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Recently, the applications and importance of integral transforms (or operators) with special functions and polynomials have
received more attention in various fields like fractional analysis, survival analysis, physics, statistics, and engendering. In this
article, we aim to introduce a number of Laplace and inverse Laplace integral transforms of functions involving the generalized
and reverse generalized Bessel matrix polynomials. In addition, the current outcomes are yielded to more outcomes in the
modern theory of integral transforms.

1. Introduction

Recently, the integral transforms (or operators) have been
extensively used tools in solving certain boundary value
problems and certain integral equations. They are also useful
in evaluating infinite integrals involving special functions or
in solving differential equations of mathematical physics
(see, e.g., [1–6] and the references cited therein). Laplace
transform is a type of the integral transforms that is the most
popular and widely used in several branches of astronomy,
engineering, applied statistics, probability distributions, and
applied mathematics (see, for instance, [7–13]).

A number of studies on the generalizations of Laplace
transform associated with special polynomials have been
contributed by Ortigueira and Machado [14], Jarad and
Abdeljawad [15], Ganie and Jain [16], and Saifa et al. [17].

In 1949, Krall and Frink [18] introduced and discussed
several properties of the generalized Bessel polynomials
(GBPs), which are given by

Yn α, β ; ξð Þ = 〠
n

s=0

n

s

 !
n + α − 1ð Þs

ξ

β

� �s

: ð1Þ

These polynomials, which seem to have been considered
first by Bochner [19], are also mentioned in Romanovsky
[20] and Krall [21].

Recently, these polynomials have been investigated in
diverse ways and turned out to be applicable in a number
of research fields (see, to exemplify, [22–25]).

Additionally, various extensions of the classical orthogo-
nal polynomials to matrix setting were investigated. The
matrix generalization of the generalized Bessel polynomials
Bθ,ϕ

n ðzÞ, z ∈ℂ, for parameters (square) matrices θ and ϕ,
was also introduced in diverse ways ([26]; see also [27]). Var-
ious studies of the generalized Bessel matrix polynomials
have been presented and discussed (see [27, 28]).

Recently, many works established Laplace integral trans-
forms of special functions like Gauss’s and Kummer’s
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functions [29], generalized hypergeometric functions [30,
31], Aleph-Functions [32], and Bessel functions [33].
Whereas, some formulas corresponding to integral trans-
forms of orthogonal matrix polynomials are little known
and traceless in the literature. This motivates us to discuss
Laplace integral transforms for functions involving general-
ized Bessel matrix polynomials. In particular, we obtain a
number of useful Laplace and inverse Laplace type integrals
of the generalized Bessel matrix polynomials together with
ceratin elementary matrix functions, exponential function,
logarithmic function, generalized hypergeometric matrix
functions, and Bessel functions and products of generalized
Bessel matrix polynomials. We also discuss some interesting
and special cases of our main results.

2. Preliminaries

Here, we state some basic definitions and preliminaries
which will be used in the article (see, for details, [34–36]).

Here and in the following sections, C and N denote the
sets of complex numbers and positive integers, respectively,
and N0 =N ∪ f0g: We denote by MrðℂÞ the space of r × r
complex matrices endowed with classical norm defined by

∥θ∥ = sup
y≠0

∥θy∥
∥y∥

� �
= sup ∥θy∥,∥y∥ = 1f g: ð2Þ

This norm satisfies the inequality ∥θϕ∥≤∥θ∥∥ϕ∥, where θ
and ϕ are in MrðℂÞ:

Definition 1. For any matrix θ inMrðℂÞ, the spectrum σðθÞ is
the set of all eigenvalues of θ for which we denote

α θð Þ =max R ηð Þ: η ∈ σ θð Þf g andβ θð Þ =min R ηð Þ: η ∈ σ θð Þf g,
ð3Þ

where αðθÞ refers to the spectral abscissa of θ and for which
βðθÞ = −αð−θÞ. A matrix θ ∈MrðℂÞ is said to be positive sta-
ble if and only if βðθÞ > 0.

Definition 2 (see [35, 36]). If θ ∈MrðℂÞ, and w ∈ C, then the
matrix exponential eθw is given to be

eθw = I + θw+⋯+ θ
n

n!
wn+⋯, ð4Þ

where I is the identity matrix in MrðℂÞ:

Definition 3 (see [37]). Let θ be a positive stable matrix in
MrðℂÞ with θ + nI is invertible for all integers n ∈N0, the
Gamma matrix function ΓðθÞ and the Digamma matrix
function ψðθÞ are defined, respectively, as follows:

Γ θð Þ =
ð∞
0
e−uuθ−Idu ; uθ−I = exp θ − Ið Þ ln uð Þ: ð5Þ

ψ θð Þ = Γ−1 θð ÞΓ′ θð Þ, ð6Þ

where Γ−1ðθÞ and Γ′ðθÞ are reciprocal and derivative of the
Gamma matrix function.

