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ON BAYESIAN SUPREMUM NORM CONTRACTION RATES

BY ISMAËL CASTILLO1

CNRS—LPMA Paris

Building on ideas from Castillo and Nickl [Ann. Statist. 41 (2013)
1999–2028], a method is provided to study nonparametric Bayesian pos-
terior convergence rates when “strong” measures of distances, such as the
sup-norm, are considered. In particular, we show that likelihood methods
can achieve optimal minimax sup-norm rates in density estimation on the
unit interval. The introduced methodology is used to prove that commonly
used families of prior distributions on densities, namely log-density priors
and dyadic random density histograms, can indeed achieve optimal sup-norm
rates of convergence. New results are also derived in the Gaussian white noise
model as a further illustration of the presented techniques.

1. Introduction. In the fundamental contributions by Ghosal, Ghosh and van
der Vaart [13], Shen and Wasserman [32] and Ghosal and van der Vaart [15], a gen-
eral theory is developed to study the behaviour of Bayesian posterior distributions.
A main tool is provided by the existence of exponentially powerful tests between
a point and the complement of a ball for some distance. The use of some impor-
tant distances, such as the Hellinger distance between probability measures, indeed
guarantees the existence of such tests. The theory often also allows extensions to
other metrics, for instance, L2-type distances, but the question of dealing with arbi-
trary metrics has been left essentially open so far. Although a general theory might
be harder to obtain, it is natural to consider such a problem in simple, canonical,
statistical settings first, such as Gaussian white noise or density estimation. This is
the starting point of the authors in Giné and Nickl [16], and this paper was the first
to provide tools to get rates in strong norms, such as the L∞-norm. Exponential
inequalities for frequentist estimators are used in [16] as a way to build appropriate
tests, and this enables one to obtain some rates in sup-norm in density estimation.
In the case where the true density is itself supersmooth and a kernel mixture is
used as a prior, the nearly parametric minimax rate is attained, at least up to a
possible logarithmic term; see also the work by Scricciolo [31] for related results.
In the general case where the true density belongs to a Hölder class, a sup-norm
rate is obtained which differs from the minimax rate by a power of n. On the other
hand, by using explicit computations, the authors in [16] show that in the Gaussian
white noise model with conjugate Gaussian priors, minimax sup-norm rates are
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attainable, which leads to the natural question to know whether this is still pos-
sible in density estimation, or in nonconjugate regression settings. This nontrivial
question also arises for other likelihood methods, such as nonparametric maximum
likelihood estimation; see Nickl [26].

From a general statistical perspective, density estimation in supremum-norm is
a central problem both from theoretical and practical points of view. The problem
was the object of much interest in the framework of minimax theory. Lower bounds
in density estimation in sup-norm can be found in Hasminskii [19], upper-bounds
in Ibragimov and Hasminskii [21] for density estimation and Stone [33] for regres-
sion. We refer to Goldenshluger and Lepski [17] for an overview of current work
in this area. From the practical perspective, sup-norm properties are of course very
desirable, since saying that two curves in a simulation picture look close is very
naturally, and often implicitly, done in a sup-norm sense.

Here, we establish that minimax optimal sup-norm rates of convergence in
density estimation are attainable by common and natural Bayes procedures. The
methodology we introduce is in fact related to a programme initiated in [6] and
continued in [7], namely nonparametric Bernstein–von Mises type results, as
discussed below. In [7], we use the results of the present paper to derive nonpara-
metric Bernstein–von Mises theorems in density estimation, as well as Donsker-
type results for the posterior distribution function. The testing approach commonly
used to establish posterior rates is replaced here by tools from semiparametric
Bernstein–von Mises results (testing is still typically useful to establish prelimi-
nary rates); see [6] for an overview of references. We split the distance of interest
in simpler pieces, each simpler piece being a semiparametric functional to study.
One novelty of the paper consists in providing well-chosen uniform approxima-
tion schemes of various influence functions appearing at the semiparametric level
when estimating those simple functionals.

Two natural families of nonparametric priors are considered for density es-
timation: priors on log-densities; see, for example, Ghosal, Ghosh and van der
Vaart [13], Scricciolo [29], Tokdar and Ghosh [35], van der Vaart and van Zan-
ten [3, 38], Rivoirard and Rousseau [27], and random (dyadic) histogram priors;
see, for example, Barron [1], Barron, Schervish and Wasserman [2], Walker [39],
Ghosal and van der Vaart [15], Scricciolo [30], Giné and Nickl [16] and the recent
semiparametric treatment in [8]. Both classes are relevant for applications and pri-
ors of these types have been studied from the implementation perspective; see,
for example, Lenk [23], Tokdar [34] and references therein for the use of logistic
Gaussian process priors, and Leonard [24], Gasparini [11] for random histogram
priors.

New results are also derived in the Gaussian white noise model, in the spirit
of [6], for nonconjugate priors.

While working on this paper, we learned from the work by Marc Hoffmann,
Judith Rousseau and Johannes Schmidt-Hieber [20], which independently obtains
sup-norm properties for different priors. Their method is different from ours, and
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both approaches shed light on different specific aspects of the problem. In Gaussian
white noise, adaptive results over Hölder classes are obtained in [20] for a class of
sparse priors. In Theorem 1 below, the sup-norm minimax rate for fixed regularity
is obtained for canonical priors without sparsity enforcement. The authors also
give insight on the interplay between loss function and posterior rate, as well as an
upper bound result for fairly abstract sieve-type priors, which are shown to attain
the adaptive sup-norm rate in density estimation. This is an interesting existence
result, but no method is provided to investigate sup-norm rates for general given
priors. Although for simplicity we limit ourselves here to the fixed regularity case,
the present paper suggests such a method and demonstrates its applicability by
dealing with several commonly used classes of prior distributions. Clearly, there is
still much to do in the understanding of posterior rates for strong measures of loss,
and we hope that future contributions will go further in the different directions
suggested by both the present paper and [20].

Let L2[0,1] and L∞[0,1], respectively, denote the space of square integrable
functions with respect to Lebesgue measure on [0,1] and the space of measurable
bounded functions on [0,1]. Theses spaces are equipped with their usual norms, re-
spectively, denoted ‖·‖2 (denote by 〈·, ·〉2 the associated inner product) and ‖ · ‖∞.
Let Cα := Cα[0,1] denote the class of Hölder functions on [0,1] with Hölder ex-
ponent α > 0.

For any α > 0 and any n ≥ 1, denote by ε̄n,α the rate

ε̄n,α := n−α/(2α+1).(1)

The typical minimax rate over a ball of the Hölder space Cα[0,1], α > 0, for the
sup-norm is

ε∗
n,α :=

(
logn

n

)α/(2α+1)

.(2)

Let us also set, omitting the dependence in α in the notation,

hn =
(

n

logn

)−1/(2α+1)

, Ln = ⌊
log2(1/hn)

⌋
.(3)

For a statistical model {P (n)
f } indexed by f in some class of functions to be

specified and associated observations X(n), denote by f0 the “true” function and
by En

f0
the expectation under P

(n)
f0

. Given a prior � on a set of possible f ’s, denote

by �[·|X(n)] the posterior distribution and by E�[·|X(n)] the expectation operator
under the law �[·|X(n)].

2. Prologue. Let us start by a simple example in Gaussian white noise which
will serve as a slightly naive yet useful illustration of the main technique of proof.
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Let f be an element of L∞[0,1]. Let n ≥ 1. Suppose one observes

dX(n)(t) = f (t) dt + 1√
n

dW(t), t ∈ [0,1],(4)

where W is standard Brownian motion. Let {ψlk, l ≥ 0,0 ≤ k ≤ 2l − 1} be a
wavelet basis on the interval [0,1]. Here, we take the basis constructed in [10],
see below for precise definitions. The model (4) is statistically equivalent to ob-
serving the projected observations onto the basis {ψlk},

xlk = flk + 1√
n
εlk, l ≥ 0,0 ≤ k ≤ 2l − 1,

where flk := 〈f,ψlk〉2 and εlk are i.i.d. standard normal. Denote f̂lk := xlk , an
efficient frequentist estimator of the wavelet coefficient flk .

2.1. A first example. Suppose the coefficients of the true function f0 satisfy,
for some R > 0 that we suppose to be known in this first example,

sup
l≥0,0≤k≤2l−1

2l(1/2+α)|f0,lk| ≤ R, α > 0.(5)

Define a prior � on f via an independent product prior on its coordinates flk onto
the considered basis. The component flk is assumed to be sampled from a prior
with density σ−1

l ϕ(·/σl) with respect to Lebesgue measure on [0,1], where, for
α,R as in (5), x ∈ R and a given B > R

ϕ(x) = 1

2B
1[−B,B](x), σl = 2−l(1/2+α).(6)

This type of prior was considered in [16], Section 2.2, and provides a simple ex-
ample of a random function with bounded α-Hölder norm.

PROPOSITION 1. Consider observations X(n) from the model (4). Let f0 and α

satisfy (5) and let the prior be chosen according to (6). Then there exists M > 0
such that for ε∗

n,α defined by (2),

En
f0

∫
‖f − f0‖∞ d�

(
f |X(n)) ≤ Mε∗

n,α.

Uniform wavelet priors thus lead to the minimax rate of convergence in sup-
norm. The result has a fairly simple proof, as we now illustrate, and is new, to the
best of our knowledge.

Let Ln be defined in (3). Denote by f Ln the orthogonal projection of f in
L2[0,1] onto Vect{ψlk, l ≤ Ln,0 ≤ k < 2l}, and f Lc

n the projection of f onto
Vect{ψlk, l > Ln,0 ≤ k < 2l}. Then

f − f0 = f Ln − f̂ Ln + f̂ Ln − f
Ln

0 + f Lc
n − f

Lc
n

0 ,
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where f̂ Ln is the projection estimator onto the basis {ψlk} with cut-off Ln. Note
that the previous equality as such is an equality in L2. However, if the wavelet
series of f into the basis {ψlk} is absolutely convergent �-almost surely (which
is the case for all priors considered in this paper), we also have f (x) = f Ln(x) +
f Lc

n(x) pointwise for Lebesgue-almost every x, �-almost surely, and similarly
for f0. Now,

E�[‖f − f0‖∞|X(n)]
=

∫
‖f − f0‖∞ d�

(
f |X(n))

≤
∫ ∥∥f Ln − f̂ Ln

∥∥∞ d�
(
f |X(n))

︸ ︷︷ ︸
(i)

+
∫ ∥∥f Lc

n
∥∥∞ d�

(
f |X(n))

︸ ︷︷ ︸
(ii)

+∥∥f̂ Ln − f0
∥∥∞︸ ︷︷ ︸

(iii)

.

