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Abstract 

The main objective of the current study is to handle the identification problem of autoregressive processes 

from the Bayesian point of view. Two Bayesian identification approaches are considered. They are referred 

to as the direct and the indirect approaches. The two approaches are employed to solve the Bayesian 

identification problem of autoregressive processes using three well known priors. These priors are the G 

prior, the Natural-Conjugate prior and Jeffrey's prior. The theoretical derivations related to the two Bayesian 

identification approaches are conducted using the above mentioned priors. Moreover, the performance of the 

two techniques, using each of the three priors, is investigated via comprehensive simulation studies. 

Simulation results show that the two techniques are adequate to solve the identification problem of 

autoregressive processes. The increase in the time series length leads to better performance for each 

technique. The use of different priors doesn't affect the numerical results. 

Keywords: Autoregressive processes, Bayesian time series identification, G prior, 

Natural-Conjugate prior, Jeffreys' prior. 

1. Introduction 

The autoregressive processes, denoted by AR(p) for short, are very useful in modeling 

time series data that arise in many areas of scientific endeavor such as engineering, 

physics, business, marketing and economics. In practice, the model order p is usually 

unknown and should be identified or estimated. Identification is the first and one of 

the most important phases in time series analysis. Several Bayesian and non-Bayesian 

techniques can be traced in the literature to identify the order p.  

 

Two well known approaches are found in the Bayesian literature to identify models for 

time series. Diaz and Farah (1981) have developed a direct Bayesian method to identify 

the order of AR(p) models. Their technique assumes that the order p is a random 

variable with a known maximum. The technique derives the posterior mass function 

of the order and selects the order with maximum posterior probability to solve the 
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identification problem. Diaz and Farah have used a Natural-Conjugate prior in their 

theoretical derivations but they haven't studied its accuracy.  

 

Broemeling and Shaarawy (1987) have developed an indirect Bayesian approximate 

procedure to identify the orders of autoregressive moving average processes, denoted 

by ARMA(p,q). The technique assumes that the orders are unknown constants with 

known maximums. The technique derives the joint posterior density of the of the 

model coefficients. To overcome the problems in the exact analysis of the ARMA 

models, they approximated the posterior distribution of the maximum number of 

coefficients by a multivariate-t distribution. Then the significance of coefficients is 

tested by a series of univariate-t tests in a similar fashion to the backward elimination 

procedure used in linear regression analysis. After eliminating the insignificant 

coefficients, the order of the model is determined. Broemeling and Shaarawy have 

used Jeffreys' prior in their derivations. Nevertheless, they haven't studied the 

numerical effectiveness of the technique. 

 

The current study restricts attention to the use of both direct and indirect Bayesian 

identification techniques for autoregressive models. It is well known that, the derivation of 

both the posterior probability mass function of the order and the posterior density of the 

coefficients of the AR models, according to Bayes theorem, depends on the likelihood 

function of the time series and the selected prior distribution. Three well-know priors are 

considered. They are g prior, asserted by Zellner (1983 and 1986), natural-conjugate prior, 

asserted by Raiffa and Schlaifer (1961), and Jeffreys' prior, asserted by Jeffreys'(1961). 

The derivation of both the posterior probability mass function of the order and the posterior 

density of the coefficients of the AR models will be developed using each prior. The 

numerical effectiveness of each posterior distribution in performing the direct and the 

indirect Bayesian identification techniques will be investigated via simulation studies. 

 

It is worth noting that, the current article can be considered as the first one to use the g 

prior in solving the problem of direct and indirect Bayesian identification of autoregressive 

processes. Moreover, the it inspects the numerical effectiveness of using g prior in solving 

the problem of Bayesian identification of autoregressive processes via comprehensive 

simulation studies. In addition, the article inspects the numerical effectiveness of using the 

natural-conjugate prior in solving the Bayesian identification problem of autoregressive 

processes via simulation. Furthermore, the article compares the performance of the above 

mentioned two priors with the performance of using Jeffreys' prior in solving the problem. 

The main difficulty in employing both the natural-conjugate and the g priors is the 

existence of some hyper-parameters that need to be estimated. 