Note that the scalar Gamma and Digamma functions are
easily found when r = 1 in (5) and (6), respectively (see, e.g.,
[38, Section 1.1])).

Definition 4 (see [?]). For all θ in MrðℂÞ, we assume

θ + kI is invertible for all k ∈ℕ0, ð7Þ

and the Pochhammer symbol (the shifted factorial) is defined
by

θð Þr =
θ θ + Ið Þ⋯ θ + r − 1ð ÞIð Þ = Γ−1 θð ÞΓ θ + rIð Þ, r ∈ℕ,
I, r = 0:

(

ð8Þ

Lemma 5 (see [34]). Let θ be a matrix in MrðℂÞ such that
∥θ∥<1 and ∥I∥ = 1: Then, ðI + θÞ−1 exists, and we have

I + θð Þ−1 = I − θ + θ2 − θ3 + θ4 − θ5+⋯: ð9Þ

Definition 6 (see [39]). Letm and n be finite positive integers,
the generalized hypergeometric matrix function is given by

mFn θ ; ϕ ; zð Þ = 〠
∞

k=0

Ym
i=1

θið Þk
Yn
j=1

φj

� �
k

h i−1 zk
k!
, ð10Þ

where θi, 1 ≤ i ≤m and ϕj, 1 ≤ j ≤ n are commutative matrices
in MrðℂÞ with ϕj + kI are invertible for all integers k ∈N0
and 1 ≤ i ≤m. In [39], Abdalla discussed regions of conver-
gence of (2.6).

Note that for m = 1, n = 0 in (10), we have the Binomial
type matrix function 1F0ðθ;−;zÞ [39] as follows:

1F0 θ;−;zð Þ = 1 − zð Þ−θ = I + θz + θ θ + Ið Þz2
2! +⋯+ θð Þnzn

n!
+⋯, zj j < 1:

ð11Þ

Also, for m = 2, n = 1 in (10), we get the hypergeometric
matrix function 2F1 (cf. [40]).

Further, the substitution r = 1 in (10) leads to the classical
generalized hypergeometric functions [38, Section 1.5], see
also, [41].

Definition 7 (see [26]). Let θ and ϕ be commuting matrices in
MrðℂÞ such that ϕ is an invertible matrix. For any natural
number n ≥ 0, the nth generalized Bessel matrix polynomial
Bθ,θ

n ðzÞ is defined as
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Bθ,ϕ
n zð Þ = 〠

n

r=0

n

r

 !
θ + n − 1ð ÞIð Þr z ϕ−1

� 	r

= 〠
n

r=0

−1ð Þr
r!

−nIð Þr θ + n − 1ð ÞIð Þr z ϕ−1
� 	r

= 2F0 −nI, θ + n − 1ð ÞI;−;−z ϕ−1� 	
:

ð12Þ

In addition, the nth reverse generalized Bessel matrix
polynomial Θðθ,ϕÞ

n ðzÞ is given by (see [27])

Θ θ,ϕð Þ
n zð Þ = znBθ,ϕ

n z−1
� 	

= −1ð ÞnΓ−1 −θ − 2n − 2ð ÞIð ÞΓ
� −θ + n − 2ð ÞIð Þ × 1F1 −nI;−θ − 2n − 2ð ÞI ; ϕzð Þ:Θ θ,ϕð Þ

n zð Þ
= znBθ,ϕ

n z−1
� 	

= −1ð ÞnΓ−1 −θ − 2n − 2ð ÞIð ÞΓ
� −θ + n − 2ð ÞIð Þ × 1F1 −nI;−θ − 2n − 2ð ÞI ; ϕzð Þ:

ð13Þ

Obviously, the nth generalized Bessel matrix polynomial
Bðθ,ϕÞ

n ðzÞ when r = 1 is easily found to be the scalar general-
ized Bessel polynomials (1.1).

Definition 8. Let gðτÞ be a function of τ specified for τ > 0.
Then, the Laplace transform of gðτÞ is defined by

G λð Þ =L g τð Þ: λf g =
ð∞
0
e−λτg τð Þdτ, R λð Þ > 0, ð14Þ

provided that the improper integral exists, e−λu is the kernel
of the transformation and the function gðτÞ is called the
inverse Laplace transform of GðλÞ (see [1, Chapter 3]; see
also [7]).

The following Lemma, which may be easily derivable
from (14), will be desired in the sequel.

