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Abstract
C. Baikousssis, D.E. Blair[1] made a study of Legendre curves in

contact metric manifolds. J. I. Inoguchi, T. Kumamoto, N. Ohsugi, and
Y. Suyama[2] studied fundamental properties of Heisenberg 3-spaces.
M. Belkhelfa, I.E. Hirica, R. Rosca, L. Verstlraelen[3] obtained a com-
plete characterization of surfaces with paralel second fundamental form
in 3-dimensional Bianchi-Cartan-Vranceanu spaces(BCV).

In this paper, making use of method in paper of C. Baikousssis,
D.E. Blair and M. Belkhelfa, I.E. Hirica, R. Rosca, L. Verstlraelen we
obtained helices and their characterizations in BCV-Sasakian spaces
such that the circular helices in BCV−Sasakian space correspond to
the circles in E3, the circular helices in Eucliden space correspond to
the circular helices in BCV−Sasakian space and these helices are non-
geodesical BCV− Legendre curves. We have seen calculable that the
covariant derivative of vector field Y with respect to vector field X
without christoffel symbols in BCV-Sasakian spaces. Also we obtained
more general curvature κ and torsion τ of a curve γ in BCV-Sasakian
spaces.
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1 Introduction

Let M be a (2n+1)−manifold and ϕ, ξ and η are (1, 1), (1, 0) and (0, 1) ten-
sors on M , respectively. If these tensors satisfy the following conditions
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then the structure (η, ξ, ϕ) is called almost contact structure on M . And
(M, η, ξ, ϕ) is called almost contact manifold

ϕ2 = −I + ηξ
ϕξ = 0
rank ϕ = 2n
ηoϕ = 0
η(ξ) = 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(1)

If g is a Riemannian metric on the contact manifold (M, η, ξ, ϕ), g satisfies
the equation

g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ),

g(ξ, X) = η(X)

then the structure (M, η, ξ, ϕ, g) is called almost contact metric manifold. Fur-
thermore, if the metric g satisfies the equation

g(ϕX, Y ) = −dη(X, Y )

then the structure (M, η, ξ, ϕ, g) is called a contact metric manifold. The nec-
essary and saficiend condition for an almost contact metrik manifold (M, η, ξ, ϕ, g) to
be a Sasakian manifold is holding the equation

(DXϕ)Y = g(X, Y )ξ − η(Y )X, X, Y ∈ χ(M).

Moreover, if the tensor

N (1) : χ(M) × χ(M) �−→ χ(M)
(X, Y ) �−→ N (1)(X, Y ) = [ϕ, ϕ](X, Y ) + 2dη(X, Y )ξ

on the Sasakian manifold (M, η, ξ, ϕ, g) vanishes then the tensor N (1) is called
Sasakian tensor and the contact manifold (M, η, ξ, ϕ, g) is called Sasakian
manifold [3].

2 Bcv-Sasakian Spaces{
R

3, g
λ,μ

}
is called BCV space which denoted by M3 or M3

λ,μwhere g
λ,μ

is
Bianchi -Cartan-Vranceanu (BCV) metric in R

3 and denoted by

g
λ,μ

=
dx2

1 + dx2
2

{1 + μ(x2
1 + x2

2)}2 +

(
dx3 +

λ

2

x2dx1 − x1dx2

1 + μ(x2
1 + x2

2)

)2

(2)

for λ, μ ∈ R such that 1 + μ (x2
1 + x2

2) �= 0. The dimension of this space is
dim M3

λ,μ = 3. If μ = 0, λ = 0, then the space M3 is called Euclidean
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space and denoted by E3. In the special case that μ = 0 , λ �= 0 the
space M3 is called Heisenberg space. Heisenberg space is denoted by N3

[10]. In 1894 and later in 1928, L. Bianchi classified Riemannian metrics in
the 3−dimensional Euclidean space E3[13, 14]. In the same year E. Cartan
[5] and in 1947 G. Vranceanu [15], published some papers related with these
spaces.