 

The rest of the article is structured as follows: In section 2, a review of the literature is 

given. Section 3 is devoted to discussing the autoregressive processes. In section 4, basic 

concepts of the Bayesian identification techniques are explained. In section 5, the g prior 

is used to conduct the direct and the indirect Bayesian identification techniques for 

autoregressive processes. The use of the natural-conjugate prior and Jeffreys' prior to 

employ the direct and indirect Bayesian identification techniques for autoregressive 

processes is shown in section 5. Finally, section 6 is devoted to conduct comprehensive 

simulation studies to investigate and compare the effectiveness of the considered three 
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priors in solving the problem of direct and indirect Bayesian identification of 

autoregressive processes. 

2. Review of the Literature 

The literature of time series identification is vast. It is divided into two parts: Bayesian and 

non-Bayesian. The most popular non Bayesian approach to identify the orders of 

ARMA(p,q) models is developed by Box and Jenkins (1970). Their methodology is 

based on matching the sample autocorrelation and partial autocorrelation functions 

with their theoretical counterparts. Their technique is explained in many references 

such as Chatfield (1980), Priestley (1981), Tong (1990), Harvey (1993), Wei (2005), 

Box et al. (2008) and Liu (2009). Another non Bayesian approach, known as the 

automatic approach, is based on fitting all possible models and computing a certain 

criterion for each model and choosing the model which minimizes the proposed 

criterion. For more details about the automatic approach, the reader is referred to 

Akaike (1973, 1974), Hannan and Quinn (1979), Mills and Prasad (1992) and 

Beveridge and Oickle (1994). 

 

Regarding the literature of Bayesian identification techniques, we can divide them into  two 

types, namely numerical and analytical ones. Numerical techniques include the techniques 

that depend on numerical integrations and the sampling based methods such as Markov 

Chain Monte Carlo (MCMC) methods. Monahan (1983) introduced a numerical 

integration algorithm in order to calculate the posterior probabilities for the orders of 

ARMA models. Moreover, the MCMC methods were used by Barnett et al. (1996) to 

estimate the order of AR processes and by Philippe (2006) to estimate the orders of ARMA 

models. 

 

On the other hand, Diaz and Farah (1981) have proposed a direct analytical Bayesian 

technique for the identification of autoregressive models, see Broemeling (1985). 

Corrections were asserted to the derivation of Diaz and Farah by Daif et al. (2003). These 

corrections enabled them to study the numerical effectiveness of the technique and to 

compare its numerical effectiveness with the indirect technique developed by Broemeling 

and Shaarawy (1988).  

 

It is worth mentioning that, the direct analytical technique was extended to seasonal 

autoregressive models by Shaarawy and Ali (2003). Moreover, it has been extended to 

moving average models by Shaarawy et al. (2007), to mixed ARMA models by Ali (2009) 

and to seasonal moving average models by Shaarawy et al. (2011). In addition, the problem 

of identifying a bivariate autoregressive process using the direct Bayesian technique has 

been developed by Shaarawy et al. (2006). Furthermore, the direct technique was used to 

identify multivariate autoregressive and moving average models by Shaarawy and Ali 

(2008) and (2012) respectively. 

 

On the other hand, an indirect Bayesian analytical identification technique, asserted by 

Broemeling and Sharaawy (1987), has been used to conduct a complete Bayesian analysis 

for ARMA models by Broemeling and Sharaawy (1988). Then, Shaarawy (1993) has used 

the technique to develope a complete Bayesian analysis for multivariate ARMA models. 
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Alshawadfi (2004) has applied the technique to the transfer function models. Moreover, 

Alshawadfi (2008) has used the technique to identify ARMAX models. 

 

It is worth noting that Shaarawy et al. (2007) and Shaarawy and Ali (2012) have used the 

indirect technique as an intermediate step in conducting the direct technique to identify 

both univariate and multivariate moving average models. They have compared its 

performance with the direct technique in both cases. 

 

In all the above mentioned studies, either natural-conjugate prior or Jeffreys' prior or both 

were used in theoretical derivations, whereas, Jeffreys' prior was used only in the 

simulation studies. None of the above mentioned studies has used the g prior in the 

theoretical derivations or in the simulation studies. Moreover, none of these studies 

checked the numerical effectiveness of the performance of the natural-conjugate prior in 

solving the identification problem.  