We have (iii) ≤ ‖f Lc
n

0 ‖∞ +‖f̂ Ln −f
Ln

0 ‖∞. Using (5) and the localisation property
of the wavelet basis ‖∑

k |ψlk|‖∞ � 2l/2 (see below), one obtains

∥∥f Lc
n

0

∥∥∞ ≤ ∑
l>Ln

[
max

k
|f0,lk|

∥∥∥∥∑
k

|ψlk|
∥∥∥∥∞

]
� hα

n � ε∗
n,α,

where � means less or equal to up to some universal constant. The term ‖f̂ Ln −
f

Ln

0 ‖∞ depends on the randomness of the observations only,

∥∥f̂ Ln − f
Ln

0

∥∥∞ = 1√
n

∥∥∥∥ ∑
l≤Ln,k

εlkψlk(·)
∥∥∥∥∞

.

This is bounded under En
f0

by a constant times ε∗
n,α ; see Lemma 7 for a proof in

the more difficult case of empirical processes.

Term (i). By definition, f̂ Ln has coordinates f̂lk in the basis {ψlk}, so using the
localisation property of the wavelet basis as above, one obtains

∥∥f Ln − f̂ Ln
∥∥∞ � 1√

n

∑
l≤Ln

2l/2
[

max
0≤k<2l

√
n|flk − xlk|

]
.

For t > 0, via Jensen’s inequality and bounding the maximum by the sum, using
�n as a shorthand notation for the posterior �[·|X(n)],

tEn
f0

E�n

[
max

0≤k<2l

√
n|flk − xlk|

]

≤ log
2l−1∑
k=0

En
f0

E�n
[
et

√
n(flk−xlk) + e−t

√
n(flk−xlk)

]
,
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for any l ≥ 0. Simple computations presented in Lemma 1 yield a sub-Gaussian
behaviour for the Laplace transform of

√
n(flk − xlk) under the posterior distribu-

tion, which is bounded above by Cet2/2 for a constant C independent of l ≤ Ln

and k. From this deduce, for any t > 0 and l ≤ Ln,

En
f0

E�
[

max
0≤k<2l

√
n|flk − xlk|

∣∣X(n)
]
� log(C2l)

t
+ t

2
.

The choice t =
√

2 log(C2l) leads us to the bound

En
f0

(i) � 1√
n

∑
l≤Ln

√
l2l/2 �

√
Ln/(nhn)� ε∗

n,α.

Term (ii). Under the considered prior, the wavelet coefficients of f are bounded
by σl , so using again the localisation property of the wavelet basis,

En
f0

(ii) �
∑
l>Ln

2l/2En
f0

E�
[
max

k
|flk|

∣∣X(n)
]

�
∑
l>Ln

2l/2σl � hα
n = ε∗

n,α.

This concludes the proof of Proposition 1.
Although fairly simple, the previous example is revealing of some important

facts, some of which are well known from frequentist analysis of the problem,
some being specific to the Bayesian approach. The previous proof shows two
regimes of frequencies: l ≤ Ln “low frequency” and l > Ln “high frequency.”
In the low frequency regime, the estimator xlk of flk = 〈f,ψlk〉2 is satisfactory,
and the concentration of the posterior distribution around this efficient frequen-
tist estimator is desirable. This is reminiscent of the Bernstein–von Mises (BvM)
property; see van der Vaart [37], Chapter 10, which states that in regular parametric
problems with unknown parameter θ , the posterior distribution is asymptotically
Gaussian concentrating at rate 1/

√
n and centered around an efficient estimator

of θ .
Here are a few words on the general philosophy of the results specifically in the

Bayesian context. Such method was used as a building block in [6]. The idea is to
split the distance of interest into small pieces. For the sup-norm, those pieces can,
for instance, involve the wavelet coefficients 〈f,ψlk〉2, but not necessarily, as will
be seen for log-density priors. In this case, this split is obtained, for instance, from
the inequality

‖f − f0‖∞ �
∑
l≥0

2l/2 max
0≤k≤2l−1

∣∣〈f,ψlk〉2 − 〈f0,ψlk〉2
∣∣,

which holds for localised bases {ψlk}. Note that f → 〈f,ψlk〉2 can be seen as a
semiparametric functional; see, for example, [37], Chapter 25 for an Introduction
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to semiparametrics and the notions of efficiency and efficient influence functions.
Next, one analyses each piece separately, with different regimes of indexes l, k

often arising, requiring specific techniques for each of them.

• the BvM-regime: semiparametric bias. For “low frequencies,” what is typically
needed is a concentration of the posterior distribution for the functional of inter-
est, say 〈f,ψlk〉2, at rate 1/

√
n around a semiparametrically efficient estimator

of the functional. This is at the heart of the proof of semiparametric BvM results,
hence the use of BvM techniques. In particular, sharp control of the bias will be
essential. Regarding the BvM property, although the precise Gaussian shape
will not be needed here, one needs uniformity in all frequencies in the consid-
ered regime. This requires nontrivial strengthenings of BvM-type results, the
semiparametric efficient influence function of the functional of interest, which
can be, for instance, a re-centered version of ψlk , being typically unbounded as l

grows.
• Taking care of uniformity issues in approximation of the efficient influence func-

tions by the prior may require various approximations regimes depending on l.
For log-density priors, we will indeed see various regimes of indexes “l” arise
in the obtained bounds for the bias.

• The high-frequency bias corresponds to frequencies where the prior should
make the likelihood negligible. This part can be difficult to handle, too, espe-
cially for unbounded priors.

In the example above for uniform priors in white noise, most of the previous steps
are either almost trivial or at least can be carried out by considering the explicit ex-
pression of the posterior, but for different priors or in different sampling situations
some of the previous steps may become significantly harder, as we will see below.

2.2. Wavelet basis and Besov spaces. Central to our investigations is the tool
provided by localised bases of L2[0,1]. We refer to the Lecture Notes by Härdle,
Kerkyacharian, Picard and Tsybakov [18] for an Introduction to wavelets. Two
bases will be used in the sequel.

The Haar basis on [0,1] is defined by ϕH (x) = 1, ψH(x) := ψH
0,0(x) =

−1[0,1/2](x) + 1(1/2,1](x) and ψH
l,k(x) = 2l/2ψ(2lx − k), for any integer l and

0 ≤ k ≤ 2l − 1. The supports of Haar wavelets form dyadic partitions of [0,1],
corresponding to intervals I l

k := (k2−l , (k + 1)2−l] for k > 0, and where the inter-
val is closed to the left when k = 0.

The boundary corrected basis of Cohen, Daubechies, Vial [10] will be referred
to as CDV basis. Similar to the Haar basis, the CDV basis enables a treatment on
compact intervals, but at the same time can be chosen sufficiently smooth. A few
properties are lost, essentially simple explicit expressions, but most convenient
localisation properties and characterisation of spaces are maintained. Below we
recall some useful properties of the CDV basis. We denote this basis {ψlk}, with
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indexes l ≥ 0, 0 ≤ k ≤ 2l − 1 (with respect to the original construction in [10], one
starts at a sufficiently large level l ≥ J , with J fixed large enough; for simplicity,
up to renumbering, one can start the indexing at l = 0). Let α > 0 be fixed.

• {ψlk} forms an orthonormal basis of L2[0,1].
• ψlk have support Slk , with diameter at most a constant (independent of l, k)

times 2−l , and ‖ψlk‖∞ � 2l/2. The ψlk’s are in the Hölder class CS[0,1], for
some S ≥ α.

• At fixed level l, given a fixed ψlk with support Slk ,
� the number of wavelets of the level l′ ≤ l with support intersecting Slk is

bounded by a universal constant (independent of l′, l, k),
� the number of wavelets of the level l′ > l with support intersecting Slk is

bounded by 2l′−l times a universal constant.

The following localisation property holds
∑2l−1

k=0 ‖ψlk‖∞ � 2l/2, where the in-
equality is up to a fixed universal constant.

• The constant function equal to 1 on [0,1] is orthogonal to high-level wavelets,
in the sense that 〈ψlk,1〉2 = ∫ 1

0 ψlk = 0 whenever l ≥ M , for a large enough
constant M .

• The basis {ψlk} characterises Besov spaces Bs∞,∞[0,1], any s ≤ α, in terms of
wavelet coefficients. That is, g ∈ Bs∞,∞[0,1] if and only if

‖g‖∞,∞,s := sup
l≥0,0≤k≤2l−1

2l(1/2+s)
∣∣〈g,ψlk〉2

∣∣ < ∞.(7)

We note that orthonormality of the basis is not essential. Other nonorthonormal,
multi-resolution dictionaries could be used instead up to some adaptation of the
proofs, as long as coefficients in the expansion of f can be recovered from inner
products. Also, recall that Bs∞,∞ coincides with the Hölder space Cs when s is
not an integer and that when s is an integer the inclusion Cs ⊂ Bs∞,∞ holds. If the
Haar-wavelet is considered, the fact that f0 is in Cs , 0 < s ≤ 1, implies that the
supremum in (7) with ψlk = ψH

lk is finite.

3. Main results.

3.1. Gaussian white noise. Consider priors � defined as coordinate-wise
products of priors on coordinates specified by a density ϕ and scalings {σl} as
in Section 2.1. The next result allows for a much broader class of priors.

Let ϕ be a continuous density with respect to Lebesgue measure on R. We
assume that ϕ is (strictly) positive on [−1,1] and that it satisfies

∃b1, b2, c1, c2, δ > 0,∀x : |x| ≥ 1, c1e
−b1|x|1+δ ≤ ϕ(x) ≤ c2e

−b2|x|1+δ

.(8)

Consider a scaling σl for the prior equal to, for δ the constant in (8),

σl = 2−l(1/2+α)

(l + 1)μ
, μ = 1

1 + δ
.(9)
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THEOREM 1. Let X(n) be observations from (4). Suppose f0 belongs to
Bα∞,∞[0,1], for some α > 0. Let the prior � be a product prior defined through ϕ

and σl satisfying (8), (9). Then there exists M > 0 such that for ε∗
n,α defined by (2),

En
f0

∫
‖f − f0‖∞ d�

(
f |X(n)) ≤ Mε∗

n,α.

Theorem 1 can be seen as a generalisation to nonconjugate priors of Theorem 1
in [16]. Possible choices for ϕ cover several commonly used classes of prior distri-
butions, such as so-called exponential power (EP) distributions; see, for example,
Choy and Smith [9], Walker and Gutiérrez-Peña [40] and references therein, as
well as some of the univariate Kotz-type distibutions, see, for example, Nadara-
jah [25]. Other choices of prior distributions are possible, up sometimes to some
adaptations. For instance, Proposition 1 provides a result in the case of a uniform
distribution. If one allows for some extra logarithmic term in the rate, Laplace
(double-exponential) distributions can be used, as well as distributions without the
control from below on the tail in (8), provided one chooses σl = 2−l(1/2+α), as
can be checked following the steps of the proof of Theorem 1. As a special case,
the latter include all sub-Gaussian distributions. Also note that Theorem 1 as such
applies to canonical priors, in that they do not depend on n. Results for truncated
priors, which set 〈f,ψlk〉 = 0 for l above a threshold, can be obtained along the
same lines, with slightly simpler proofs.