Lemma 9. Let θ be a positive stable and invertible matrix in
MrðℂÞ and RðλÞ > 0. Then, we have

L τθ : λ
n o

=
ð∞
0
e−λττθdτ = λ− θ+Ið Þ Γ θ + Ið Þ, ð15Þ

L τθ τ + 1ð Þ−1 : λ
n o

= Γ θ + Ið Þ eλ Γ −θ, λð Þ, ð16Þ

where Γðθ, λÞ is the incomplete Gamma matrix function [42].

L g τð Þeθτ : λ
n o

=G λI − θð Þ,

L−1 λ−θ : τ
n o

= τ θ−Ið Þ Γ−1 θð Þ:
ð17Þ

3. Laplace Type Integrals of Functions Involving
Bθ,ϕ

n ðzÞ and Θθ:ϕ
n ðzÞ

In this section, we investigate several Laplace-type trans-
forms of functions involving generalized and reverse general-

ized Bessel matrix polynomials asserted in the following
theorems:

Theorem 10. Let z, λ ∈ℂ,RðλÞ > 0, n ∈ℕ0, and r ∈ℕ. Also,
let θ, ϕ and A be matrices in MrðℂÞ such that βðAÞ > 0 and
ϕ + kI are invertible for all k ∈ℕ0: For the function

g1 zð Þ = zA−I Bθ,ϕ
n zð Þ, ð18Þ

we have

G1 λð Þ =L g1 zð Þ: λf g = λ−A Γ Að Þ3F0

−nI, θ + n − 1ð ÞI, A

−

;− λϕð Þ−1
2
664

3
775:

ð19Þ

Proof. From the expansion series of the Bθ,ϕ
n ðzÞ in (12) and

upon using (15) in Lemma 9, we obtain

G1 λð Þ = 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs −ϕ−1
� 	s

s!
L zA+ s−1ð ÞI
n o

= 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs −ϕ−1
� 	s

s!
λ− A+sIð Þ Γ A + sIð Þ

= λ−A Γ Að Þ 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs Að Þs − λϕð Þ−1� 	s
s!

:

ð20Þ

Thus, we get the required result (19).

Theorem 11. Let z, λ ∈ℂ,RðλÞ > 0, n ∈ℕ0, and r ∈ℕ. Also,
let θ, ϕ and A be matrices inMrðℂÞ such that βðAÞ > 0,ϕ + kI
are invertible for all k ∈ℕ0 and I − A satisfies the spectral
condition (7). Further, let

g2 zð Þ = zA− n+1ð ÞI Θn θ, ϕ ; zð Þ: ð21Þ

Then,

G2 λð Þ =L g2 zð Þ: λf g = λ−A Γ Að Þ2F1

−nI, θ + n − 1ð ÞI

I − A

; λθ−1

2
664

3
775:

ð22Þ

Proof. Starting from Definition 7, and applying the relation
(15), it follows that
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G2 λð Þ = 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs −ϕ−1
� 	s

s!
L zA− s+1ð ÞI
n o

= 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs −ϕ−1
� 	s

s!
λ− A−sIð Þ Γ A − sIð Þ

= λ−A Γ Að Þ 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs I − Að Þs

 �−1 λϕ−1

� 	s
s!

:

ð23Þ

Thus, the result (22) is established.

Theorem 12. Let z, μ, λ ∈ℂ,Rðλ − μÞ > 0, n ∈ℕ0, and r ∈ℕ.
Also, let θ, ϕ and A be matrices in MrðℂÞ such that βðAÞ > 0,
ϕ + kI are invertible for all k ∈ℕ0 and I − A satisfies the spec-
tral condition (7). If

g3 zð Þ = zA−I eμz Bθ,ϕ
n z−1
� 	

: ð24Þ

Then,

G3 λð Þ =L g3 zð Þ: λf g = λ − μð Þ−A Γ Að Þ2F1

−nI, θ + n − 1ð ÞI

I − A

; λ − μð Þϕ−1
2
664

3
775:

ð25Þ

Proof. For convenience, let the left-hand side of (25) be
denoted by S and by invoking the series expression of (12)
to S, we obtain

S = 〠
n

k=0

−nIð Þs θ + n − 1ð ÞIð Þk −ϕ−1
� 	s

s!

ð∞
0
zA− s−1ð ÞI e− −μ+λð Þz dz

= 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs −ϕ−1
� 	s

s!
−μ + λð Þ− A−sIð Þ Γ A − sIð Þ

= Γ Að Þ λ − μð Þ−A 〠
n

s=0
−nIð Þs θ + n − 1ð ÞIð Þs

� I − Að Þs

 �−1 λ − μð Þ ϕ−1� 	s

s!
,

ð26Þ

therefore, (25) as desired.