 

Regarding the prior selection process, El Zayat (2007) conducted a comprehensive survey 

for known informative and non informative priors. She employed a comprehensive 

simulation study to check the numerical effectiveness of the used prior in the estimation 

problem of autoregressive models of order one. She has used the above mentioned three 

priors in the simulation. Furthermore, Shaarawy et al. (2010) have employed different 

priors to solve the Bayesian prediction problem of autoregressive processes of order p. 

They have checked the numerical effectiveness of each prior via simulation. 

3. Autoregressive Models 

The autoregressive model of order p, denoted by AR(p) model can be written as (see Box 

and Jenkins (1970)), 

tty)(          (3.1) 

 

Where, B is the backshift operator defined as Br yt = yt-r and 

  p

p

2

21 .....1  ,                    Ri  . 

 

The AR(p) model can also be written as follows (see Shaarawy et al. (2010)), 

tptp2t21t1t y...yyy       (3.2) 

 

Where yt is the tth time series observation, t= 1,2,…,n. 
i ’s are the coefficients, i=1,2,…,p. 

εt is the tth unobserved random error, t= 1,2,…,n. It is assumed to be independent identically 

normally distributed N(0,τ-1 ), where τ is the precision parameter. 

 

The stationarity conditions of the model (3.1) are such that the roots of    lie outside 

the unit circle (Box and Jenkins (1970)). 

 

 

Special cases of AR(p) model are AR(1) which has the form 
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t1t1t  +yy   ,           t= 1,2,…,n     (3.3) 

 

The AR(1) model is stationary if 11  . Moreover, AR(2) model has the form 

t2t21t1t  y+yy   , t= 1,2,…,n.    (3.4) 

 

The AR(2) model is stationary if 121  , 112  , and 12  . 

4.   Basic Concepts 

Derivations of posterior densities depend on the likelihood function and the form of the 

prior distribution which are both defined hereafter. The likelihood function for the AR(p) 

model is conditioned on the first p observations in the time series and can be written in the 

form (see Broemeling (1985)) 











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


)XY()XY(

2
exp)Y|,(L 2
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  (4.1) 

 

Where, τ is the precision parameter, Y = [yp+1   yp+2  …  yn ]' is the vector of observations 

such that, n > p, γ is the coefficients' vector defined as, 

 
]...[ p21
 .        (4.2) 

 

X is an (n-p)×p matrix of regressors such that the tth row vector Xt is represented by, 

 Xt =[yt+p-1  yt+p-2 … yt]                    t= 1, 2, …,n-p   (4.3) 

 

Regarding g prior, it is important for analytical purposes to consider the form introduced 

by Zellner (1986). Consider the following GLM:  

       UXY  ,   

 

Where, Y is a vector of n observations, X is an n×k non-stochastic design matrix of rank 

k, β is the k×1 coefficients' vector, and U is the errors' vector following the N(0, σ2 In ) 

distribution, where σ2 is unknown. The g prior for β and σ has the form: 

)g,(p)(p),(fg  .      (4.4) 

Where 
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Such that,   is an anticipated value of β and g is an initially given value. Fernàndez et al 

(2001) concluded, based on simulation studies, that the most reasonable choices of the 

value of g are 
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Using the forms (4.4), (4.5) and (4.6), Shaarawy et al. (2010) have derived the form of 

the g prior for AR(p) models as 
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(4.7)  

 

It should be noted that when the sample under consideration follows a normal distribution, 

the normal-gamma prior is the natural-conjugate one and is written as follows (See Raiffa 

and Schlaifer (1961)): 

 
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, τ > 0,  (4.8) 

Where α, β, µ and V are the hyper-parameters of the prior distribution. 

 

In addition to the above two priors, Jeffreys' prior introduced by Jeffreys (1961) is given 

by:  

1
J ),(f

 .        (4.9) 

 

Furthermore, in the direct Bayesian identification, the marginal prior mass function of the 

order p is assumed to be uniform such that, (See Daif et al (2003)) 

 
1

m)p(f
 ,     p = 1,2,….,m      (4.10) 

Where, m is the assumed maximum order. 