According to the metric 2 , an orthonormal basis φ = {e1, e2, e3} of χ( M3)
is denoted by

e1 = {1 + μ(x2
1 + x2

2)}
∂

∂x1
− 1

2
λx2

∂

∂x3
,

e2 = {1 + μ(x2
1 + x2

2)}
∂

∂x2
+

1

2
λx1

∂

∂x3
,

e3 =
∂

∂x3
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3)

The dual basis θ of φ is given by

θ1 =
dx1

1 + μ(x2
1 + x2

2)
,

θ2 =
dx2

1 + μ(x2
1 + x2

2)
,

θ3 = dx3 +
λ

2

x2dx1 − x1dx2

1 + μ(x2
1 + x2

2)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4)

For the orthonormal basis φ = {e1, e2, e3} of χ (M3) , if Levi-Civita connection on
M3 denoted by D, then we have

⎡
⎣ De1e1

De1e2

De1e3

⎤
⎦ =

⎡
⎢⎢⎢⎣

0 2μx2 0

−2μx2 0
λ

2

0 −λ

2
0

⎤
⎥⎥⎥⎦
⎡
⎣ e1

e2

e3

⎤
⎦ ,

⎡
⎣ De2e1

De2e2

De2e3

⎤
⎦ =

⎡
⎢⎢⎢⎣

0 −2μx1 −λ

2
2μx1 0 0

λ

2
0 0

⎤
⎥⎥⎥⎦
⎡
⎣ e1

e2

e3

⎤
⎦ ,

⎡
⎣ De3e1

De3e2

De3e3

⎤
⎦ =

⎡
⎢⎢⎢⎣

0 −λ

2
0

λ

2
0 0

0 0 0

⎤
⎥⎥⎥⎦
⎡
⎣ e1

e2

e3

⎤
⎦
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and

[e1, e2] = −2μx2e1 + 2μx1e2 + λe3 ,

[e3, e2] = 0 ,

[e1, e3] = 0 .

The transformation ϕ on χ( M3) given by

ϕ : χ(M3) �−→ χ(M3)
e1 �−→ ϕ(e1) = e2

e2 �−→ ϕ(e2) = −e1

e3 �−→ ϕ(e3) = 0

is a linear endomorfizm and the corresponding matrix is given by

ϕ =

⎡
⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎦

with respect toorthonormal basis φ = {e1, e2, e3} of χ (M3) . On the space
M3 , if λ �= 0

η = θ3 = dx3 +
λ

2

x2dx1 − x1dx2

1 + μ(x2
1 + x2

2)

and ξ = e3, then we have the following relations;

ϕ(ξ) = 0 ,
η(ξ) = 1 ,

dη(X, Y ) =
λ

2
g

λ,μ
(X, ϕ(Y )) ; X, Y ∈ χ(M3) ,

(DXϕ)Y =
λ

2

{
g

λ,μ
(X, Y )ξ − η(Y )X

}
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5)

The structure (M3, ϕ, ξ, η, g
λ,μ

) together with the equations 5 is a Sasakian
manifold [2, 16]. From now on for λ �= 0 we will call the space as BCV-
Sasakian space.

Since D is Levi-Civita connection and for ∀X, Y ∈ χ(M3) we have

DXY = DX {v1e1 + v2e2 + v3e3}
= v1DXe1 + v2DXe2 + v3DXe3︸ ︷︷ ︸ + X(v1)e1 + X(v2)e2 + X(v3)e3︸ ︷︷ ︸ ,

I II
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where Y = v1e1+ v2e2+ v3e3,

I = v1DXe1 + v2DXe2 + v3DXe3

= v1(ω12(X)e2 + ω13(X)e3) + v2(−ω12(X)e1 + ω23(X)e3) + +v3(−ω13(X)e1 − ω23(X)e2)

= det

⎡
⎣ e1 e2 e3

ω23(X) −ω13(X) ω12(X)
v1 v2 v3

⎤
⎦

= {ω23(X)e1 − ω13(X)e2 + ω12(X)e3} ∧ Y

and

II = X(v1)e1 + X(v2)e2 + X(v3)e3.

In the above expression ωij (1 ≤ i, j ≤ 3) are connection forms. The dual
basis of orthonormal basis φ = {e1, e2, e3} is {θ1, θ2, θ3} . Hence

ω12(X) = (2μx2θ
1 − 2μx1θ

2 − λ

2
θ3)(X),

ω13(X) = −λ

2
θ2(X),

ω23(X) =
λ

2
θ1(X).