Theorem 13. Let z,w, λ ∈ℂ, RðλÞ > 0, n ∈ℕ0, and r ∈ℕ.
Also, let θ, ϕ and A be matrices in MrðℂÞ such that βðAÞ > 0
and ϕ + kI are invertible for all k ∈ℕ0: For the function

g4 zð Þ = zA−I z +wð Þ−1 Bθ,ϕ
n zð Þ, ð27Þ

we have

G4 λð Þ =L g4 zð Þ: λf g =wA−I Γ Að Þ eλw

× 〠
n

k=0

−nIð Þk θ + n − 1ð ÞIð Þk Að Þk
k!

Γ

� I − A − kI ; λwð Þ −wϕ−1
� 	k,

ð28Þ

where ΓðA, zÞ is the incomplete Gamma matrix function
defined in [42].

Proof. To prove (28), we consider

G4 λð Þ =
ð∞
0
zA−I z +wð Þ−1 Bθ,ϕ

n zð Þe−λzdz

= 〠
n

k=0

−nIð Þk θ + n − 1ð ÞIð Þk
k!

−ϕ−1
� 	k

×
ð∞
0
zA+ k−1ð ÞI z +wð Þ−1 e−λzdz:

ð29Þ

According to (16) in Lemma 9, we get

G4 λð Þ = 〠
n

k=0

−nIð Þk θ + n − 1ð ÞIð Þk
k!

Γ A + kIð Þ

×wA+ k−1ð ÞI eλwΓ 1 − kð ÞI − A,wλð Þ −ϕ−1
� 	k

= Γ Að ÞwA−Iewλ 〠
n

k=0

−nIð Þk θ + n − 1ð ÞIð Þk Að Þk
k!

× Γ 1 − kð ÞI − A,wλð Þ −wϕ−1
� 	k

:

ð30Þ

This completes the proof of Theorem 13.

Theorem 14. Let z, λ, ν ∈ℂ, RðλÞ > 0, RðνÞ > 0,n,m ∈ℕ0,
and r ∈ℕ. Also let θ, ϕ and A be matrices inMrðℂÞ such that
βðAÞ > 0,ϕ + kI are invertible for all k ∈ℕ0,ð1 + nÞI − A and
ð2 − nÞI − A − θ satisfies the spectral condition (7). Further, let

g5 zð Þ = zA−I Bθ,λI
n z−1
� 	

BνI,ϕ
m z−1
� 	

: ð31Þ

Then,

G5 λð Þ = g5 zð Þ: λf g = λ−A Γ Að ÞΓ I − Að ÞΓ 2I − A − θð Þ × Γ−1

� 1 + nð ÞI − Að ÞΓ−1 2 − nð ÞI − A − θð Þ × 3F2

�
−mI, ν + n − 1ð ÞI, 2I − A − θ

1 + nð ÞI − A, 2 − nð ÞI − A − θ

; λ ϕ−1

2
6664

3
7775:

ð32Þ

Proof. To prove (32), we require the relation (15) and Defini-
tion 7, thus we arrive at
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G5 λð Þ = 〠
n

s=0
〠
m

j=0

−nIð Þs θ + n − 1ð ÞIð Þs −λ−1
� 	s

s!

×
−mIð Þj νI + m − 1ð ÞIð Þj −ϕ−1

� 	 j
j!

L zA− s+j+1ð ÞI
n o

= 〠
n

s=0
〠
m

j=0

−nIð Þs ϕ + n − 1ð ÞIð Þs −λ−1
� 	s

s!

×
−mIð Þj νI + m − 1ð ÞIð Þj −ϕ−1

� 	r
r!

Γ A − s + jð ÞIð Þ λ− A− s+jð ÞIð Þ

= λ− Að ÞΓ Að Þ 〠
m

j=0

−mIð Þj νI + m − 1ð ÞIð Þj −ϕ−1
� 	j

j!
I − Að Þj

h i−1

× 〠
n

s=0

−nIð Þs ϕ + n − 1ð ÞIð Þs
s!

1 − jð ÞI − Að Þs

 �−1

= λ−A Γ Að ÞΓ I − Að ÞΓ 2I − A − θð ÞΓ−1 I − θ + nIð ÞΓ−1

� 2I − A − θ − nIð Þ × 〠
m

j=0

−mIð Þj νI + m − 1ð ÞIð Þj −λϕ−1
� 	 j

j!

� 2I − A − θð Þj × 1 + nð ÞI − Að Þr

 �−1 2 − nð ÞI − A − θð Þj

h i−1
:

ð33Þ

This completes the proof of Theorem 14.