Further consequences of Theorem 1 include the minimaxity in sup-norm of sev-
eral Bayesian estimators. The result for the posterior mean immediately follows
from a convexity argument. One can also check that the posterior coordinate-wise
median is minimax. Details are omitted.

3.2. Density estimation. Consider independent and identically distributed ob-
servations

X(n) = (X1, . . . ,Xn),(10)

with unknown density function f on [0,1]. We use the same notation X(n)

for observations as in the white noise model: it will always be clear from the
context which model we are referring to. Let F be the set of densities f on
[0,1] which are bounded away from 0 and ∞. In other words, one can write
F = ⋃

0<ρ≤D<∞F(ρ,D), with Fρ,D = {f,0 < ρ ≤ f ≤ D < ∞,
∫ 1

0 f = 1}. In
the sequel, we assume that the “true” f0 belongs to F0 := F(ρ0,D0), for some
0 < ρ0 ≤ D0 < ∞. The assumption that the density is bounded away from 0 and ∞
is for simplicity. Allowing the density to tend to 0, for example, at the boundary
of [0,1] would be an interesting extension, but would presumably induce techni-
calities not related to our point here. Let h denote the Hellinger distance between
densities on [0,1].
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3.2.1. Log-densities priors. Define the prior � on densities as follows. Given
a sufficiently smooth CDV-wavelet basis {ψlk}, consider the prior induced by, for
any x ∈ [0,1] and Ln defined in (3),

T (x) =
Ln∑
l=0

2l−1∑
k=0

σlkαlkψlk(x),(11)

f (x) = exp
{
T (x) − c(T )

}
, c(T ) = log

∫ 1

0
eT (x) dx,(12)

where αlk are i.i.d. random variables of density ϕ with respect to Lebesgue mea-
sure on R and σlk are positive reals which for simplicity we make only depend
on l, that is σlk ≡ σl . We consider the choices ϕ(x) = ϕG(x) = e−x2/2/

√
2π the

Gaussian density and ϕ(x) = ϕH (x), where ϕH is any density such that its loga-
rithm logϕH is Lipschitz on R. We refer to this as the “log-Lipschitz case.” For
instance, the αlk’s can be Laplace-distributed or have heavier tails, such as, for a
given 0 ≤ τ < 1 and x ∈ R, and cτ a normalising constant,

ϕH,τ (x) = cτ exp
{−(

1 + |x|)1−τ }
.(13)

Suppose the prior parameters σl satisfy, for some α > 1/2 and 0 < r ≤ α − 1
4 ,

σl ≥ 2−l(α+1/2) (log-Lipschitz case),
(14)

σl = 2−l(1/2+r) (Gaussian-case).

Typically, see examples below, such priors f in (12) under ϕ = ϕG or ϕH and (14)
attain the rate ε̄n,α in (1) in terms of Hellinger loss, up to logarithmic terms. For
some ν > 0, suppose

En
f0

�
[
f :h(f,f0) > (logn)νε̄n,α|X(n)] → 0.(15)

If (15) holds for some ν > 0, we denote εn := (logn)νε̄n,α and ζn := εn2Ln/2, with
Ln as in (3).

THEOREM 2. Consider observations X(n) from model (10). Suppose logf0

belongs to Cα[0,1], with α ≥ 1. Let � be the prior on F defined by (12), with
ϕ = ϕG or ϕH . Suppose that σl satisfy (14) and that (15) holds. Then, for α > 1
and ε∗

n,α defined by (2), any Mn → ∞, it holds, as n → ∞,

En
f0

�
[
f :‖f − f0‖∞ > Mnε

∗
n,α|X(n)] → 0.

In the case α = 1, the same holds with ε∗
n,α replaced by (logn)ηε∗

n,α , for some
η > 0.
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Theorem 2 implies that log-density priors for many natural priors on the coeffi-
cients achieve the precise optimal minimax rate of estimation over Hölder spaces
under sup-norm loss, as soon as the regularity is at least 1.

In the case 1/2 < α < 1, examination of the proof reveals that the presented
techniques provide the sup-norm rate ρn = n(1/2−3α/2)/(1+2α) up to logarithmic
terms. For 1/2 < α < 1, we have ε∗

n,α � ρn � ζn. So, although the minimax rate
is not exactly attained for those low regularities, the obtained rate improves on
the intermediate rate ζn, which was obtained in [16] for slightly different priors.
In the next subsection, a prior is proposed which attains the minimax rate for the
sup-norm in the case 1/2 < α < 1.

Let us give some examples of prior distributions satisfying the assumptions of
Theorem 2. In the Gaussian case, any sequence of the type σl = 2−l(1/2+γ ) with
0 < γ ≤ α − 1/4 satisfies both (14) and (15). In the log-Lipschitz case, the choice
ϕ = ϕH,τ in (13) with any 0 ≤ τ < 1 combined with σl = 2−lα satisfies (14)–(15).
Both claims follow from minor adaptations of Theorem 4.5 in [38] and Theo-
rem 2.1 in [27], respectively; see Lemma 8. In both Gaussian and log-Lipschitz
cases, we in fact expect (15) to hold true for many other choices of σl under (14)
and logϕH Lipschitz, or under σl ≥ 2−l(1/4+α) in the Gaussian case, although such
a general statement in Hellinger distance is not yet available in the literature, to the
best of our knowledge.

3.2.2. Random dyadic histograms. Associated to the regular dyadic partition
of [0,1] at level L ∈N

∗, given by IL
0 = [0,2−L] and IL

k = (k2−L, (k + 1)2−L] for
k = 1, . . . ,2L − 1, is a natural notion of histogram

HL =
{
h ∈ L∞[0,1], h(x) =

2L−1∑
k=0

hk1IL
k
(x), hk ∈ R, k = 0, . . . ,2L − 1

}

the set of all histograms with 2L regular bins on [0,1]. Let SL = {ω ∈ [0,1]2L;∑2L−1
k=0 ωk = 1} be the unit simplex in R

2L
. Further denote

H1
L =

{
f ∈ L∞[0,1], f (x) = 2L

2L−1∑
k=0

ωk1IL
k
(x), (ω0, . . . ,ω2L−1) ∈ SL

}
.

The set H1
L is the subset of HL consisting of histograms which are densities

on [0,1]. Let H1 be the set of all histograms which are densities on [0,1].
A simple way to specify a prior on H1

L is to set L = Ln deterministic and to
fix a distribution for ωL := (ω0, . . . ,ω2L−1). Set L = Ln as defined in (3). Choose
some fixed constants a, c1, c2 > 0 and let

L = Ln, ωL ∼D(α0, . . . , α2L−1), c12−La ≤ αk ≤ c2,(16)

for any admissible index k, where D denotes the Dirichlet distribution on SL. Un-
like suggested by the notation, the coefficients α of the Dirichlet distribution are
allowed to depend on Ln, so that αk = αk,Ln .
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THEOREM 3. Let f0 ∈ F0 and suppose f0 belongs to Cα[0,1], where 1/2 <

α ≤ 1. Let � be the prior on H1 ⊂F defined by (16). Then, for ε∗
n,α defined by (2)

and any Mn → ∞ it holds, as n → ∞,

En
f0

�
[
f :‖f − f0‖∞ > Mnε

∗
n,α|X(n)] → 0.

According to Theorem 3, random dyadic histograms achieve the precise mini-
max rate in sup-norm over Hölder balls. Condition (16) is quite mild. For instance,
the uniform choice α0 = · · · = α2L−1 = 1 is allowed, as well as a variety of oth-
ers, for instance, one can take αk = αk,Ln to originate from a measure A = ALn

on the interval [0,1], of finite total mass ĀLn := A([0,1]). By this we mean,
αk = A(I

Ln

k ). If A/ĀLn has say a fixed continuous and positive density a with
respect to Lebesgue measure on [0,1], then (16) is satisfied as soon as there exists
a δ > 0 with 2−δLn � ĀLn � 2Ln .

3.2.3. Further examples. A referee of the paper, whom we thank for the sug-
gestion, has asked whether the proposed technique would work for other priors,
more specifically for non-n-dependent priors in density estimation. Although not
considered here for lack of space, we would like to mention the important class
of Pólya tree priors; see, for example, Lavine [22]. For well-chosen parameters, it
can be shown that these priors achieve supremum-norm consistency in density es-
timation (consistency in the, weaker, Hellinger sense was studied, e.g., in [2]) and
minimax rates of convergence in the sup-norm can be obtained. In particular, this
class contain canonical (i.e., non-n-dependent) priors that achieve such optimal
rates in density estimation. This will be studied elsewhere.

3.3. Discussion. We have introduced new tools which allow to obtain opti-
mal minimax rates of contraction in strong distances for posterior distributions.
The essence of the technique is to view the problem semiparametrically as the
uniform study of a collection of semiparametric Bayes concentration results, very
much in the spirit of nonparametric Bernstein–von Mises results as studied in [6].
For the sake of clarity, we refrain of carrying out further extensions in the present
paper but briefly mention a few applications. From the sup-norm rates, optimal
results—up to logarithmic terms- in Lq -metrics, q ≥ 2, can be immediately ob-
tained by interpolation. Adaptation to the unknown α could also be considered.
This will be the object of future work. However, note that “fixed α” nonparametric
results as such are already very desirable in strong norms. They can, for instance,
be used in the study of remainder terms of semiparametric functional expansions
or of LAN-expansions as, for example, to check the conditions of application of
semiparametric Bernstein–von Mises theorems as in [4]. In this semiparametric
perspective, adaptation to f is in fact not always desirable, since posteriors for
functionals may behave pathologically when an adaptive prior on the nuisance is
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chosen; see [27] and [8], where it is shown that too large discrepancies in smooth-
ness between the semiparametric functional and the unknown f can lead to un-
desirable bias. Also, we expect the present methodology to give results in a broad
variety of statistical models and/or for different classes of priors. Indeed, it reduces
the problem of the strong-distance rate to two parts: (1) uniform semiparametric
study of functionals and (2) high-frequency bias. The first part is very much re-
lated to obtaining (uniform) semiparametric Bernstein–von Mises (BvM) results.
So, any advance in BvM theory for classes of priors will automatically lead to ad-
vances in (1). As for (2), the studied examples suggest that for frequencies above
the cut-off the posterior behaves essentially as the prior itself. So, contrary to the
BvM-regime (1) where the prior washes out asymptotically, one does not expect a
universal behaviour for this part. However, showing that the posterior is close to
the prior provides a possible method of proof.

