIMENTAL RESULTS

We will first examine the performance of our system under

unknown blur kernel and noise level and then compare it to

state-of-the-art video super resolution methods on several

real-world sequences. Please refer to the supplemental

materials or the authors’ website1 to view the super

resolved sequences. Please enlarge and view Figures 11,

12 and 13 on the screen for better comparison.

Parameter setting. We empirically set the free parameters

as η = 0.02, λ = 1, ξ = 0.7, α = 1 and β = 0.1.

Performance evaluation. We used the benchmark se-

quence city in video compression society to evaluate the

performance. Rich details at different scales make the city

sequence ideal to observe how different frequency com-

ponents get recovered. We simulated the imaging process

by first smoothing every frame of the original video with a

Gaussian filter with standard deviation σk. We downsample

the smoothed images by a factor of 4, and add white

Gaussian noise with standard deviation σn. As we vary the

blur kernel σk and the noise level σn for evaluation, we

initialize our blur kernel Kx, Ky with a standard normal

1. http://research.microsoft.com/en-us/um/people/celiu/CVPR2011

distribution and initialize noise parameters θi using the

temporal difference between frames. We use 15 forward

and 15 backward adjacent frames to reconstruct a high-res

image.

We first tested how our system performs under various

noise levels. We fixed σk to be 1.6 and changed σn from

small (0) to large (0.05). When σn = 0, quantization is

the only source of error in the image formation process.

As shown in Figure 11, our system is able to produce fine

details when the noise level is low (σn = 0.00, 0.01).

Our system can still recover major image structure even

under very heavy noise (σn = 0.05). These results suggest

that our system is robust to unknown noise. Note that the

performance drop as the noise level increases is consistent

with our theoretical analysis.

Next, we tested how well our system performs under

various blur kernels. We gradually increase σk from 1.2 to

2.4 with step size 0.4 in generating the low-res input. As

shown in Figure 12, the estimated blur kernels match the

ground truth well. The optimal performance (in PSNR) of

our system occurs for σk = 1.6, consistent with our theoret-

ical analysis that a medium-sized blur kernel achieves the

optimal performance. A small blur kernel generates strong
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(a) (b) (c) (d) (e) Original

(a) (b) (c) (d) (e) Original

Fig. 14. Comparison of different down-sampling rate. (a) and (b): down-sampling and up-sampling by a factor
of 4. (c) and (d): down-sampling and up-sampling by a factor of 2. (e): original frame. For (b), 15 forward and 15
backward frames were used, where as 7 forward and 7 backward frames were used for (d). Because it is down-
sampling by a factor of two, we simply estimated the optical flow between input frames without re-estimating flow
between the underlying high-res and the input frame. The results suggest that our system is able to handle x2
super resolution well.

aliasing, which severely degrades motion estimation and

therefore prevents reconstructing the true high-frequency

details. A large blur kernel removes too many image details

and results in less accurate reconstructed images.

Comparison to the state of the art. We compared our

method to two recent methods [31], [36] using the public

implementations downloaded from the authors’ websites 2

and one state-of-the-art commercial software, “Video En-

hancer” [1]. Since the 3DKR method [36] produced the

best results amongst these methods, we only display their

results due to the limited space.

We used three additional real-world video sequences,

calendar, foliage and walk for the comparison. The results

are listed in Figures 15 and 13. Although the 3DKR

method has recovered the major structures of the scene,

it tends to over-smooth fine details. In contrast, our system

performed consistently well across the test sequences. On

the city sequence our system recovered the windows of

the tall building while 3DKR only reconstructed some

blurry outlines. On the calendar sequence, we can easily

recognize the banner “MAREE FINE” from the output of

our system, while the 3DKR method failed to recover such

2. The implementation of the 3DKR method [36] does not include the
last deblurring step as described in their paper. We used a state-of-the-
art deconvolution method [17] to post-process its output. We used the
default parameter setting of the 3DKR code to upscale the low-res video
and adjusted the deconvolution method [17] to produce visually the best
result for each individual sequence. The 3DKR implementation does not
have valid output for pixels near the image boundaries. We filled in the
gaps using gray pixels.

(a) Bicubic×4 (b) 3DKR [36] (c) Our system (d) Original

Fig. 15. Closeup of Figure 13. From top to bottom: city,
calendar, foliage and walk.

detail. Moreover, our system recovered the thin branches

in the foliage sequence and revealed some facial features

for the man in the walk sequence. The 3DKR method,

however, over-smoothed these details and produced visually

less appealing results.

We also observe failures from our system. For the fast

moving pigeon in the walk sequence, our system produced

sharp boundaries instead of preserving the original motion

blur. Since motion blur has not been taken into account in

our system, the sparse spatial prior favors sharp boundaries

in reconstructing smooth regions such as motion blur.
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TABLE 3
PSNR and SSIM scores. 3DKR-b is the output of the 3DKR

method before postprocessing.