Theorem 15. Let z, λ ∈ℂ, RðλÞ > 0, n,m ∈ℕ0, and r ∈ℕ.
Also, let θ, ϑ, ϕ and A be matrices in MrðℂÞ such that βðAÞ
> 0,ϕ + kI, are invertible for all k ∈ℕ0,ϑ, ðθ + AÞ and θ + A
− I satisfies the spectral condition (7). Further, let

g6 zð Þ = zA−I Bθ,λzI
n 1ð ÞBϑ,ϕ

m zð ÞBϑ,ϕ
m −zð Þ: ð34Þ

Then,

G6 λð Þ =L g6 zð Þ: λf g = 2A−Iffiffiffi
π

p θ + A − Ið Þn Γ Að Þ λ−A I − Að Þn

 �−1

× 8F3

−mI, ϑ + m − 1ð ÞI, 1
2

θ − Ið Þ, 1
2
ϑ, 1

2
A + 1 − nð ÞIð Þ,

1
2

A − nIð Þ, 1
2

θ + A + nIð Þ, 1
2

θ + A + n − 1ð ÞIð Þ

ϑI, 1
2

θ + Að Þ, 1
2

θ + A − Ið Þ

; 16 λ ϕð Þ−2

2
66666666666664

3
77777777777775
:

ð35Þ

Proof. Applying the following formula (see [39])

Bϑ,ϕ
m zð ÞBϑ,ϕ

m −zð Þ = 4F1

−mI, ϑ + m − 1ð ÞI, 12 ϑ − Ið Þ, 12 ϑ

ϑ − I

; 4z2 ϕ−2

2
6664

3
7775:

ð36Þ

We thus find that

G6 λð Þ =L

· zA−I Bθ,λzI
n 1ð Þ4F1

−mI, ϑ + m − 1ð ÞI, 12 ϑ − Ið Þ, 12 ϑ

ϑ − I

; 4z2 ϕ−2

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

= 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs
s!

−λ−1
� 	s × 〠

m

j=0

−mIð Þj ϑ + m − 1ð ÞIð Þj
j!

· 1
2 ϑ − Ið Þ
� �

j

1
2 ϑ
� �

j

ϑ − Ið Þj
h i−1

4ϕ−2
� 	j ×L zA− s+1+2 jð ÞI

n o
:

ð37Þ

Making use of (15), we observe that

G6 λð Þ = 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs
s!

−λ−1
� 	s

× 〠
m

j=0

−mIð Þj ϑ + m − 1ð ÞIð Þj
j!

1
2 ϑ − Ið Þ
� �

j

1
2 ϑ
� �

j

� ϑ − Ið Þj
h i−1

× 4ϕ−2
� 	j

λ− A+ s−2jð ÞIð Þ Γ A − s − 2jð ÞIð Þ

= λ−AΓ Að Þ 〠
m

j=0

−mIð Þj ϑ + m − 1ð ÞIð Þj
j!

1
2 ϑ − Ið Þ
� �

j

� 1
2 ϑ
� �

j

× ϑ − Ið Þj
h i−1

Að Þ2j 4 λϕð Þ−2� 	j
= 〠

n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs
s!

I − A − 2jIð Þs

 �−1

= λ−A
2A−Iffiffiffi
π

p Γ Að ÞΓ I − Að ÞΓ 2I − A − θð ÞΓ−1

� I − A + nIð ÞΓ−1 2I − A − θ − nIð Þ

× 〠
m

j=0

−mIð Þj ϑ + m − 1ð ÞIð Þj
j!

1
2 ϑ − Ið Þ
� �

r

1
2 ϑ
� �

j

� 1
2A
� �

j

ϑ − Ið Þj
h i−1

× 1
2 A + Ið Þ
� �

j

� 1
2 A + 1 − nð ÞIð Þ
� �

j

1
2 A − nIð Þ
� �

j

× 1
2 A + θ + nIð Þ
� �

j

1
2 A + θ + n − 1ð ÞIð Þ
� �

j

� 1
2 A + Ið Þ
� �

j

" #−1
× 1

2A
� �

j

" #−1 1
2 A + θð Þ
� �

j

" #−1

� 1
2 A + θ − Ið Þ
� �

j

" #−1
: 16 λϕð Þ−2� 	j

:

ð38Þ

Thus, after a simplification, we get the required result (35).

Theorem 16. Let z, λ ∈ℂ,RðλÞ > 0, n ∈ℕ0, and r ∈ℕ. Also,
let θ, ϕ and A be matrices in MrðℂÞ such that βðAÞ > 0 and
ϕ + kI are invertible for all k ∈ℕ0: For the function

5Journal of Function Spaces



g7 zð Þ = zA−I log zBθ,ϕ
n zð Þ, ð39Þ

then, we have

G7 λð Þ =L g7 zð Þ: λf g = λ−A Γ Að Þ〠
n

s=0
−nIð Þs θ + n − 1ð ÞIð Þs Að Þs

× − λϕð Þ−1� 	s
s!