4. Proofs.

4.1. Gaussian white noise.

LEMMA 1. Let X(n) follow model (4). Let f0 satisfy (5) and let the prior �

be chosen according to (6). There exists C > 0 such that for any real t , any n ≥ 2
and l ≤ Ln, with Ln defined in (3),

En
f0

E�[
et

√
n(flk−xlk)|X(n)] ≤ Cet2/2.

PROOF. The proof is similar to the first lines of the proof of Theorem 5 in [6]:
one uses Bayes’ formula to express the posterior expectation in the lemma. Next,
using (3) and (5), one checks that for any v ∈ [−L0,L0] with L0 := √

2(B −R)/2,
the ratio |f0,lk +v/

√
n|/σl is at most R+(B−R)/2 < B , for any l ≤ Ln and k. For

such v’s, since ϕ is the uniform density on [−B,B], the expression involving ϕ in
the next line is constant, and thus can be removed from the expression, leading to

E�[
et

√
n(flk−xlk)|X(n)]

= e−tεlk

∫
e−v2/2+(t+εlk)vϕ((f0,lk + v/

√
n)/σl) dv∫

e−v2/2+εlkvϕ((f0,lk + v/
√

n)/σl) dv

� e−tεlk

∫
etv−(v−εlk)

2/2 dv∫ L0−L0
e−(v−εlk)

2/2 dv
�

∫
etu−u2/2 du∫ L0−L0
e−(v−εlk)

2/2 dv

� et2/2
[∫ L0

−L0

e−(v−εlk)
2/2 dv

]−1

.

Since εlk are standard normal, simple calculations show that the expectation of the
inverse of the quantity under brackets is bounded by a universal constant, as in [6],
pages 2015–2016. �
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PROOF OF THEOREM 1. Small l. Let us first consider indexes l with l ≤ Ln.
For any real t , set Qlk(t) := En

f0
E�[et

√
n(flk−Xlk)|X(n)]. Using the fact that ϕ is

bounded,

Qlk(t) �En
f0

∫
et(v−εlk)−((v−εlk)

2/2) dv∫
e−(v−εlk)

2/2ϕ((f0,lk + v/
√

n)/σl) dv
.

Introduce the set, for any possibly l-dependent sequence Ml ,

A(Ml) :=
{
v :

∣∣∣∣f0,lk + v/
√

n

σl

∣∣∣∣ ≤ Ml

}
.(17)

Choose Ml = C(l + 1)μ with μ = (1 + δ)−1. This implies, with our choices of
Ml,σl and taking C large enough, that A(Ml) contains the interval (−1,1). First
restricting the integral on the denominator to (−1,1) and next using the tail con-
dition on ϕ and the fact that ϕ ≥ cϕ > 0 on (−1,1), one gets

Qlk(t) � En
f0

et2/2

e−l
∫ 1
−1 e−(v−εlk)

2/2 dv
� et2/2+l .

The maximal inequality argument from Section 2.1 directly yields (i) ≤ ε∗
n,α .

Large l. Let us now consider the case l > Ln. For any real t set,

En
f0

E�[
etflk |X(n)]

= En
f0

∫
et(f0,lk+v/

√
n)e−v2/2+εlkv1/

√
nσlϕ((f0,lk + v/

√
n)/σl) dv∫

e−v2/2+εlkv1/
√

nσlϕ((f0,lk + v/
√

n)/σl) dv

=: En
f0

Nlk(t)

Dlk

.

To bound the denominator, first restrict the integral to the set A := A(1) as defined
in (17). Set

ζl =
∫
A

v
1√
nσl

ϕ

(
f0,lk + v/

√
n

σl

)
dv,

next apply Jensen’s inequality with the logarithm function to get, with |A| the
diameter of A and some constant C > 0,

logDlk ≥ −|A|‖ϕ‖∞
2
√

nσl

sup
v∈A

v2 + εlkζl

≥ −Cn
(
σ 2

l + f 2
0,lk

) + εlkζl,

where we have used that Ml = 1 in (17). Below we shall also use that

|ζl| � |A|‖ϕ‖∞√
nσl

sup
v∈A

|v| �√
n
(|f0,lk| + σl

)
.
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To bound the numerator from above, split the integrating set into A := A(1)

and Ac and write Nlk(t) =: N
(1)
lk (t) + N

(2)
lk (t) for the integrals over each respec-

tive set. Using the previous bound on Dlk , that |t (f0,lk + v√
n
)| ≤ |t |σl by definition

of A, and Fubini’s theorem,

En
f0

N
(1)
lk (t)

Dlk

≤ e
|t |σl+Cn(σ 2

l +f 2
0,lk)

∫
A

En
f0

[
e(v−ζl)εlk

]e−v2/2
√

nσl

ϕ

(
f0,lk + v/

√
n

σl

)
dv

≤ e
|t |σl+Cn(σ 2

l +f 2
0,lk)+ζ 2

l /2‖ϕ‖∞ sup
v∈A

e|vζl |

� e
|t |σl+C′n(σ 2

l +f 2
0,lk).

On the other hand, the term over Ac can be bounded as follows:

En
f0

N
(2)
lk (t)

Dlk

� e
Cn(σ 2

l +f 2
0,lk)

×
∫
(−1,1)c

etσlwEn
f0

[
e−n/2(wσl−f0,lk)

2+εlk(
√

n(wσl−f0,lk)−ζl)
]
ϕ(w)dw

� e
Cn(σ 2

l +f 2
0,lk)+ζ 2

l /2
∫
(−1,1)c

etσlw−√
nζl(σlw−f0,lk)ϕ(w)dw

� e
C′n(σ 2

l +f 2
0,lk)

∫
(−1,1)c

e(tσl+√
nσlζl)wϕ(w)dw.

Using the tail behaviour of ϕ leads to

En
f0

N
(2)
lk (t)

Dlk

� e
C′n(σ 2

l +f 2
0,lk)eC{σl(|t |+√

n|ζl |)}(δ+1)/δ

.

One deduces, using that for l > Ln, one has n(σ 2
l + f 2

0,lk) ≤ n2−l(1+2α) �
logn � l, that for t > 0,

Rlk(t) := En
f0

E�
[
max

k
|flk|

∣∣X(n)
]

� 1

t

(
l + log

(
etσl + eC{σl(t+√

n|ζl |)}(δ+1)/δ ))
� l

t
+ σl + 1

t

{
σl

(
t + √

n|ζl|)}(δ+1)/δ
.

Set t = σ−1
l lδ/(δ+1) to deduce, using σl

√
n|ζl| � lδ/(δ+1) for l > Ln,

Rlk(t) � l1/(δ+1)σl � 2−l(1/2+α)
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and further obtain (ii) ≤ ∑
l>Ln

2l/22−l(1/2+α) � hα
n = ε∗

n,α . Therefore, for any
δ > 0, the rate is precisely ε∗

n,α . �

4.2. Density estimation, notation. Given observations X(n) from (10), denote
by �n(f ) the log-likelihood �n(f ) = ∑n

i=1 logf (Xi). For any u, v in L2(Pf0) =:
L2(f0), define the inner-product 〈·, ·〉L with associated norm ‖ · ‖L, together with
a stochastic term Wn(u), as follows:

〈u, v〉L =
∫ 1

0
(u − Pf0u)(v − Pf0v)f0,

Wn(u) = 1√
n

n∑
i=1

[
u(Xi) − Pf0u

]
.

In particular, in empirical process notation Wn(u) = Gn(u). For any f in F , set
Rn(f,f0) = √

nPf0 log(f/f0) + n‖ log(f/f0)‖2
L/2. For any f ∈ F , it holds

�n(f ) − �n(f0) = −n

2

∥∥log(f/f0)
∥∥2
L + √

nWn

(
log(f/f0)

) + Rn(f,f0).

Denote, for any density f in F and any given u in L2(f0),

B(u, f, f0) =
〈
f − f0

f0
, u

〉
L

− 〈
log(f/f0), u

〉
L.

Let Dn be a measurable set. Denote by �Dn the restriction of � to Dn. Suppose,
as n → ∞,

En
f0

�
(
Dn|X(n)) = 1 + o(1).(18)

Combining (18) and Markov’s inequality leads to, for any Mn → ∞,

En
f0

�
[
f :‖f − f0‖∞ > Mnε

∗
n,α|X(n)]

≤ (
Mnε

∗
n,α

)−1
En

f0

[
E�Dn [‖f − f0‖∞|X(n)]�(

Dn|X(n))] + o(1).

In the sequel, we focus on bounding E�Dn [‖f − f0‖∞|X(n)] from above.

4.3. Density estimation, log-density priors. Let us define the set Dn by, for
εn = (logn)νε̄n,α the rate in (15), Ln as in (3) and ζn = εn2Ln/2,

Dn = {
f,‖f − f0‖2 ≤ εn,‖f − f0‖∞ ≤ ζn

}
.(19)

It follows from Lemma 4 below that �(Dn|X(n)) goes to 1 in probability, up to
replacing εn by Mεn for a large enough constant M , and similarly for ζn. Indeed,
since a εn-Hellinger-contraction rate for the posterior is assumed, see (15), the
conditions of Lemma 4 are satisfied.
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4.3.1. First step, reduction to the logarithmic scale. Let us set g = logf and
g0 = logf0. With T defined in (11), one has g = T − c(T ). First, one notes that
obtaining a rate going to 0 for ‖g − g0‖∞ implies the same rate up to constants
for ‖f − f0‖∞. Indeed, ‖f − f0‖∞ = ‖eg0(eg−g0 − 1)‖∞ � ‖g − g0‖∞ using the
bound |ex − 1|� |x| for small x and that ‖f0‖∞ is bounded. So, instead of writing
Markov’s inequality as above with f , we write it with g, the set Dn still being the
one defined in (19) with the dependence on f − f0.

That is, we focus on bounding E�Dn [‖g − g0‖∞|X(n)] from above. Now write,
with the notation gLn denoting the L2-projection up to level Ln as in Section 2.1,
and Ln as in (3),

E�Dn [‖g − g0‖∞|X(n)]
≤

∫ ∥∥gLn − g
Ln

0

∥∥∞ d�Dn
(
f |X(n))

︸ ︷︷ ︸
(i)

+
∫ ∥∥gLc

n
∥∥∞ d�Dn

(
f |X(n))

︸ ︷︷ ︸
(ii)

+∥∥gLc
n

0

∥∥∞︸ ︷︷ ︸
(iii)

.

The term (ii) is 0 because the sum defining T goes up to level l ≤ Ln under the
prior distribution, and the constant function 1 is orthogonal to higher levels. Since
g0 = logf0 belongs to Bα∞,∞ by assumption, the term (iii) is bounded by a constant
times ε∗

n,α .
We now start analysing the term (i). First, let us introduce, for {Al,k}l,k a col-

lection of elements of L2(f0) to be chosen later, and Ln as in (3),

�Ln(·) := g
Ln

0 (·) + 1√
n

Ln∑
l=0

2l−1∑
k=0

Wn(Al,k)ψlk(·).(20)

Next, let us write

(i) ≤
∫ ∥∥gLn − �Ln

∥∥∞ d�Dn
(
f |X(n)) + ∥∥�Ln − g

Ln

0

∥∥∞.