5. Bayesian Identification of AR Models 

Two main approaches are introduced in the literature to develop the Bayesian 

identification. The two approaches are called the direct and the indirect approaches. In this 

section, the Bayesian identification techniques are presented for pure AR models. The basic 

theoretical contribution of this study is the development of the above mentioned Bayesian 

identification techniques using the g prior which haven't been used before in employing 

the Bayesian identification of autoregressive processes. The section is divided into two 

subsections. In subsection (5.1), the direct Bayesian identification technique is developed 

for AR processes, whereas, subsection (5.2) is devoted to the indirect Bayesian technique. 

5.1.  Direct Bayesian Identification of AR Models 

The direct identification technique, introduced by Diaz and Farah (1981) for AR(p) models, 

assumes that the order p of an autoregressive process is an unknown random variable with 

known maximum, namely m. The problem is to find the posterior probability mass function 
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of p. Assume that one has a time series of n observations  

Sn= [ y1 , y2,..., yn]. Conditioning on the first p observations, the conditional likelihood 

function has the form 
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Where, Y = [ yp+1 , ..., yn]', γ is the coefficients vector defined in (4.2), τ is the precision 

parameter and 

 YYC           ,YXB      ,XXA 11




   
(5.2) 

Where, X is the matrix of regressors with tth row Xt defined in (4.3). 

5.1.1.  Direct Bayesian Identification using G Prior 

Let Sn = [y1, y2 ,… ,yn] be as defined above and γ be the coefficients' vector defined in 

(4.2). Furthermore, assume the prior of the parameters γ and σ is a g prior in the form 

(4.7) and the prior of the order p is uniform in the form (4.10). Thus the joint g prior of 

the AR model parameters has the form 
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(5.3) 

Where, σ > 0, p =1, …,m and A1 is the matrix defined in (5.2). 

 

The conditional likelihood function (5.1) can be written in terms of σ instead of τ as 

follows 
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Where, A1 ,B1 and C are defined in (5.2). The following theorem asserts the posterior 

probability mass function of the order p of autoregressive processes using g prior. 

Theorem 5.1 

Using the joint g prior (5.3) and the conditional likelihood function (5.4), the marginal 

posterior probability mass function of the order p of AR model has the form 
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Where, 
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Such that, g is defined in (4.6),   is an anticipated value of γ and A1, B1 and C are defined 

in (5.2). 

Proof 

Combining the g prior (5.3) with the conditional likelihood function in (5.4), the joint 

posterior distribution of the model parameters has the form 

   





































CB2AAg
2

1
exp)Yp,,( 1112

2

pn

)1n(

 

(5.7) 

 

Expanding the quadratic term in the exponent and reorganizing the terms, the exponent 

will be in the form 
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Let 
11 B,A  and *

C be as defined in (5.6). Then, 
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Completing the squares in the exponent of (5.8), it will be in the form, 
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Integrating (5.7) with respect to γ, one gets the joint posterior distribution of p and σ in 

the form 
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Note that (5.9) as a function of σ is an inverted gamma density of second type, when 

integrated with respect to σ, one gets the marginal posterior mass function of p as given in 

(5.5). 

5.1.2.  Direct Identification using Natural-Conjugate and Jeffreys' Priors 

Using the natural-conjugate prior (4.8), Daif et al. (2003) have proved that the marginal 

posterior probability mass function of the order p of autoregressive processes has the form 
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Where, A1, B1 and C are defined in (5.2). 
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On the other hand, using Jeffreys' prior defined in (4.9), Daif et al. (2003) have also proved 

that the marginal posterior probability mass function of the order p of AR processes has 

the form 
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Where, A1, B1 and C are defined in (5.2). 

5.2.  Indirect Bayesian Identification of AR Models 

The indirect technique proposed by Broemeling and Shaarawy (1987) focuses on the 

marginal posterior distribution of the coefficients of the ARMA model. The technique 

assumes that the orders p and q are unknown constants with known maximums. Using 

some approximation to overcome the difficulty in developing the exact Bayesian analysis 

of ARMA models, the technique derives the approximate marginal posterior density of the 

maximum number of coefficients which is the multivariate t distribution. After that, a 

sequence of tests of significance is followed to eliminate the insignificant terms. By this 

way the model orders p and q are determined. This section employs the indirect technique 

for pure AR models, which is a special case of the work of Broemeling and Shaarawy 

(1987). The work of Broemeling and Shaarawy (1987) used both the natural-conjugate and 

Jeffreys' prior. In the current work we conduct the derivations using g prior in addition.  