PSNR city calendar foliage walk

Proposed 27.100 21.921 25.888 24.664
3DKR [36] 24.672 19.360 24.887 22.109

3DKR-b [36] 24.363 18.836 24.376 21.938
Enhancer [1] 24.619 19.115 24.476 22.303

Shan et al. [31] 23.828 18.539 22.858 21.018
Bicubic 23.973 18.662 24.393 22.066

SSIM

Proposed 0.842 0.803 0.845 0.786
3DKR [36] 0.647 0.600 0.819 0.584

3DKR-b [36] 0.637 0.554 0.797 0.554
Enhancer [1] 0.677 0.587 0.803 0.604

Shan et al. [31] 0.615 0.544 0.747 0.554
Bicubic 0.597 0.529 0.789 0.548

Furthermore, motion blur can significantly degrade motion

estimation and results in undesired artifacts.

Tables 3 summarizes the PSNR and SSIM scores3 for

these methods on the video frames in Figure 13. Our system

consistently outperforms other methods across all the test

sequences.

Computational performance. Our C++ implementation

takes about two hours on an Intel Core i7 Q820 workstation

with 16 GB RAMs when super resolving a 720×480 frame

using 30 adjacent frames at an up-sampling factor of 4.

The computational bottle neck is solving the optical flow

equation in Eqn. 17, which takes about one minute for a

pair of high-res and low-res frames. Computing flow for all

adjacent frames takes more than half an hour. To compare,

one IRLS iteration for image reconstruction takes about two

minutes.

Up-sampling by a factor of 2. For practical concerns,

we only need to do up-sampling by a factor of 2, espe-

cially when standard-definition (SD, typically 720×480)

videos are super-resolved to high-definition (HD, typically

1920×1080). For the up-sampling by a factor of 2, we

can simply take the motion between the low-res input,

resize it and magnify it by two as the true motion between

the underlying high-res frame and adjacent low-res frames.

This omission makes our system run at 2 minutes per frame

for 720 × 480 videos. The difference between x2 and x4

super-resolution is illustrated in Figure 14. Clearly, sharper

image details were obtained for x2 super resolution.

Real-world videos without ground truth. We applied

our system to several real-world videos. As shown in

Figure 16, the enhanced videos are visually more appealing

and contain more details than the input.

6 DISCUSSION

When the model works and when it fails. The basic

assumption of our model is that the video is generated by

reshuffling pixels of a high-res frame. Therefore, our model

works the best for slow and smooth motion, and would fail

when the there is significant lighting changes and occlusion

(where the underlying assumption is broken). We also did

3. We discarded rows and columns within 20 pixels to the boundary in
computing these numbers because the 3DKR method did not have valid
output in these regions.

Fig. 16. Real-world videos. Our system is applied to
enhance the resolution of real-world videos. Left: input
low-res video. Right: ×2 super-resolved output. Better
enlarge and view on the screen.

not model motion blur, which often takes place for fast

motion and/or long-exposure (for example, low light).

Aliasing: both a friend and enemy of super resolution.

In this paper, we discussed in depth how aliasing would

affect super resolution. Intuitively, on one hand, if there is

no aliasing (namely the smoothing kernel is large enough),

then there is little information to propagate from adjacent

frames for generate high-frequency details. On the other

hand, if the aliasing is too strong, then the false signal from

aliasing would affect motion estimation and degrade super

resolution. Therefore, the optimum smoothing kernel (with

respect to noise level) exists. We analyzed both theoretically

and empirically how the reconstruction error is affected by

blur size and noise level, and these analysis results match.

These results can be used as guidelines for designing super

resolution systems.

Future research directions. Future work will incorporate

the recent developments in each sub problem, such as

high-order image prior model [29], non-local motion prior

model [35], feature matching for fast moving objects [7],

[33], [40] and advanced inference methods for estimating

the spatially-variant blur kernel [9], [39]. Our system cannot

deal with large occlusions, for which the layered represen-

tation [38] is more suitable. For scenes with changing illu-

minations, inferring the illumination and super resolving the
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surface properties can relax our assumption that every input

frame can be generated by reshuffling the center frame.

Motion blur can be incorporated into the generative model

too. Furthermore, our system does not model compression

artifacts, which are ubiquitous in low-bit compressed videos

on the web and act like high-frequency false signals. We

have developed a non-causal system to jointly estimate

the optical flow and the original video sequence using the

encoded bit streams [34]. Incorporating the compression

process will make our system more robust. Finally it is of

great practical value to theoretically predict how much a

given video sequence can be super resolved.

7 CONCLUSION

In this paper we have demonstrated that our adaptive video

super resolution system based on a Bayesian probabilistic

model is able to reconstruct original high-res images with

great details. Our system is robust to arbitrary motion,

unknown noise level and/or unknown blur kernel because

we jointly estimate motion, noise and blur with the high-

res image using sparse image/flow/kernel priors. Very

promising experimental results suggest that our system

consistently outperform the state-of-the-art methods on a

variety of real-world sequences. On the theoretical side,

we have performed a two step analysis of how noise level

and blur kernel affect the performance using the Cramer-

Rao bounds. Our analytical results are consistent with our

experiments, indicating that they can be good guidelines

for analyzing super resolution systems.
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