The second term is bounded with the help of Lemma 7. For the first term, following
the scheme of proof of the maximal inequality in Section 2.1 via the moment
generating function, one sees that it is enough to bound for t > 0 the following
quantity, uniformly in l, k and l ≤ Ln

Mlk(t) := e−tWn(Al,k)E�Dn [
et

√
n〈g−g0,ψlk〉2 |X(n)].(21)

Denote ρ(x) := log(1 + x) − x. It holds∫ 1

0
(g − g0)ψlk =

∫ 1

0
log

[
f − f0

f0
+ 1

]
ψlk

=
∫ 1

0

f − f0

f0

ψlk

f0
f0 +

∫ 1

0
ρ

(
f − f0

f0

)
ψlk.
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On Dn we have an intermediate sup-norm rate ζn = o(1) when α > 1/2. In
this case the argument of ρ in the previous display tends to 0. Using the bound
|ρ(u)| ≤ u2 for small u, one gets∣∣∣∣

∫ 1

0
ρ

(
f − f0

f0

)
ψlk

∣∣∣∣ ≤ ‖ψlk‖∞
∫ 1

0

(
f − f0

f0

)2

� 2l/2‖f − f0‖2
2.(22)

This bound is a O(1/
√

n) on Dn as soon as 2Ln/2ε2
n = O(1/

√
n), which is satisfied

if α > 1. This implies that the inner-product 〈g − g0,ψlk〉2 in (21) can be replaced
by 〈f − f0, ζl,k〉, where

ζl,k = ψlk

f0
.(23)

That is, we can reason as if one would be considering the semiparametric problem
of estimating the linear functional of the density f → 〈ζl,k, f 〉2. The correspond-
ing efficient influence function is ζ̃l,k = ζl,k − Pf0ζl,k , with respect to the tangent
set Hf0 := {h : [0,1] → R, h bounded,

∫ 1
0 hf0 = 0}; see [37], Chapter 25 for defi-

nitions.
There is one difficulty with ζl,k . It is not an element of the basis of expansion of

the prior �, so it needs to be properly approximated by the prior in some sense. In
fact, there is a fundamental difference with what has been done so far in proving
BvM-type results; see, for example, [4, 8, 27]. Here, we need to study approximat-
ing sequences uniformly in the indexes l, k and a sharp control on this dependence
is essential; see the key Lemma 2, where two regimes of indexes “l” arise, depend-
ing on whether l is small or close to Ln.

So, instead of working with ζl,k directly, one replaces it by an approximation
Al,k defined in (27) below. This induces a bias term for any l, k, familiar in the
context of semiparametric BvM results; see, for example, [4, 5, 8], equal to

√
n〈f − f0, ζl,k −Al,k〉2 = √

n

∫ 1

0
(f − f0)(ζl,k −Al,k).(24)

This term is controlled using Lemma 2 below. Indeed, on Dn the bounds of (24)
of Lemma 2 are at most

√
nhnεn = o(1) if α > 1. Next, apply Lemma 3 with

γn = Al,k . The estimates of L2 and sup-norm of Al,k imply that the conditions of
application of Lemma 3 are satisfied. Thus,

Mlk(t) ≤ eCt2
∫

e�n(ft )−�n(f0) d�Dn(f )∫
e�n(f )−�n(f0) d�Dn(f )

,(25)

where we have set ft = egt with gt = gt,l,k defined as in Lemma 3 by (the expres-
sion is invariant under adding a constant to g, so one can write it either with Al,k

or Ãl,k = Al,k − Pf0Al,k)

gt = g − t√
n
Al,k − log

∫
eg−t/

√
nAl,k .(26)
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In the case 1/2 < α ≤ 1, the cost of replacing f by logf is controlled by ‖g −
g0 − (f − f0)‖∞ = ‖f0ρ(f/f0 − 1)‖∞ � ‖f/f0 − 1‖2∞, which is bounded on Dn

by a constant times ζ 2
n via Lemma 4. Using Remark 1 below, the bias (24) leads to

an extra term exp{t√nn(−3α/2)/(1+2α)} in (25).

4.3.2. “Uniform” approximations of efficient influence functions ζ̃l,k . For any
l ≤ Ln and k between 0 and 2l − 1, define Al,k to be the L2-projection of ζl,k on
the space spanned by the first Ln levels of wavelet coefficients,

Al,k = ∑
1≤λ≤Ln

∑
0≤μ≤2λ−1

〈ζl,k,ψλμ〉2ψλμ.(27)

For any l, k in the previous ranges, we also set

Ãl,k = Al,k − Pf0Al,k.

LEMMA 2. Let f0 belong to F0 ∩ Cα[0,1], with α ≥ 1. For any l such that
1 ≤ 2l ≤ 2Ln and 0 ≤ k ≤ 2l − 1, any density f in F , and Al,k as in (27),

‖Al,k − ζl,k‖∞ � 2l(1/2+α)2−αLn,∣∣∣∣
∫ 1

0
(Al,k − ζl,k)(f − f0)

∣∣∣∣� (
2(l−Ln)α ∧ 2−l)‖f − f0‖2.

PROOF. For any admissible indexes λ,μ, let Sλμ denote the support of the
wavelet ψλμ in [0,1] and |Sλμ| its Lebesgue measure. The following identity holds
both in L2[0,1] (definition of the L2-projection) and in L∞[0,1] (because ζl,k ∈
BS∞,∞ with S > 0)

ζl,k −Al,k = ∑
λ>Ln

2λ−1∑
μ=0

〈ζl,k,ψλμ〉2ψλμ.(28)

Since ψlk belongs to Bα∞,∞ and f0 to F0 ∩ Cα , Lemma 5 implies that ζl,k =
ψlk · f −1

0 belongs to Bα∞,∞, with ‖ · ‖∞,∞,α-norm bounded above by a constant

times ‖ψlk‖∞,∞,α‖f −1
0 ‖∞,∞,α � 2l(1/2+α), again by Lemma 5, using f −1

0 ∈ Cα ⊂
Bα∞,∞. Now using the localisation property of the wavelet basis,

‖Al,k − ζl,k‖∞ ≤
∥∥∥∥∥ ∑
λ>Ln

2λ−1∑
μ=0

〈ζl,k,ψλμ〉2ψλμ

∥∥∥∥∥∞

≤ ∑
λ>Ln

2λ/22−λ(α+1/2) max
0≤μ≤2λ−1

[
2λ(α+1/2)

∣∣〈ζl,k,ψλμ〉2
∣∣]

≤ ‖ζl,k‖∞,∞,α

∑
λ>Ln

2−λα � 2l(1/2+α)2−αLn.
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Now let us prove that the support of ζl,k −Al,k has diameter at most a constant
times |Slk|. Indeed, ζl,k − Al,k written above is a linear combination of “high”-
frequency wavelets (λ > Ln), with support diameter thus at most of the order of
|Sλμ| ≤ R|Slk|, for a fixed constant R, for any λ > Ln, any admissible μ, since
λ > l. But in the sum (28), one may keep only those ψλμ whose support intersects
the one of ζl,k , otherwise the coefficient 〈ζl,k,ψλμ〉2 is 0. So, all supports of the
ψλμ’s which have a nonzero contribution to (28) are contained in an interval of
[0,1] of diameter at most (2R +1)|Slk|. Thus, the diameter of the support of ζl,k −
Al,k is at most (2R + 1)|Slk|.

Now we focus on
∫ 1

0 (Al,k −ζl,k)(f −f0) = ∫ 1
0 (Al,k −ζl,k)(f −f0)1�l,k

, where
�l,k denotes the support of Al,k − ζl,k . Bounding Al,k − ζl,k by its supremum and
next applying Cauchy–Schwarz inequality,∣∣∣∣

∫ 1

0
(Al,k − ζl,k)(f − f0)

∣∣∣∣� ‖Al,k − ζl,k‖∞
√|�lk|‖f − f0‖2

� 2(l−Ln)α‖f − f0‖2.

To obtain the other part of the bound, the idea is to use a different approximating
sequence Dl,k for which the comparison to ζl,k is easier for large l’s. Define Dl,k

to be the function obtained by replacing f0 in (23) by its average on the support
of ψlk ,

Dl,k = ψlk

[f̄0]lk ,(29)

where we have set

[f̄0]lk = 1

|Slk|
∫
Slk

f0.

Note that since l ≤ Ln, by definition Dl,k belongs to the vector space generated by
the first Ln levels of wavelet coefficients. In particular, it holds ‖Al,k − ζl,k‖2 ≤
‖Dl,k − ζl,k‖2 by definition of the L2-projection. Since by definition again Dl,k −
ζl,k has support included in Slk , one gets

‖Al,k − ζl,k‖2
2 ≤

∫
1Slk

(Dl,k − ζl,k)
2 ≤ ‖Dl,k − ζl,k‖2∞|Slk|.

Next, one bounds the last sup-norm. Denoting ρ0 := infx∈[0,1] f0(x),

‖Dl,k − ζl,k‖∞ ≤ ρ−1
0 ‖ψlk‖∞ sup

x∈Slk

∣∣f0(x) − [f̄0]lk
∣∣

≤ ρ−1
0 ‖ψlk‖∞ sup

x∈Slk

|Slk|−1
∣∣∣∣
∫
Slk

(
f0(x) − f0(u)

)
du

∣∣∣∣
≤ ρ−1

0 ‖ψlk‖∞ sup
x∈Slk

|Slk|−1
∫
Slk

|x − u|du

≤ ρ−1
0 ‖ψlk‖∞|Slk|−1|Slk|2/2 � 2−l/2,
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where for the third inequality we have used the fact that f0 is at least Hölder 1 and
for the last inequality that |Slk| is of the order 2−l and ‖ψlk‖∞ of the order 2l/2 up
to constants. Thus,∣∣∣∣

∫ 1

0
(Al,k − ζl,k)(f − f0)

∣∣∣∣ ≤ ‖Al,k − ζl,k‖2‖f − f0‖2

≤ √|Slk|‖Dl,k − ζl,k‖∞‖f − f0‖2

� 2−l‖f − f0‖2. �

REMARK 1. In the case 1/2 < α < 1, similarly one gets the bound (2−lα ∧
(2l−Ln)α)‖f − f0‖2. The minimum of the bounds is attained for 2l = 2Ln/2. This
leads to a bound for the integral

∫ 1
0 (Al,k − ζl,k)(f − f0) equal to n(−3α/2)/(1+2α)

for all considered indexes l, k.