ψ A + sIð Þ − log λð Þ,
ð40Þ

where ψðAÞ is the Digamma matrix function defined in (6).

Proof. The proof of this Theorem is quite straight forward as

G7 λð Þ =
ð∞
0
zA−I log zBθ,ϕ

n zð Þe−λzdz

= 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þk
s!

−ϕ−1
� 	s

×
ð∞
0
zA+ s−1ð ÞI log z e−λzdz:

ð41Þ

Upon using (2,2), we have

Γ A + sIð Þ =
ð∞
0
zA+ s−1ð ÞI e−z dz: ð42Þ

Hence,

Γ′ A + sIð Þ =
ð∞
0
zA+ s−1ð ÞI e−z log zdz: ð43Þ

We thus arrive at

Ψ A + sIð Þ = Γ′ A + sIð ÞΓ−1 A + sIð Þ
= Γ−1 A + sIð Þ

ð∞
0
zA+ s−1ð ÞI e−z log zdz:

ð44Þ

Therefore, we get

Ψ A + sIð Þ = λA+sI Γ−1 A + sIð Þ
ð∞
0
zA+ s−1ð ÞI e−λz log λzð Þdz

= λA+sI Γ−1 A + sIð Þ
ð∞
0
zA+ s−1ð ÞI e−λz log λð Þ + log zð Þ½ �dz

= λA+sI Γ−1 A + sIð Þ
ð∞
0
zA+ s−1ð ÞI e−λz log λð Þdz

+ λA+sI Γ−1 A + sIð Þ
ð∞
0
zA+ s−1ð ÞI e−λz log zð Þdz

= log λð Þ + λA+sI Γ−1 A + sIð Þ
ð∞
0
zA+ s−1ð ÞI e−λz log zð Þdz:

ð45Þ

We thus have

ð∞
0
zA+ s−1ð ÞI e−λz log zð Þdz = λ− A+sIð Þ Γ A + sIð Þ Ψ A + sIð Þ − log λ½ �:

ð46Þ

From the above equations, we get the required result as
follows:

G7 λð Þ = 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs Að Þs
s!

� − λϕð Þ−1� 	s × λ−A Γ Að Þ Ψ A + sIð Þ − log λ½ �

= λ−A Γ Að Þ〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs Að Þs
s!

× − λϕð Þ−1� 	s
Ψ A + sIð Þ − log λ½ �:

ð47Þ

Theorem 17. Let z, λ ∈ℂ, RðλÞ > 0, n,m, q ∈ℕ0, and r ∈ℕ.
Also, let θ, ϕ, E,D and A be matrices in MrðℂÞ such that
βðAÞ > o, and ϕ + kI are invertible for all k ∈ℕ0: Further, let

g8 zð Þ = z2A−ImFq E ;D ; z2
� 	

Bθ,ϕ
n z2
� 	

: ð48Þ

Then,

G8 λð Þ =L g8 : λf g = 22A−Iffiffiffi
π

p Γ Að ÞΓ A + 1
2

� �
λ−2A

× 〠
n

k=0

1
k!

−nIð Þk θ + n − 1ð ÞIð Þk Að Þk A + 1
2

� �
k

−4 λ2ϕ
� 	−1� �k

× m+2Fq E, A + kI, A + k + 1
2

� �
I ;D ; 4 λð Þ−2

� �
,

ð49Þ

where mFqðE ;D ; zÞ is the generalized hypergeometric type
matrix functions defined in (10) such that Re ðλÞ > 0 if m <
q − 1 and Re ðλÞ > ∣βðAÞ ∣ if m = q − 1.

Proof. Using Definitions (10) and (12) and upon using (15),
we obtain

G8 λð Þ = 〠
n

k=0

1
k!

−nIð Þk θ + n − 1ð ÞIð Þk 4 ϕð Þ−1� 	k

× 〠
∞

r=0

Ym
i=1

Eið Þr
Yq
j=1

Dj

� 	
r

h i−1 1
k!
L z2A− 1−2k−2rð ÞI
n o

= 〠
n

k=0

1
k!

−nIð Þk θ + n − 1ð ÞIð Þk 4 ϕð Þ−1� 	k

× 〠
∞

r=0

Ym
i=1

Eið Þr
Yq
j=1

Dj

� 	
r

h i−1 1
k!

× λ−2A− 2k+2rð ÞI Γ

� 2A + 2k + 2rð ÞIð Þ:
ð50Þ
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Thus, after a simplification, we obtain the result (49) in
Theorem 3.11.