 

The technique is employed to AR models in two steps. First, given the highest model order, 

the marginal posterior distribution of the model's coefficients is derived. Then, a sequence 

of tests of significance for the coefficients is followed to determine the order p. 

5.2.1  Indirect Bayesian Identification using G Prior 

Let m (m < n) be the known maximum of p. Suppose that there is a time series with n 

observations Sn=[y1 y2  … yn] with unknown  initial values y0, y-1 ,… ,y1-m. Let 

]...[ m21
)m(   be the vector of coefficients. Moreover, assume that the prior of 

the model parameters γ and σ is a g prior defined in (4.6), that can be written for AR(m) 

models in the form 
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(5.13) 

Where, X is the matrix of regressors of the model with tth row Xt in the form 

 t2mt1mtt y...yyX        
(5.14) 

Moreover, σ > 0 and )m()m()m(
R,  .  

The conditional likelihood function, conditioned on the first m observations, can be written 

in matrix notation as, 
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(5.15) 

 

Where, A1, B1 and C are defined in (5.2) and Y = [ym+1   ym+2 … yn ]' is the vector of 

observations and X is the matrix of regressors with tth row Xt defined in (5.14). 

 

The following theorem asserts the form of the marginal posterior density of the coefficients 

of AR(m) model using g prior. 

Theorem 5.2 

Using the g prior (5.13) and the conditional likelihood function (5.15), the marginal 

posterior density of the maximum number of coefficients of AR model is a multivariate-t 

distribution with (n-m) degrees of freedom, location vector 
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and precision matrix 
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Where, 
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(5.18) 

 

Where, A1, B1 and C were defined in (5.2). 

Proof 

Multiplying the g prior (5.13) by the conditional likelihood function (5.15) one gets the 

joint posterior distribution of the model parameters in the form 
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(5.19) 

 

Expanding the quadratic term in the exponent of (5.19) and reorganizing the terms, the 

exponent will be in the form 
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Let, 

33 B ,A  and 

3C  be as defined in (5.18). Then, the joint posterior distribution in (5.19) 

will be in the form 
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(5.20) 
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Completing the squares in the exponent of (5.20), the exponent becomes in the form 
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Note that (5.20) as a function of σ is an inverted gamma density of second type, when 

integrated with respect to σ, one gets the marginal posterior distribution of the coefficients' 

vector γ(m) which is an m-dimensional multivariate-t distribution with n-m degrees of 

freedom, location vector and precision matrix as given in (5.16) and (5.17) respectively. 

5.2.2.  Indirect Identification using Natural-Conjugate and Jeffreys' Priors 

Under the same assumptions of section (5.2.1) and using the natural-conjugate prior (4.7), 

Daif et al. (2003) have proved that the marginal posterior distribution of the maximum 

number of coefficients of AR model is an m-dimensional multivariate-t distribution with 

(n+2α-m) degrees of freedom, location vector 
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and precision matrix 
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(5.22) 

Where, *
2

*
2 B ,A  and *

2C are defined in (5.11). 

 

On the other hand, using Jeffreys' prior defined in (4.8), Daif et al. (2003) have also proved 

that the marginal posterior distribution of the maximum number of coefficients of AR 

model is an m-dimensional multivariate-t distribution with (n-2m) degrees of freedom, 

location vector 
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and precision matrix 
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(5.24) 

Where, A1, B1 and C are defined in (5.2). 

5.2.3. The Indirect Bayesian Approach 

Since γ(m) has a multivariate-t distribution, any single component of this vector has a 

univariate-t distribution and the conditional distribution of any component given any other 

component is a univariate-t distribution. Then one can do a backward elimination 

procedure to identify an initial value for the order p as follows: 
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1.  Test H0: φm = 0 vs. H1: φm ≠ 0 using the marginal posterior distribution of φm 

which is a univariate-t distribution. 

2. If the above H0 is not rejected, test H0: φm-1 = 0 vs. H1: φm-1 ≠ 0 using the 

conditional distribution of φm-1 given φm = 0, which is also a univariate-t 

distribution. 