4.3.3. Change of variables. Now everything is in place to start exploiting
(25)–(26). First, rewrite (25) as∫

e�n(ft )−�n(f0) d�Dn(f )∫
e�n(f )−�n(f0) d�Dn(f )

=
∫

1Dn(f )e�n(ft )−�n(f0) d�(f )

�(Dn|X(n))
∫

e�n(f )−�n(f0) d�(f )
.(30)

The expression logft = (26), due to its invariance by adding a constant and recall-
ing that g = T − c(T ) from (12), can be seen as a function of T − tAl,k/

√
n [the

constant c(T ) vanishes]. More precisely, we are now ready to change variables in
the prior by setting

T̃ = T − t√
n
Al,k.(31)

Essentially, if the “complexity” of Al,k is not too large in view of the chosen
prior �, the fact of having ft instead of f in (25) will not matter much and the cor-
responding ratio of integrals will be close to 1. We treat the case of log-Lipschitz
priors on coefficients first. In fact, as can intuitively be guessed, a prior with heavy
tails is less influenced under shift transformations than a more concentrated prior.

Denote by Cn = {(λ,μ) ∈ N
2,0 ≤ μ ≤ 2λ − 1,1 ≤ 2λ ≤ 2Ln}. By the defini-

tion (27) of Al,k ,

〈Al,k,ψλμ〉2 = 〈ζl,k,ψλμ〉2, (λ,μ) ∈ Cn, (l, k) ∈ Cn.

Log-Lipschitz prior. With the chosen prior on f , the numerator in (30) is in fact
an integral over the law of the coefficients of T in (11), that is, over (a subset
of) R2Ln . The change of variables (31) is thus a shift in R

2Ln , and its Jacobian is 1.
The coordinates of T in the wavelet basis {ψλμ} have densities σ−1

λ ϕ(θλ,μ/σλ)
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with respect to dθλ,μ (we denote by θλ,μ the integrating variable). The transfor-
mation in density can be controlled by, since ϕ = ϕH has a Lipschitz logarithm,

log
∏

(λ,μ)∈Cn

ϕ(θλ,μ/σλ)

ϕ({θλ,μ − t/
√

n〈Al,k,ψλμ〉2}/σλ)

= ∑
(λ,μ)∈Cn

(logϕ)(θλ,μ/σλ) − (logϕ)

({
θλ,μ − t√

n
〈Al,k,ψλμ〉2

}/
σλ

)

≤ ∑
(λ,μ)∈Cn

|t |√
nσλ

∣∣〈ζl,k,ψλμ〉2
∣∣ ∀(l, k) ∈ Cn.

We now study conditions on the σλ’s under which the last display is bounded above
by C|t |. Let us split the sum over Cn in the two cases λ ≤ l and λ > l. When λ ≤ l,
for any fixed level λ there is a constant number of wavelets ψλμ intersecting the
support of ζl,k . Combined with |〈ζl,k,ψλμ〉2| ≤ ρ−1

0 , this leads to the condition∑
λ≤l σ

−1
λ � √

n. When λ > l, for any fixed level λ there is a constant times 2λ−l

wavelets ψλμ intersecting the support of ζl,k , leading to∑
(λ,μ)∈Cn

σ−1
λ

∣∣〈ζl,k,ψλμ〉2
∣∣ ≤ ∑

l<λ≤Ln

σ−1
λ 2λ−l2−λ(1/2+α)‖ζl,k‖∞,∞,α

≤ ∑
l<λ≤Ln

σ−1
λ 2(l−λ)(α−1/2),

where we have used that ζl,k = ψlk/f0 is α-smooth and applied Lemma 5.
These conditions are quite mild. In particular, for α > 1/2 they are implied by∑

λ≤Ln
σ−1

λ �√
n.

Gaussian prior. Let us write explicitly the log-ratio of densities∑
(λ,μ)∈Cn

(logϕ)(θλ,μ/σλ) − (logϕ)

({
θλ,μ − t√

n
〈Al,k,ψλμ〉2

}/
σλ

)
(32)

= ∑
(λ,μ)∈Cn

t2

2nσ 2
λ

〈Al,k,ψλμ〉2
2 − t√

nσ 2
λ

θλ,μ〈Al,k,ψλμ〉2.

The obtained quantity still depends on the integrating variables θλ,μ. The idea is
to exploit the fact that on Dn, it holds ‖g − g0‖2 � εn, which is obtained along the
way in the proof of Lemma 4. But g = T − c(T ) = T − c(T )1, where 1 denotes
the constant function equal to 1. Since 1 is orthogonal to high levels of wavelet
coefficients, it means that for large enough λ, say λ > K , and any μ, it holds
|θλ,μ − g0,λ,μ| ≤ ‖g − g0‖2 � εn. So, for such λ,μ, we decompose θλ,μ = θλ,μ −
g0,λ,μ +g0,λ,μ. For coefficients θλ,μ such that λ ≤ K , we use a different argument.

Let us first deal with the term containing θλ,μ in (32) when λ ≤ K . From the
beginning of the proof, using Lemma 9, one can restrict slightly the set Dn by
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intersecting it with the set {T : maxλ≤K,μ |〈T ,ψlk〉| ≤ C
√

nεn}. Hence, using that
|〈Al,k,ψλμ〉2| � 1 and the assumed specific form of σλ, one gets that the term at
stake is at most a fixed constant times |t |εn.

Now we bound (32) and only have to deal with λ > K for the part depending
on θλ,μ. For any (l, k) ∈ Cn, the first term in (32) is

t2

2n

∑
(λ,μ)∈Cn

σ−2
λ

〈
ψlk

f0
,ψλμ

〉2

2
� t2

n

∑
λ≤l

σ−2
λ + t2

n

∑
l<λ≤Ln

σ−2
λ 2(l−λ)2α,

where the bound is obtained in a similar way as in the log-Lipschitz case by
distinguishing the cases λ ≤ l and l > λ. For the second term, we decompose
θ = θ − g0 + g0 and use Cauchy–Schwarz inequality on the θ − g0 part,

|t |√
n
‖g − g0‖2

{ ∑
(λ,μ)∈Cn

σ−4
λ

〈
ψlk

f0
,ψλμ

〉2

2

}1/2

≤ |t | εn√
n

{∑
λ≤l

σ−4
λ + ∑

l<λ≤Ln

σ−4
λ 2(l−λ)2α

}1/2

.

Finally, the remaining term with g0 is bounded by |t |/√n times

∑
(λ,μ)∈Cn

σ−2
λ

∣∣∣∣g0,λμ

〈
ψlk

f0
,ψλμ

〉
2

∣∣∣∣
≤ ∑

λ≤l

σ−2
λ 2−λ(1/2+α) + ∑

l<λ≤Ln

σ−2
λ 2(l−λ)2α2−λ(1/2+α).

Under the condition of the theorem σλ ≥ 2−λ(1/4+α) for any 0 ≤ λ ≤ Ln, all bounds
obtained above in the Gaussian case are less than C(|t | + t2).

4.3.4. End of proof. To conclude for both considered classes of priors, note
that the indicator 1Dn(f ) in (30) becomes 1D′

n
(ft ) under the change of variables—

for a set D′
n that one can write explicitly, although this will not be needed here—

and one simply further bounds the indicator 1D′
n

by 1 on the numerator. Once the
change of variable is done, the assumed conditions on {σl} ensure that the ratio of
densities is bounded by eC(|t |+t2) for some constant C and one gets∫

e�n(ft )−�n(f0)1Dn(f ) d�(f )∫
e�n(f )−�n(f0) d�(f )

≤ eC(|t |+t2)

∫
e�n(f )−�n(f0) d�(f )∫
e�n(f )−�n(f0) d�(f )

= eC(|t |+t2).

Inequality (25) can thus be further written, again for a fixed constant C,

E�Dn [
et

√
n〈g−�Ln,ψlk〉2 |X(n)] ≤ eC(|t |+t2)�

(
Dn|X(n))−1

.
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For any s > 0, similar to the Gaussian white noise case,∫ ∥∥gLn − �Ln
∥∥∞ d�Dn

(
f |X(n))

≤ ∑
l≤Ln

2l/2
√

n
E�Dn

[
max

0≤k≤2l−1

∣∣√n
〈
g − �Ln,ψlk

〉
2

∣∣∣∣X(n)
]

≤ ∑
l≤Ln

2l/2 1√
ns

log

[2l−1∑
k=0

E�Dn [
es

√
n〈g−�Ln,ψlk〉2 + e−s

√
n〈g−�Ln,ψlk〉2 |X(n)]]

�
∑
l≤Ln

2l/2 1√
ns

log
[
2leC(s+s2)] + ∑

l≤Ln

2l/2 1√
ns

log
1

�(Dn|X(n))
.

Set s = √
l. The first term in the last display is bounded by a constant times

1√
n

∑
l≤Ln

√
l2l/2 � ε∗

n,α . Now coming back to the application of Markov’s in-

equality one gets, with � the function � :u → u logu−1,

En
f0

�
[‖g − g0‖∞ > Mnε

∗
n,α|X(n)]�M−1

n + M−1
n En

f0
�
(
�

(
Dn|X(n))) + o(1).

With Mn → ∞, the fact that � is bounded on [0,1] completes the proof.
In the case 1/2 < α ≤ 1, the only difference is that one gets two extra terms: one

from going at the logarithmic level, which eventually leads to a rate ζ 2
n ; another one

from the semiparametric bias in (24), which leads to a rate ρn = n(1/2−3α/2)/(1+2α).
This leads to a sup-norm rate of ζ 2

n ∨ ρn = ζ 2
n .

Once the rate ζ 2
n has been obtained, one can restart the proof once again, but

this time knowing that one can use a better intermediate rate of ζ 2
n in sup-norm.

One can then write∣∣∣∣
∫

ρ

(
f − f0

f0

)
ψlk

∣∣∣∣ ≤
∥∥∥∥ρ

(
f − f0

f0

)∥∥∥∥∞
‖ψlk‖1 �

∥∥∥∥f − f0

f0

∥∥∥∥2

∞
2−l/2 �

(
ζ 2
n

)22−l/2.

This eventually leads to the accelerated rate (ζ 2
n )2 ∨ ρn. Iterating this procedure

leads to (ζ 2
n )2p ∨ ρn, any p ≥ 1 and, for any given α > 1/2, to ρn as final rate, up

to logarithmic terms.

4.4. Density estimation, dyadic histogram priors. We follow the scheme of
proof used for uniform priors in white noise, this time in density estimation, with
the wavelet basis of expansion being the Haar system. The very specific prop-
erties of the Haar basis, particularly its close links to approximation by dyadic
histograms, enable a simplified argument. In particular, as we demonstrate below,
the semiparametric bias is always negligible, provided the parameters of the prior
are reasonably chosen.