Theorem 18. Let z, υ, σ, λ ∈ℂ, RðλÞ > 0,RðυÞ > −1,RðσÞ
> 0, n,m ∈ℕ0, and r ∈ℕ. Also, let θ be matrix inMrðℂÞ such
that βðAÞ > 0 and ϕ + kI are invertible for all k ∈ℕ0: For the
function

g9 zð Þ = zυ/2 Jυ 2 σzð Þ1/2� 	
Bθ,λz

n 1ð Þ: ð51Þ

Then, we have

G9 λð Þ =L g9 zð Þ: λf g = συ/2 θ + υIð Þn
1

−υð Þn

� �
λ− υ+1ð Þ

× 2F2

1 + υ −m, θ + n + υð ÞI

1 + υ, θ + υI

;−σ
λ

2
6664

3
7775,

ð52Þ

where JυðzÞ is the Bessel function of the first kind of order υ
defined by (see, e.g., [38, 41, 43])

Jυ zð Þ = 〠
∞

s=0

−1ð Þs
s!Γ 1 + υ + sð Þ

z
2

� �υ+2s
: ð53Þ

Proof. According to (12) and (53) and upon sing (15), it fol-
lows that

G9 λð Þ =L zυ/2 Jυ 2 σzð Þ1/2� 	
Bθ,λz

n 1ð Þ
n o

= 〠
∞

m=0

−1ð Þm σð Þm+ υ/2ð Þ

m!Γ 1 + υ +mð Þ

× 〠
n

k=0

−nIð Þk θ + n − 1ð ÞIð Þk
k!

−λ−1
� 	k

L z
υ
2+υ

2−k+m
n o

= σð Þυ/2 〠
∞

m=0

−σð Þm
m!Γ 1 + υ +mð Þ × 〠

n

k=0

−nIð Þk θ + n − 1ð ÞIð Þk
k!

� −λ−1
� 	k

Γ 1 + υ +m − kð Þ:λυ−m+k−1

= σð Þυ/2 λυ−1 〠
∞

m=0

−σð Þm λ−m Γ 1 + υ +mð Þ
m!Γ 1 + υ +mð Þ

× 〠
n

k=0

−nIð Þk θ + n − 1ð ÞIð Þk
− υ +mð Þð Þk k!

= σð Þυ/2 λ−υ−1 θ + υIð Þn
−υð Þn

� 〠
∞

m=0

1 + υ − nð Þm υ + nð ÞI + θð Þm θ + υIð Þm

 �−1

m! 1 + υð Þm
−σ
λ

� �m
:

ð54Þ

This completes the proof of Theorem 18.

4. Inverse Laplace Type Integrals of Functions
Involving BP,Q

n ðzÞ
Here, we obtain the following inverse Laplace type trans-
forms of generalized Bessel matrix polynomials with prod-
ucts of some functions in the following theorem:

Theorem 19. Let z, λ, σ ∈ℂ, RðλÞ > 1/2 ∣RðσÞ ∣ , n ∈ℕ0,
and r ∈ℕ. Also, let A be matrix in MrðℂÞ such that βðAÞ >
0: If

G10 λð Þ = Γ Að Þ λ + 1
2
σ

� �−A

B
A− n+1ð ÞI, 1

λ+1/2σ
n −σð Þ: ð55Þ

Then,

g10 zð Þ = zA−I exp −1
2
σz

� �
1 − σzð Þn: ð56Þ

Proof. It is sufficient to find Laplace transform of g10ðzÞ

G10 λð Þ =L zA−I exp −1
2 σz

� �
1 − σzð Þn

� �

=L zA−I exp −1
2 σz

� �
1
F0

−n

−
; σz

 !( )

= 〠
n

k=0

−nIð Þk σk
k!

L zA− 1−kð ÞI exp −1
2 σz

� �� �

= 〠
n

k=0

−nIð Þk σk
k!

Γ A + kIð Þ λ + 1
2 σ

� �− A+kIð Þ

= Γ Að Þ λ + 1
2 σ

� �−A

〠
n

k=0

−nIð Þk Að Þk
k!

σ

λ + 1/2σð Þ
� �k

,

ð57Þ

This finalizes the proof of Theorem 19.

Theorem 20. Let z, λ, σ ∈ℂ,RðλÞ > 0,RðσÞ > 0, n ∈ℕ0, and
r ∈ℕ. Also, let A be matrix inMrðℂÞ such that βðA + nIÞ > 0:
Further, let

G11 λð Þ = −1ð Þn σ1
2A+nI λ− A+ 2n+1ð ÞIð Þ exp −σ

λ
z

� �
BI−A−2nI,σ

n λð Þ:
ð58Þ

Then,

g11 zð Þ = z
A
2+nI Jυ 2 σzð Þ1/2� 	

: ð59Þ

Proof. By invoking to (15) and (53), we consider
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G11 λð Þ =L z
A
2+nI Jυ 2 σzð Þ1/2� 	n o

= 〠
∞

r=0

Γ−1 A + 1 + rð ÞIð Þ −σð Þr σA/2
r!