3. If the above H0 is not rejected, test H0: φm-2 = 0 vs. H1: φm-2 ≠ 0 using the 

conditional distribution of φm-2 given φm = φm-1 = 0, which is also a univariate-t 

distribution. 

4. The procedure is continued in this fashion until the hypothesis φp = 0 is rejected 

for some p where 0 < p ≤ m. The value p is the indirect Bayesian solution to the 

identification problem. 

6. Effectiveness Studies 

The main objective of the current simulation studies is to investigate the effect of the 

selected prior on the used Bayesian identification technique for AR(p) models. The studies 

compare the performance of the three priors defined in previous chapters using four 

different AR models and different time series lengths. This section presents the main stages 

of the proposed simulation studies. The effectiveness criterion used in the study to evaluate 

and compare the performance of the above mentioned two Bayesian identification 

techniques, using each of the above mentioned three priors, is the percentage of correct 

identification. Both the setup and steps of the simulation studies will be explained in 

details. Finally the results will be displayed and discussed. 

6.1. Simulation design 

This study aims at assessing the effect of the selected prior on the performance and 

numerical effectiveness of the proposed techniques in identifying the order of AR 

processes. In order to achieve this goal, four simulation studies were conducted. The 

indirect and direct techniques were employed, using the three priors of interest, to identify 

the orders of AR(1) and AR(2) sources with different parameter values. The parameters 

were chosen in some cases inside the stationarity domain while in other cases near the 

boundaries. All computations were performed using Matlab 7.1. 

 

For estimating the hyperparameters of the informative priors, there are many methods 

available in the literature. The current study uses the training sample method to estimate 

the hyperparameters (See Shaarawy et al. (2010)). For each time series, a training sample 

of size either 10 (for short time series) or 10% of the considered time series observations 

is used in this consequence. For instance, if the time series length is smaller than or equal 

to 100 the training sample starts from y1 to y10, while if the length is 200 the training sample 

starts from y1 to y20 and so on.  Then, the estimated parameters are used to conduct the 

simulation studies. 
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The effectiveness criterion, mentioned above, is observed with respect to the time series 

length as well as the coefficients values. In all simulation studies the precision parameter 

τ was set to be 2. 

 

Simulation I, for illustration, starts by generating a set of 500 normal (0, 1/τ) variates εt. 

These random variates are used to generate 500 observations from AR(1) model with 

coefficient 5.01  . The first 200 observations are ignored to overcome initialization 

effect. Then the next 300 observations are used in the simulation study. The second step is 

done for the first 30 observations of the realization. A certain maximum order m is assumed 

to be 4. The direct technique is used to identify the time series. It is applied three times 

using the three mentioned priors. Moreover, the indirect technique is also applied three 

times. The third step is to repeat the second step for the first 50 observations including the 

first 30 observations. The same process is repeated for the first 100 observations of the 

realization including the first 50 observations. Then, the process is repeated for the first 

200 observations, and finally for the 300 observations of the realization. The generation 

and identification processes mentioned above are repeated 500 times and the percentage of 

correct identification is computed for each technique in each case. Simulation II is done in 

a similar manner using 8.01  , while simulations III and IV are done similarly using 

AR(2) models with two different parameter sets (0.9,-0.3) and (0.1,0.8) respectively. The 

results of the four simulation studies are presented and discussed in the following section. 

6.2.   Simulation Results 

This section presents and explains the results of the four simulation studies. After the 

generation of 500 series from a specific AR(1) or AR(2) source, both the direct and indirect 

Bayesian identification techniques are performed. 

 

With respect to the indirect technique, the parameters of the posterior density of the model's 

coefficients with a maximum order m = 4 are calculated. Then, by constructing a series of 

HPD regions for the coefficients with 5% level of significance, a sequence of back 

elimination significance tests is performed to select the order of the model. While for the 

direct technique, the marginal posterior mass function of p =1,2,... ,m is calculated for each 

series assuming m = 4 with different prior functions for the model parameters. The AR 

model with the greatest probability is selected as the identified model. For both the indirect 

and direct techniques, the percentage of correct identification is computed. 

 

The results of each simulation study are presented in one of the following four tables. The 

rows of each table present the time series lengths and the used identification technique. 