Let us set

f̂lk = Pnψ
H
lk = 1

n

n∑
i=1

ψH
lk (Xi).
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Set Dn = {f,h(f,f0) ≤ εn}, where here εn = ε∗
n,α up to multiplication by a large

enough constant. Lemma 10 implies that En
f0

�[Dn|X(n)] → 1. Let hn,Ln be

defined as in (3), and denote by f Ln the projection of f onto the subspace
VLn := Vect{ϕH ,ψH

lk , l < Ln,0 ≤ k < 2l} and f Lc
n the projection of f onto

Vect{ψH
lk , l ≥ Ln,0 ≤ k < 2l} (i.e., for simplicity we keep the notation f Ln from

Section 2.1, although the basis of projection is now the Haar basis and l < Ln re-
places l ≤ Ln). If f̂ Ln denotes the element of VLn of coordinates {f̂lk} in the basis

{ψH
lk }, one can bound E�Dn [‖f − f0‖∞|X(n)] from above by∫ ∥∥f Ln − f̂ Ln

∥∥∞ d�Dn
(
f |X(n))

︸ ︷︷ ︸
(i)

+
∫ ∥∥f Lc

n
∥∥∞ d�

(
f |X(n))

︸ ︷︷ ︸
(ii)

+∥∥f̂ Ln − f0
∥∥∞︸ ︷︷ ︸

(iii)

.

The term (iii) can be bounded by ‖f̂ Ln − f
Ln

0 ‖∞ + ‖f Lc
n

0 ‖∞. The second term in
this sum is pure bias and the first term is∥∥∥∥∥(Pnϕ

H − Pf0ϕ
H )

ϕH (·) +
Ln−1∑
l=0

2l−1∑
k=0

(
Pnψ

H
lk − Pf0ψ

H
lk

)
ψH

lk (·)
∥∥∥∥∥∞

.

This term is bounded in expectation by ε∗
n,α , exactly as in Lemma 7.

Next, the high-frequency bias term (ii) is zero. Indeed, for any draw f from
the prior, in the inner-product 〈f,ψH

lk 〉2, the first element is a dyadic histogram at
resolution level Ln, so is constant over the support of the Haar basis element ψH

lk

if l ≥ Ln. Hence, the previous inner-product is zero �-almost surely, and thus also
�[·|X(n)] almost surely.

Second, one studies 〈f Ln − f̂ Ln,ψH
lk 〉2 in the BvM-regime l < Ln. Following

the maximal inequality approach from Section 2.1, it is enough to bound the poste-
rior expectation of exp(t

√
n〈f Ln − f̂ Ln,ψH

lk 〉2), for any possible k and l < Ln and
say |t |� logn (also, to simplify the notation below we omit mentioning the scaling
function ϕH , but the same Laplace transform control is obtained for it in a similar
way). To do so, apply Lemma 3 with γn = ψH

lk , for any given l, k with l < Ln.
The conditions of the lemma are satisfied with an = εn, since ψH

lk is bounded in
L2[0,1] and has a sup-norm bounded by a constant times 2l/2 � 2Ln/2 = o(1/εn)

if α > 1/2. Noting that, again for l, k with l < Ln,〈
f Ln − f̂ Ln,ψH

lk

〉
2 = 〈

f Ln − f
Ln

0 ,ψH
lk

〉
2 + 〈

f
Ln

0 − f̂ Ln,ψH
lk

〉
2

= 〈
f − f0,ψ

H
lk

〉
2 − Wn

(
ψH

lk

)
,

an application of Lemma 3 leads to, with �Dn the restriction of � to Dn,

E�Dn [
et

√
n〈f Ln−f̂ Ln ,ψH

lk 〉2 |X(n)]� eCt2
∫

e�n(ft )−�n(f0) d�Dn(f )∫
e�n(f )−�n(f0) d�Dn(f )

,
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where ft is defined by logft = logf − tψH
lk /

√
n − c(f e−tψH

lk /
√

n) (again, having
ψ̃H

lk or ψH
lk at both places in the last equality does not matter since the constant

simplifies). Below to simplify the notation, we denote γn = ψH
lk .

In the last display, once coming back to � via d�Dn(f ) = 1Dn d�(f )/�(Dn),
the variable f is a random dyadic histogram over the subdivision with inter-
vals ILn

μ = (μ2−Ln, (μ + 1)2−Ln) and 0 ≤ μ ≤ 2Ln − 1. Denote by γn,μ the
value of γn over the interval ILn

μ . Next, observe that both ft and f are, writ-
ing the histogram prior in terms of its coefficients over the subdivision, functions
of ω = (ω0, . . . ,ω2Ln−1) and the integral over f is nothing but an integral over
ω ∈ SLn . On the other hand, from the expression of ft , using the fact that ψH

lk

is constant over each individual interval Iμ (since l < Ln), one sees that ft is a
dyadic histogram over Iμ with weights given by the vector ζ

ζ := (ζμ)0≤μ≤2Ln−1 =
(

ωμe−tγn,μ/
√

n∑
μ ωμe−tγn,μ/

√
n

)
0≤μ≤2Ln−1

.(33)

Now we are in position to change variables in the above expression by taking ζ

as the new variable (this technique is developed in [8] for general, fixed influence
functions). The change of variables introduces a multiplicative factor M(ζ) in front
of d�(ζ ), factor which is the product of the variation in density of the Dirichlet
law under the change of variable and the Jacobian of the change of variable,∫

e�n(ft )−�n(f0) d�Dn(f )∫
e�n(f )−�n(f0) d�Dn(f )

= �
[
Dn|X(n)]−1

∫
D̃n

e�n(f (ζ ))−�n(f0)M(ζ ) dDα(ζ )∫
e�n(f (ω))−�n(f0) dDα(ω)

,

where D̃n is the new integrating set after change of variables and the notation

f (ζ ) is used for f (ζ )(·) = 2L ∑2L−1
μ=0 ζμ1IL

k
(·) and similarly for f (ω). Com-

putation of the Jacobian say �(ζ) is done in Lemma 11. Calculating M(ζ) =
dDα(ω)/dDα(ζ )�(ζ ) gives that M(ζ) satisfies

M(ζ)e−t/
√

n
∑

μ αμγn,μ =
[∫ 1

0
etγn(x)/

√
nf (ζ )(x) dx

]−∑
μ αμ

=
[∫ 1

0
e−tγn(x)/

√
nf (ω)(x) dx

]∑
μ αμ

.

For the term on the right-hand side, since α > 1/2 it holds |t |‖γn‖∞/
√

n = o(1)

so one can expand the exponential function by writing eu = 1 + O(u) as u =
o(1). Next, write f = f0 + (f − f0), so that the expression under brackets writes
1 + O((t/

√
n)[〈f0, γn〉2 + 〈f − f0, γn〉2]). The last term is a O(|t |/√n), since

the Haar-coefficients of f0 are certainly bounded and those of f − f0 are bounded
above by a constant times ‖γn‖∞h(f,f0) which is bounded because 2Ln/2εn =
O(1). So if

∑
μ αμ/

√
n = O(1), the term at stake is O(1). But this condition
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follows from (16), because the number of terms in the previous sum is 2Ln =
O(

√
n) when α > 1/2.

Now we deal with the exponential term on the left-hand side of the last display.
A term in the sum

∑
μ αμγn,μ is nonzero only if the support of the Haar basis

element γn = ψH
lk (or ϕH ) intersects ILn

μ . This is the case for 2Ln−l terms for ψH
lk

and 2Ln terms for ϕH . Using ‖ψH
lk ‖∞ � 2l/2, this shows that the considered sum

is at most a constant times 2Ln−l/2 � 2Ln . In particular, for α > 1/2 the considered
term is a O(1).

The previous reasoning shows that the change of variable part generates a
multiplicative factor O(1), times the term eCt2

coming from the application of
Lemma 3. To conclude, it now suffices to apply the maximal inequality technique
in the same way as for log-densities prior.

4.5. Tools for density estimation. The notation here follows the one intro-
duced in Section 4.2, in particular ‖ · ‖L,Wn,Rn and B.

LEMMA 3. Let f0 belong to F0. Let {an} be a sequence of real numbers with
na2

n ≥ 1, any n ≥ 1. Let {�n} be a collection of priors on densities restricted to the
set {f,h(f,f0) ≤ an}. Let {γn} be an arbitrary sequence in L∞[0,1]. Set γ̃n :=
γn − Pf0γn. Suppose, for some m > 0 and all n ≥ 1,

‖γ̃n‖L ≤ m, ‖γ̃n‖∞ ≤ (
4an log(n + 1)

)−1
.

Then there exists C > 0 depending on m,‖f0‖∞ only such that for any n ≥ 1 and
any |t | ≤ logn,

E�n
[
et

√
n〈f −f0,γn〉2 |X(n)] ≤ eCt2+tWn(γn)

∫
e�n(ft )−�n(f0) d�n(f )∫
e�n(f )−�n(f0) d�n(f )

,

where ft is defined by logft = logf − t γ̃n/
√

n − c(f e−t γ̃n/
√

n).

PROOF. Denote g = logf , g0 = logf0. From elementary algebra, it follows
that

t
√

n〈f − f0, γn〉2 + �n(f ) − �n(f0)

= −n

2

∥∥∥∥g − g0 − t√
n
γ̃n

∥∥∥∥2

L

+ √
nWn

(
g − g0 − t√

n
γ̃n

)

+ t
√

nB(γ̃n, f, f0) + Rn(f,f0) + t2

2
‖γ̃n‖2

L + tWn(γ̃n)

= �n(ft ) − �n(f0) + [
t
√

nB(γ̃n, f, f0) + Rn(f,f0) − Rn(ft , f0)
]

+ t2

2
‖γ̃n‖2

L + tWn(γ̃n).
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Let us show that the bracketed term is small. From the definition of Rn,ft ,

Rn(f,f0) − Rn(ft , f0)

= − t2

2
‖γ̃n‖2

L + t
√

n〈g − g0, γ̃n〉L + n logF
[
e−t/

√
nγ̃n

]
.

Next, expand the last logarithmic term. Using the assumption on ‖γ̃n‖∞ and
|t | ≤ logn, the absolute value of the exponent in this term is at most 1/4. This
enables us to expand successively the logarithm and exponential functions, using
the inequalities (the first is valid for |x| ≤ 1/4),

e−x ≤ 1 − x + x2, log(1 + x) ≤ x,

leading to

logF
[
e−t/

√
nγ̃n

] ≤ logF

[
1 − t√

n
γ̃n + t2

n
γ̃n

]

≤ log
[
1 − t√

n
F γ̃n + t2

n
F γ̃ 2

n

]

≤ − t√
n
F γ̃n + t2

n
F0γ̃

2
n + t2

n
(F − F0)γ̃

2
n .