We know that ωij = −ωji. In this way,

I =

{
λ

2
θ1 (X) e1 +

λ

2
θ2 (X) e2 +

(
2μx2θ

1 − 2μx1θ
2 − λ

2
θ3

)
(X) e3

}
∧ Y

=

{
λ

2

{
θ1 (X) e1 + θ2 (X) e2 + θ3 (X) e3

}
+
(
2μx2θ

1 (X) − 2μx1θ
2 (X) − λθ3 (X)

)
e3

}
∧ Y

=

{
λ

2
X − g

λ,μ
([e1, e2] , X) e3

}
∧ Y

=
λ

2
X ∧ Y − g

λ,μ
([e1, e2] , X)ϕY.

II looks like the Euclidean connection
�

D, so we may show X(v1)e1+X(v2)e2+

X(v3)e3 as
�

DXY, that is, X(v1)e1 + X(v2)e2 + X(v3)e3 =
�

DXY. It is obvious
that D can be given as

DXY =
λ

2
X ∧ Y − g

λ,μ
([e1, e2] , X)ϕY +

�

DXY . (6)

On the other hand we can show that D satisfies the connection rules( See,
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[16]). We may define some differential operators on χ (M3) as follows:

grad f = ∇f =
3∑

i=1

ei [f ] ei,

div X = g
λ,μ

(∇, X) − g
λ,μ

(ϕX, [e1, e2]) ,


f = div (gradf) = g
λ,μ

(∇,∇f) − g
λ,μ

(ϕ (∇f) , [e1, e2]) ,

for ∀ f ∈ C∞(M3, R), ∀X ∈ χ (M3)[16].

3 Frenet Vector Fields in BCV−Sasakian Space

Let γ be an arbitrary curve denoted by

γ : I �−→ M3

s �−→ γ (s) = (γ1(s), γ2(s), γ3(s))

in BCV−Sasakian space. Furthermore for the Frenet vector fields {V1, V2, V3}
and the curveture κ and torsion τ of γ the Frenet equations are denoted
by ⎡

⎣ DV1V1

DV1V2

DV1V3

⎤
⎦ =

⎡
⎣ 0 κ 0

−κ 0 τ
0 −τ 0

⎤
⎦
⎡
⎣ V1

V2

V3

⎤
⎦ .

If κ �= 0 then we have

V2 =
1

κ
DV1V1 (7)

and hence,

DV1V2 = −κV1 + τV3 .

Taking the direction derivative of the both sides of equation 8 with respect to
V1 and rearranging it we obtain

.(
1

κ

)
DV1V1 +

1

κ
DV1DV1V1 = −κV1 + τV3 . (8)

Again, differentiating both sides of 8 we get

..(
1

κ

)
DV1V1 +

.(
1

κ

)
D2

V1
V1 +

.(
1

κ

)
D2

V1
V1 +

1

κ
D3

V1
V1 = − .

κV1 − κDV1V1 +
.
τV3 + τDV1V3.

(9)
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From 7 we have

DV1V3 = −τV2

= −τ

κ
DV1V1 .

By the use of

.(
1

κ

)
= −

.
κ

κ2
,

..(
1

κ

)
= 2

(
.
κ)

2

κ3
−

..
κ

κ2

and rearranging 9 we obtain the general equation for curves in BCV−Sasakian
space

D3
V1

V1 − 2

.
κ

κ
D2

V1
V1 +

(
2

( .
κ

κ

)2

−
..
κ

κ
+ κ2 + τ 2

)
DV1V1 +

.
κκV1 − .

τκV3 = 0

(10)

In [4] Ç. Camcı obtained the following result for curves in Sasakian space

D3
V1

V1 − 2

.
κ

κ
D2

V1
V1 +

(
2

( .
κ

κ

)2

−
..
κ

κ
+ κ2 + 1

)
DV1V1 +

.
κκV1 = 0 .

( See also[6, 12] ). We can give the following result.

Corollary 1 The equation 10 is a general equation for the curves in BCV−Sasakian
space.

Now let us calculate the torsion of a curve in BCV−Sasakian space. Let γ
be an unite speed curve

γ : I �−→ M3

s �−→ γ (s) = (γ1(s), γ2(s), γ3(s))

on BCV−Sasakian space. Let us calculate Frenet vector fields of γ ( in the case |η(
.
γ)| �= 1) .

Assume that η(
.
γ) = σ and

.
γ(s) = V1. By the use of 2, 7 we get g

λ,μ
(DV1V1, V1) =

0 . We may take an orthonormal basis of BCV−Sasakian space as{
V1,

ϕV1√
1 − σ2

,
ξ − σV1√

1 − σ2

}
. (11)
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Hence we have

DV1V1 = α
ϕV1√
1 − σ2

+ β
ξ − σV1√

1 − σ2
(12)

α, β ∈ R

κ =

√
α2 + β2

and

DV1V1 = κV2 ⇒ V2 =
1

κ
DV1V1.