While the columns present the three proposed priors. 

Table (6.1):  The percentages of correct identification for the direct and indirect 

techniques using AR(1) model with 5.01   

G-prior N-C prior Jeffrey's prior Technique N 

6.38 2.39 6639 Indirect 03 
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68.0 2939 68.0 Direct 

68.0 6.39 6836 Indirect 
03 

6.3. 6639 6832 Direct 

6838 6938 6839 Indirect 
033 

68.0 6838 68.0 Direct 

6.39 6836 6.38 Indirect 
033 

623. 6836 62.0 Direct 

6..0 68.0 6.38 indirect 
033 

6239 6239 6239 direct 

Source: simulated data 

Table (6.1) shows the results of simulation I. From the table, one observes that the 

percentages of the correct identification are high for both identification techniques for all 

time series lengths and priors. This means that the two techniques succeed in identifying 

an appropriate model for the generated time series no matter what are the time series length 

and the chosen prior. Moreover, there is no remarkable difference in the effect of the three 

considered priors on the performance of the two identification techniques at each time 

series length. 

Table (6.2):  The percentages of correct identification for the direct and indirect techniques 

using AR(1) model with 8.01   

G-prior N-C prior Jeffrey's prior Techniques N 

8838 6.38 6836 indirect 
03 

88.0 6.39 6.39 Direct 

6838 6.36 6.39 indirect 
03 

6838 69.0 68.0 Direct 

6836 6839 6839 indirect 
033 

69.0 683. 683. Direct 

6838 6838 6838 indirect 
033 

6.39 683. 6.38 Direct 

6838 6238 6836 indirect 
033 

62.0 683. 62.0 Direct 

Source: simulated data 

Table (6.2) shows the results of simulation II. From the table, one observes that the results 

are similar to the results of simulation I. 

Table (6.3):  The percentage of correct identification for the direct and indirect techniques using 

AR(2) model with 3.0,9.0 21   

G-prior N-C prior Jeffrey's prior Techniques N 

9838 .239 ..36 indirect 
03 

92.0 .839 883. direct 
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.838 8938 .936 indirect 
03 

.239 88.0 .9.0 direct 

6838 8.36 8238 indirect 
033 

6..0 82.0 6..0 direct 

6939 29.0 6638 indirect 
033 

6.38 6239 6839 direct 

29.0 6636 2938 indirect 
033 

2.39 2..0 29.0 direct 

Source: simulated data 

Table (6.3) shows the results of simulation III. From the table, one finds that the 

percentages of the correct identification are low for short time series (n = 30) in both the 

direct and indirect techniques whatever be the used prior. However, they increase as the 

time series length increases. The direct technique gives slightly better results than the 

indirect one for short time series, but the results become equivalent for longer time series. 

The differences in the performance of the three priors vanish as the time series gets longer. 

Table (6.4):  The percentage of correct identification for the direct and indirect techniques using 

AR(2) model with 8.0,1.0 21   

G-prior N-C prior Jeffrey's prior Technique N 

2.38 6..0 6238 indirect 
03 

2939 6..0 2..0 direct 

2..0 2..0 2938 indirect 
03 

29.0 29.0 2.36 direct 

6239 6238 2936 indirect 
033 

29.0 2939 29.0 direct 

6638 66.0 6236 indirect 
033 

2939 2..0 2.38 direct 

6239 6636 6238 indirect 
033 

62.0 2936 6238 direct 

Source: simulated data  

Table (6.4) shows the results of simulation IV. From the table, the results are high and 

stable for all cases. Moreover, the performances of both the two techniques and the three 

priors are equivalent in all cases. The results are similar to those of simulation I and II. 

6.3.  Conclusion 

The general conclusions achieved from the above mentioned four simulation studies are as 

follows: 

First: the two Bayesian identification techniques succeed in identifying the right model for 

AR sources. 
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Second: there is no remarkable difference in the goodness of the identification technique, 

when using different priors in its derivation. 

Finally: we can recommend the use of the non-informative Jeffreys' prior to solve the 

Bayesian identification problem since it overcomes the problem of estimating the hyper-

parameters of the informative priors and its goodness is equivalent to informative priors. 
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