The last term, using Lemma 6 and h(f,f0)‖γ̃n‖∞ ≤ 1 together with ‖γ̃n‖2
2 �

‖γ̃n‖2
L �m, is a O(t2/n). On the other hand,

F γ̃n = (F − F0)γ̃n =
〈
f − f0

f0
, γ̃n

〉
L

= 〈g − g0, γ̃n〉L +B(γ̃n, f, f0).

Combine the previous results to obtain the desired bound. �

LEMMA 4. Consider the log-density prior (12). Suppose g0 = logf0 belongs
to Cα , with α > 1/2. Suppose (15) holds and let εn, ζn be defined as below (15).
Then M large enough,

En
f0

�
[
f :‖f − f0‖2 ≤ Mεn,‖f − f0‖∞ ≤ Mζn|X(n)] → 1.

PROOF. Obtaining this result could be done following the arguments in [16].
Here we use instead an approach from [27], extending their argument on the sec-
ond moment of log(f/f0) to further get a rate ζn for ‖ log(f/f0)‖∞.

Since (15) is assumed, one can restrict to the event {f :h(f,f0) ≤ εn} ⊂
{f :‖f − f0‖2 � εn}. We have (see, e.g., Lemma 8 in [14]),∥∥log(f/f0)

∥∥2
2 � h2(f, f0)

(
1 + log‖f/f0‖∞

)
.
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The last term is bounded by a constant times ε2
n(1 + log‖T − c(T ) − g0‖∞) by

assumption, where g0 = logf0. Next, one writes∥∥T − c(T ) − g0
∥∥∞

=
∥∥∥∥∑

l,k

〈
T − c(T ) − g0,ψlk

〉
2ψlk

∥∥∥∥∞

≤ ∑
l≤Ln

2l/2 max
k

∣∣〈T − c(T ) − g0,ψlk

〉
2

∣∣ + ∑
l>Ln

2l/2 max
k

∣∣〈g0,ψlk〉2
∣∣.

Since g0 is α-Hölder, the last term is of the order ε∗
n,α = o(1). For the middle

term, Cauchy–Schwarz inequality yields the bound 2Ln/2‖T − c(T ) − g0‖2, using∑
l≤Ln

2l � 2Ln and bounding the maximum of squares by the sum. Deduce that

∥∥log(f/f0)
∥∥2

2 � ε2
n + ε2

n2Ln/2∥∥log(f/f0)
∥∥

2 � ε2
n + ε2

n2Ln
∥∥log(f/f0)

∥∥2
2.

Since α > 1/2, one has ε2
n2Ln = o(1). So gathering the L2-norm terms on the same

side of the inequality one obtains ‖ log(f/f0)‖2
2 � ε2

n. Also, along the way we have
obtained the bound∥∥T − c(T ) − g0

∥∥∞ � 2Ln/2∥∥T − c(T ) − g0
∥∥

2 + ε∗
n,α � 2Ln/2εn = ζn.

Now the squared L2-norm of f − f0 can be expressed as∫ 1

0
(f − f0)

2 =
∫ 1

0
f 2

0
(
eT −c(T )−g0 − 1

)2
.

The inequality |ex − 1| ≤ C|x|, valid for x in a compact subset of R and C a large
enough constant, implies∫ 1

0
(f − f0)

2 ≤ C2
∫ 1

0
f 2

0
(
T − c(T ) − g0

)2 �
∥∥T − c(T ) − g0

∥∥2
2 � ε2

n.

Similarly, since ‖f0‖∞ < ∞, one obtains ‖f − f0‖∞ � ζn. �

4.6. Other lemmas. Given R > 0, let Bα∞,∞(R) denote the centered ball of
Bα∞,∞[0,1] of radius R for the norm ‖ · ‖∞,∞,α given in Section 2.2.

LEMMA 5. There exists a constant C > 0 such that for any f,g in Bα∞,∞(Rf )

and Bα∞,∞(Rg), respectively, the product fg belongs to Bα∞,∞(CRf Rg). If f be-
longs to Cα[0,1] and is bounded away from 0 then f −1 belongs to Cα[0,1]. More-
over, for any indexes l, k,

‖ψlk‖∞,∞,α = 2l(1/2+α).



ON BAYESIAN SUP-NORM RATES 2087

PROOF. The first claim follows from the main result of Section 2.8.3 in [36]
(strictly speaking the last result is for functions on R, but the latter functions
can be shown to be restrictions to [0,1] of elements of Bα∞,∞ whose norm is
equivalent to the one of the restriction; see [26] Proposition 2 for a similar ar-
gument for Sobolev spaces). The second claim is a simple computation using
the definition of Hölder spaces. For the last claim, one uses the characterisa-
tion of Bα∞,∞ in terms of wavelet coefficients from Section 2.2, which yields

‖ψlk‖∞,∞,α = maxl′,k′ 2l′(1/2+α)〈ψlk,ψl′k′ 〉2 = 2l(1/2+α). �

LEMMA 6. Let f,f0 be two densities on [0,1] such that f0 is bounded. For
any g ∈ L2[0,1] such that h(f,f0)‖g‖∞ ≤ C1 and ‖g‖2 ≤ C2, for some constants
C1,C2 > 0, ∣∣(F − F0)g

2∣∣ ≤ C2
1 + C1

√
4C2‖f0‖∞ + C2

1 .

PROOF. Denote � := ∫ 1
0 |f − f0|g2. Then by Cauchy–Schwarz inequality,

�2 ≤ 2h(f,f0)
2
∫ 1

0
(f + f0)g

4

≤ 2h(f,f0)
2[‖g‖2∞� + 2‖f0‖∞‖g‖2∞‖g‖2

2
]

≤ 2C2
1
[
� + 2C2‖f0‖∞

]
.

This implies that � is less than the largest root of the polynomial X2 − 2C1X +
4C2

1‖f0‖∞, which can be expressed in terms of C1,‖f0‖∞. �

LEMMA 7. Let f0 ∈ F0 and g0 = logf0, and let �Ln be defined by (20), with
Al,k any elements of L∞[0,1] such that there exists constants c1, c2 with, for any
l, k with k < 2l ≤ 2Ln , any n ≥ 2,

‖Al,k‖∞ ≤ c1

√
n/ logn, ‖Al,k‖2 ≤ c2.

Then for any n ≥ 2 and Ln defined by (3), it holds

En
f0

∥∥�Ln − g
Ln

0

∥∥∞ � ε∗
n,α.

PROOF. We proceed exactly as for the proof of the maximal inequality in Sec-
tion 2.1. For any t > 0,

En
f0

∥∥�Ln − g
Ln

0

∥∥∞ ≤ 1√
n

∑
l≤Ln

2l/2

t
log

2l−1∑
k=0

En
f0

[
etWn(Al,k) + e−tWn(Al,k)

]
.

We have Wn(Al,k) = Gn(Al,k) and bounds on exponential moments of the last
empirical quantity are well known. From Laplace transform controls, one gets, for
any real s,

En
f0

[
esWn(Al,k)

] ≤ e
(s2/2)[∫ A2

l,kf0]e|s|‖Al,k‖∞/
√

n

.
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Let us choose t = √
l �

√
Ln. Under the conditions of the lemma the last display

with s = t or s = −t is bounded above by eCt2
. This leads to the bound En

f0
‖�Ln −

g
Ln

0 ‖∞ � ε∗
n,α . �

LEMMA 8. Let ϕ = ϕG and σl = 2−l(1/2+γ ) for all l ≤ Ln, and any given 0 <

γ ≤ α − 1/4. Then (14)–(15) hold. The same applies for ϕ = ϕH,τ and σl = 2−lα

for all l ≤ Ln, for any given value of the parameter 0 ≤ τ < 1.

PROOF. The first result is a minor adaptation of Theorem 4.5 in [38],
where the authors consider a cut-off at n1/(2α+1) instead of 2Ln = h−1

n =
(n/ logn)1/(2α+1) (equality up to fixed multiplicative constants). Taking the cut-
off at 2Ln only changes logarithmic factors in their argument. In the log-Lipschitz
case, one adapts Theorem 2.1 in [27]. There are two points to note. First, taking
2Ln instead of n1/(2α+1) induces only, again, an extra logarithmic power in the rate.
Second, strictly speaking the authors in [28] consider wavelets on the interval via
periodisation, which imposes conditions at the boundary (periodic Besov spaces),
conditions which can be dropped when using the CDV wavelet basis. Explicit
(re)derivation of the previous two results is omitted. �

LEMMA 9. Let ϕ = ϕG and σl satisfy (14). Then the prior � defined by (12),
with Ln as in (3) and εn as below (15), satisfies, for C > 0 large enough and any
fixed given integer K ,

En
f0

�
[

max
λ≤K,μ

∣∣〈T ,ψλμ〉∣∣ ≤ C
√

nεn

∣∣X(n)
]
→ 1.

PROOF. The maximum in the display of the lemma only involves a finite num-
ber of terms λ,μ with λ ≤ K , μ ≤ 2K −1, and these terms are Gaussian with vari-
ances σ 2

l bounded above by positive constants. Thus, by Gaussian concentration
one gets

�
[

max
λ≤K,μ

∣∣〈T ,ψλμ〉∣∣ > C
√

nεn

]
≤ e−cnε2

n,

where c can be made arbitrarily large by taking C large enough. Next, one applies
Lemma 1 in [15]. To do so, one needs to bound from below the prior probability of
a Kullback–Leibler neighborhood of f0 of size εn by e−dnε2

n for some d > 0. This
follows from the conclusion of Theorem 5 in [38], which (modulo the fact that our
εn is within a logarithmic factor of theirs, as noted in Lemma 8 to accommodate
our slightly different choice of cut-off 2Ln ), provides the bound �[‖g − g0‖∞ <

4εn) ≥ e−nε2
n . Switching from the sup-norm on g − g0 to the Kullback–Leibler

divergence between g and g0 follows from Lemma 3.1 in [38]. �
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LEMMA 10. Suppose f0 belongs to F0 ∩ Cα[0,1], for 0 < α ≤ 1. Let � be a
prior on histogram densities defined by (16). Then, for M large enough

En
f0

�
[
f,h(f,f0) ≤ M(logn/n)−α/(2α+1)|X(n)] → 1.

PROOF. One can proceed as in the proof of Theorem 2 in [30]. It suffices
to use as sieve the set of dyadic density histograms HLn , so that �[Hc

Ln
] = 0.

Entropy and prior mass conditions can then be verified with the same rate
(logn/n)α/(2α+1); see also the remark before Theorem 2.4 in [12]. �

LEMMA 11. Let �(ζ) be the Jacobian of the change of variables ω → ζ given

by (33) over the unit simplex S2Ln . It holds, with f (ζ ) = 2L ∑2L−1
μ=0 ζμ1IL

k
,

�(ζ) =
2Ln−1∏
μ=0

etγn,μ/
√

n∫ 1
0 etγn(x)/

√
nf (ζ )(x) dx

.

PROOF. This follows from elementary calulations; see [8]. �
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