On the other hand, the directional derivative of ϕV1 with respect to V1 is

DV1ϕV1 = ϕDV1V1 + (DV1ϕ) V1

= ϕ

(
α

ϕV1√
1 − σ2

+ β
ξ − σV1√

1 − σ2

)
+

λ

2
(ξ − σV1)

= − α√
1 − σ2

V1 +
ασ√

1 − σ2
ξ − βσ√

1 − σ2
ϕV1 +

λ

2
(ξ − σV1) (13)

and similarly the derivative of ξ − σV1 is

DV1 (ξ − σV1) = DV1ξ −
.
σV1 − σDV1V1

= −λ

2
ϕV1 − .

σV1 − σ

(
α

ϕV1√
1 − σ2

+ β
ξ − σV1√

1 − σ2

)
= −λ

2
ϕV1 − .

σV1 − σα
ϕV1√
1 − σ2

− σβ
ξ − σV1√

1 − σ2
. (14)

and also the derivative of σ = η(
.
γ) is

.
σ = DV1σ

= DV1gλ,μ
(V1, ξ)

= g
λ,μ

(DV1V1, ξ) + g
λ,μ

(V1, DV1ξ)

= g
λ,μ

(
α

ϕV1√
1 − σ2

+ β
ξ − σV1√

1 − σ2
, ξ

)
+ g

λ,μ
(V1,−λ

2
ϕV1) .

= β
√

1 − σ2 .

Hence we have

β =
.
σ

1√
1 − σ2

. (15)
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The derivatives of components
α√

1 − σ2
and

β√
1 − σ2

are,

DV1

(
α√

1 − σ2

)
=

.
α

1√
1 − σ2

+ αβσ
1

1 − σ2
(16)

DV1

(
β√

1 − σ2

)
=

.

β
1√

1 − σ2
+ β2σ

1

1 − σ2
. (17)

respectively. Thus we have that

DV1V2 = DV1

(
1

κ
DV1V1

)

= −
.
κ

κ2
DV1V1 +

1

κ
DV1DV1V1

= −
.
κ

κ2
DV1V1 +

1

κ
DV1

(
α

ϕV1√
1 − σ2

+ β
ξ − σV1√

1 − σ2

)

= −
.
κ

κ2
DV1V1 +

1

κ
DV1

(
α√

1 − σ2

)
ϕV1 +

1

κ

(
α√

1 − σ2

)
DV1ϕV1 (18)

+
1

κ
DV1

(
β√

1 − σ2

)
(ξ − σV1) +

1

κ

(
β√

1 − σ2

)
DV1 (ξ − σV1) .

Using the equations 12, 13, 14, 15, 16 and 17 we get

DV1V2 = −κV1 + τV3 ,

where

τV3 =

(
−α

.
κ

κ2
+

.
α

κ
− λβ

2κ
− αβσ

κ
√

1 − σ2

)
ϕV1√
1 − σ2

+

(
−β

.
κ

κ2
+

.

β

κ
+

λα

2κ
+

α2σ

κ
√

1 − σ2

)
ξ − σV1√

1 − σ2
.

Taking the norm of the vectors of the both sides of the last equation we obtain

τ =
λ

2
+

α
.

β − .
αβ

α2 + β2 +
ασ√
1 − σ2

. (19)

Hence we can give the following result.

Proposition 2 Let γ ⊂ M3 be a Frenet curve in BCV−Sasakian space given
by arc-length parameter. Then the torsion τ of γ is given by

τ =
λ

2
+

α
.

β − .
αβ

α2 + β2 +
ασ√
1 − σ2

.
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Remark 1 In [1] D. Blair found that in a 3−Sasakian space the value of τ is

τ = 1 +
α

.

β − .
αβ

α2 + β2 +
ασ√
1 − σ2

. (20)

As we see that these two values of τ are different, in the special case of λ = 2
they are the same.

Definition 1 The subspace Dm of T�3(m)

Dm = {X ∈ T�3(m) : η(X) = 0}
is called contact distribution. 1−dimensional integral submanifold of Dm is
called a Legendre curve [3]. According to this definition a Legendre curve on
M3 may be denoted as

γ : I �−→ Dm ⊂ M3

s �−→ γ (s) = (γ1(s), γ2(s), γ3(s))

η(
.
γ) = 0 ve m = γ (s) .Since M3 is a BCV−Sasakian space, a Legendre curve

in M3 is called a BCV−Legendre curve [9].