L zA+ n+rð ÞI
n o

= σA/2 Γ−1 A + Ið Þ 〠
∞

r=0

−ð Þr A + Ið Þr

 �−1

r!
Γ

� A + r + n + 1ð ÞIð Þ λ− A+ r+n+1ð ÞIð Þ

= σA/2 A + Ið Þn λ− A+ n+1ð ÞIð Þ exp −σ
λ

� �

�〠
n

r=0

−nIð Þr A + Ið Þr

 �−1
r!

σ

λ

� �r
= σ

A
2+nI A + Ið Þn λ− A+ 2n+1ð ÞIð Þ exp −σ

λ

� �

�〠
n

r=0

−nIð Þr A + Ið Þr

 �−1
r!

σ

λ

� �r−n
:

ð60Þ

Putting n − r = k, we obtain

G11 λð Þ = −1ð Þn σA
2+nI λ− A+ 2n+1ð ÞIð Þ exp −σ

λ

� �

× 〠
n

k=0

−nIð Þk − A + nIð Þð Þk
k!

−λ
σ

� �k

= −1ð Þn σ1
2A+nI λ− A+ 2n+1ð ÞIð Þ exp −σ

λ
z

� �
BI−A−2nI,σ

n λð Þ:
ð61Þ

This finalizes the proof of Theorem 20.

The remaining results, which are given in the following
theorems, can also be proven in a similar way. So we prefer
to omit the details.

Theorem 21. Let z, λ ∈ℂ,RðλÞ > 0, n ∈ℕ0, and r ∈ℕ. Also,
let θ and ϕ be matrices in MrðℂÞ such that ϕ + kI are invert-
ible for all k ∈ℕ0: Further, let

G12 λð Þ = −ϕð Þn λθ+ 2n−2ð ÞI Γ 2I − θð Þ B
2I−θ−2nI, ϕ−λIð Þ

λ
n −nð Þ:

ð62Þ

Then,

g12 zð Þ = z− θ+ n−1ð ÞIð Þ Bθ,ϕ
n z−1
� 	

: ð63Þ

Theorem 22. Let z, λ ∈ℂ, RðλÞ > 0, n ∈ℕ0, and r ∈ℕ. Also
let θ and ϕ be matrices in MrðℂÞ such that ϕ + kI are invert-
ible for all k ∈ℕ0: Further, let

G13 λð Þ = 1
λ2
F0

−n, θ − n + 1ð ÞI
−

; λϕ−1
" #

: ð64Þ

Then,

g13 zð Þ =Bθ,ϕ
n z−1
� 	

: ð65Þ

Theorem 23. Let z, λ, μ ∈ℂ, RðλÞ >RðμÞ > 0, n ∈ℕ0, and
r ∈ℕ. Also let θ and ϕ be matrices in MrðℂÞ such that ϕ + k
I are invertible for all k ∈ℕ0: Further, let

G14 λð Þ = λ − μð Þ−12F0

−n, θ − 1 − nð ÞI
−

; λ − μð Þϕ−1
" #

:

ð66Þ

Then,

g14 zð Þ = exp μzð ÞBθ,ϕ
n z−1
� 	

: ð67Þ

5. Conclusion

In fact, this work is a continuation of the recent paper by
Abdalla [44]. In the current manuscript, the authors intro-
duced various Laplace integral formulas of generalized Bessel
matrix polynomials with certain elementary matrix func-
tions, Binomial matrix functions exponential function,
logarithmic function, generalized hypergeometric matrix
functions, and Bessel function of the first kind. We also pre-
sented inverse Laplace transforms of generalized Bessel
matrix polynomials with some functions. It is obvious that
the results presented here which are involved in certain
matrices in MrðℂÞ may reduce to yield the corresponding
scalar ones when r = 1. Furthermore, the results derived in
this article yields to many special cases; the interested reader
may be referred to (see, e.g., [1, 7, 45]).

A remarkably large number of Laplace transforms and
inverse Laplace transforms involving a variety of functions
and polynomials have been presented (see, e.g., [45, pp.
129–299]). In this connection, we tried to give matrix ver-
sions of those outcomes for Laplace transforms and inverse
Laplace formulas involving a variety of functions and poly-
nomials (see, [45, pp. 129–299]).
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