Now let us calculate the torsion of a BCV−Legendre curve.

Theorem 3 In a BCV−Sasakian manifold, the torsion of a BCV−Legendre

curve γ which is not a geodesic is equal to
λ

2
.

Proof. Let the curve γ

γ : I �−→ M3

s �−→ γ (s) = (γ1(s), γ2(s), γ3(s))

be a BCV−Legendre curve with arclengthed parameter. From 11 we can
choose an orthonormal basis of a BCV−Sasakian space as

{V1, ϕV1, ξ} .

Since γ is a BCV−Legendre curve we have σ = η (
.
γ) = 0.Using 12 we

obtain

DV1V1 = κϕV1, V2 = ϕV1 .

and similarly,

DV1V2 = DV1ϕV1

= ϕDV1V1 + (DV1ϕ) V1

= −κV1 +
λ

2
ξ . (21)
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Furthermore, by the use of V2 = ϕV1 and V3 = ξ we may write

⎡
⎣ DV1V1

DV1V2

DV1V3

⎤
⎦ =

⎡
⎢⎢⎢⎣

0 κ 0

−κ 0
λ

2

0 −λ

2
0

⎤
⎥⎥⎥⎦
⎡
⎣ V1

V2

V3

⎤
⎦ .

which shows that τ =
λ

2

Remark 2 For the case M is a 3−Sasakian space, D. Blair [1] found that,⎡
⎣ DV1V1

DV1V2

DV1V3

⎤
⎦ =

⎡
⎣ 0 κ 0

−κ 0 1
0 −1 0

⎤
⎦
⎡
⎣ V1

V2

V3

⎤
⎦ .

A curve which is not a geodesic is a BCV−Legendre curve if and only if it

starts as a Legendre curve and its torsion is equal to
λ

2
. This shows us that the

special case of λ =2 is the result of Blair. More generally and more precisely
we have the following theorem.

Theorem 4 Let γ be a differentiable curve and BCV−Sasakian space M3

given with condition σ = η (
.
γ) �= 1 at one point of M3. If τ =

λ

2
and at

one point σ =
.
σ = 0 then γ is a BCV−Legendre curve.

Proof. For σ = η (
.
γ) �= 1, we decomposed DV1V1 as

DV1V1 = α
ϕV1√
1 − σ2

+ β
ξ − σV1√

1 − σ2

α, β ∈ R and

τ =
λ

2
+

α
.

β − .
αβ

α2 + β2 +
ασ√
1 − σ2

. (22)

Here α must be different from zero: In above expression if α = 0, DV1V1 is
collinear with ξ and in turn that V1 is collinear with ξ, this is a contradiction.
So we suppose α �= 0. We have the equation 15

β =
.
σ

1√
1 − σ2

.

Making this substitution for β and using the hypothesis τ = λ
2

22 gives us
that

α

(
..
σ +

2σ
.
σ

1 − σ2

)
+ α3σ − .

α
.
σ = 0. (23)
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Clearly σ = 0 is a solution and
.
σ = 0 implies σ = 0. Thus we now assume

that σ is non-constant. Setting υ =

.
σ

α
this equation becomes

υ
dυ

dσ
+

2συ2

1 − σ2
+ σ = 0.

Integration gives

.
σ

2
= α2

(
1 − σ2

) (
C
(
1 − σ2

)− 1
)

where C is a constant. Now suppose that at one point, σ =
.
σ = 0; then

since α �= 0 we have C = 1. Finally since σ2 ≤ 1, we have that σ = 0, a
contradiction[1].

4 Helices and Their Characterizations in BCV−Sasakian

Space

The characterization and classification for a curve on a Riemannian manifold
is observed in[9, 11]. For a differentiable curve γ on a Riemannian manifold
M3, we can get the following results;

• If the curvatures κ and τ of γ are all equal to zero, then the curve is a
geodesic,

• If the first curvature κ of γ is a non-zero constant and τ is zero, then
the curve is a circle,

• If the first curvature κ of γ is a non-zero constant and τ is zero, then
the curve is a circle,

• If the curvatures κ and τ of γ are both constant, then γ is an helix,

• If the curvatures κ and τ of γ are not constant but
κ

τ
is constant then

γ is a general helix ( inclined curve)[8],

• If κ = 0 then the curve γ is a straight line. If κ �= 0 but is not constand
and τ = 0 then the curve γ is a planar curve.

We know that every BCV−Sasakian manifold is a Riemannian manifold.
Hence we can get the following results;
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1. Let

γ : I �−→ M3

s �−→ γ (s) = (γ1(s), γ2(s), γ3(s)).

be a unit speed curve in BCV−Sasakian space M3 given with 0 < η (
.
γ) =

σ < 1 condition. By the use of equations 19 and 22 we get

κ =

√
α2 + β2

and

τ =
λ

2
+

α
.

β − .
αβ

α2 + β2 +
ασ√
1 − σ2

. (24)

Here we have three cases;

(a) If κ = τ = 0, then the curve γ is a geodesic. Because of α �=
0, κ =

√
α2 + β2 �= 0 and than the curve γ can not be a geodesic

curve.

(b) If κ = cte �= 0 and τ = 0 then the curve γ becomes a circle. Here
we have two subcases;

i. Supcase κ �= 0 but τ = 0 then α and β are both constants so

τ =
λ

2
+

ασ√
1 − σ2

= 0 and we get

λ = − 2ασ√
1 − σ2

ii. If α and β are neither constants than we have α2 +β2 = r2 =
cte so by 24 we get

α
.

β − .
αβ = ∓r2.

Since τ = 0 from 24 we get λ = − 2ασ√
1 − σ2

± 2.

(c) Since we have that κ =
√

α2 + β2 and α �= 0 than κ �= 0. On the
other hand we know that τ �= 0 in BCV−Sasakian space. So the
curve in M3 is not a straight line.

2. Let us consider that the curve

γ : I �−→ M3

s �−→ γ (s) = (γ1(s), γ2(s), γ3(s)).

be a unit speed BCV − Legendre curve. In Teorem 3.3 we had shown
that the torsion of a BCV−Legendre curve γ which is not a geodesic is

equal to
λ

2
. Here we have three cases;
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(a) In the case τ =
λ

2
(λ �= 0) the curve γ can not be a circle.

(b) If
κ

τ
is a non-zero constant then the curve γ is a helix. Now,

let us analyse this. We know that the torsion of a BCV−Legendre

curve γ which is not a geodesic is equal to
λ

2
and also constant.

Hence, κ also must be constant and than
..
κ =

.
κ = 0. By 10, we get

D3
V1

V1 = −(
λ

2
+ κ2)DV1V1. (25)

By using V1 =
.
γ, 
 = −DV1DV1 and H = DV1V1 we have


H = (
λ

2
+ κ2)H, ( Δ is the Laplacian operator) (26)

where
λ

2
+κ2 = constand. So 26 tells us that the curve γ is a circular

helix. Therefore equation 26 charactherises that γ is a circular helix.

(c) In order to be γ is a straight line on M3 then κ must be zero. So
we get

g
λ,μ

(DV1V1, ϕV1) = 0.

On the other hand, since τ =
λ

2
�= 0 then γ can not be a planar

curve. So this case does not hold.

Corollary 4.1 The circular helices in BCV−Sasakian space correspond to
the circles in E3.

Corollary 4.2 The circular helices in Eucliden space correspond to the cir-
cular helices in BCV−Sasakian space and these helices are non-geodesical BCV−
Legendre curves.

Example 1 Consider the curve

γ : I �−→ M3

t �−→ γ (t) = (r cos t, r sin t, c) .
, c = cte ∈ R

An easy calculation gives us that

κ =

∣∣∣∣ 1

r3 + r
+

λr

2r2 + 2
− 2μr2

∣∣∣∣
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and

τ =
λ

2

(
1

r2 + 1

)
− 1

r2 + 1
+ 2μr3.

So κ and τ are non-zero constants, then the ratio
κ

τ
is also a constant. Then

the curve is a general helix.

Example 2 Consider the curve

γ : I �−→ M3

s �−→ γ (s) =

(
r cos s, r sin s,

λr2

2 (1 + μr2)
s

)
.

An easy calculation gives us that

κ =

∣∣∣∣1r − 2μr

∣∣∣∣ ,
τ =

λ

2
.

We can say that κ, τ and
κ

τ
are constants. Therefore γ is a circular helix.

According to D. Ferus γ is also called a ω− curve [7].
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