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Figure 1: We use a probabilistic model to determine scales that give a collection of 3D models physically plausible sizes. Left: fifty models
randomly sampled from a 12490 model dataset. Many sizes are implausible (red highlights some particularly implausible cases). Right:
same models rescaled with our approach (e.g. the DVD player and computer mouse are now plausibly sized in the front row on the right).

Abstract

We address the problem of recovering reliable sizes for a collec-
tion of models defined using scales with unknown correspondence
to physical units. Our algorithmic approach provides absolute size
estimates for 3D models by combining category-based size priors
and size observations from 3D scenes. Our approach handles un-
observed 3D models without any user intervention. It also scales to
large public 3D model databases and is appropriate for handling the
open-world problem of rapidly expanding collections of 3D models.
We use two datasets from online 3D model repositories to evaluate
against both human judgments of size and ground truth physical
sizes of 3D models, and find that an algorithmic approach can pre-
dict sizes more accurately than people.
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1 Introduction

Today, there are more 3D models freely and publicly available
than ever before. And tomorrow, there’ll be more. Databases like
TurboSquid, Archive3D, and the Trimble 3D Warehouse (formerly
Google 3D Warehouse) are growing every day.

These 3D model repositories are useful for a wide diversity of ap-
plications. Using these models, novices can create game levels, vir-
tual movie sets, tell stories, and explore home remodeling. Beyond
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computer graphics, these databases are also used in computer vi-
sion and robotics for research problems such as object recognition
and 3D scene reconstruction [Zia et al. 2011; Satkin et al. 2012].

Unfortunately, the same process driving the growth of these
databases—aggregation of models from a wide variety of
sources—also results in collections with poor and unreliable meta-
data. While poor metadata is prevalent in many domains, the prob-
lem of inconsistent sizes is unique to 3D model databases. More
specifically, the correspondence between the virtual unit scale of a
3D model and physical units is typically unknown or unreliable. In
contrast, physical objects possess absolute, fixed sizes.

Some 3D models come with virtual to physical unit conversion
metadata embedded (notably the COLLADA spec [2008] provides
a field for this purpose). Sometimes this information can be trusted
because it comes from sources such as a furniture manufacturer,
who have a vested interest in its correctness. In general, however,
these metadata fields are unpopulated or of unknown quality.

Unreliable model sizes produce a variety of second order problems.
In interactive modeling, users are burdened with the responsibility
of rescaling models inserted into a scene. Due to unreliable size
information, object recognition systems using 3D models typically
normalize model sizes. Disregarding absolute size creates confu-
sion between many categories of objects where absolute size is dis-
criminative, for example thimbles and waste baskets [Wohlkinger
et al. 2012]. By providing reliable physical sizes for 3D models in
large repositories, we can aid future research and help automated or
interactive modeling systems to use absolute size information.

To address this problem, we size models using a probabilistic model
that combines category-based physical size priors and model obser-
vations in 3D scenes. Knowing the category of an object gives us
a prior distribution for its size. For instance, even though databases
tend to contain many diverse chair models, the size of any given
chair is heavily constrained by the fact that it is a chair. By us-
ing the geometry and text of 3D models on online repositories, we
can predict category membership and thus estimate sizes without
requiring any user feedback. This enables us to automatically scale
our method to very large databases.
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To use category-based size knowledge we need to have data for the
categories we want to handle. However, manual collection of this
data is not a scalable solution. We show how a small set of category
size priors can be automatically collected from external information
sources, connected to 3D models and expanded to cover additional
categories. In order to expand these priors, we use the key insight
that 3D scenes serve as a link between co-occurring 3D models.
Scenes containing models from our database provide observations
of relative sizes between any two models. Given these observations
and absolute size values or priors for a subset of models in a scene,
we use the network of relative size observations to propagate size
knowledge to other models.

Contributions To our knowledge, we are the first to pose ab-
solute scaling of 3D models as a research problem. We present
a probabilistic graphical model formalization of the problem and
demonstrate a series of methods that determine physically plausi-
ble scales for models in 3D model databases. We show how these
methods integrate different sources of size information: known size
reference models, observations from 3D scenes and category-based
absolute size priors. We analyze the performance of these different
sources of size data independently and in combination for predict-
ing 3D model scales. We evaluate against human size judgments
and against manually annotated ground truth size models. Finally,
we provide our learned size priors and best size estimates from two
large 3D model datasets for the benefit of the research community.

2 Background

Computer vision research has recently shown that 3D model
databases can be used for object categorization, and pose and depth
estimation [Zia et al. 2011; Wohlkinger et al. 2012]. The authors
observe that size data is critical for such tasks but usually unavail-
able. In the absence of reliably sized 3D model data, vision re-
searchers have resorted to estimating object sizes from 2D images
and camera parameters in order to show the benefit of size informa-
tion for recognition tasks [Fritz et al. 2010].

Recent work in natural language processing has automatically ex-
tracted numerical attributes from web text [Davidov and Rappoport
2010]. That system provides estimates of height and weight values
for particular named entities (such as celebrities) or object classes
(such as apples). This recent work motivates our focus on providing
a general, scalable approach to consistently size 3D models in large
public 3D databases.

Previous research related to sizing 3D models has focused just on
the geometric problem of non-homogeneous resizing [Kraevoy et al.
2008; Wang and Zhang 2009]. Other researchers have noted that
the scales of 3D models are frequently inconsistent between mod-
els and result in physically implausible sizes [Wohlkinger et al.
2012]. However, this problem only really comes to the forefront
when models are used in an external context such as a 3D scene
or connected to real world data. We believe absolute sizing of 3D
models has not been posed as a research problem until now because
large, publicly available 3D model datasets that enable 3D model
re-use and re-combination are a fairly recent phenomenon.

Thus far, work on systems that leverage absolute size information
from 3D models is typically restricted to smaller, manually vali-
dated datasets [Shao et al. 2012]. However, manual validation is
not a scalable solution, nor can it be applied to growing model
databases. We thus target our approach to large, unstructured and
unclean collections of 3D models.

Previous work has dealt with height estimation of annotated objects
in collections of photographs [Hoiem et al. 2006; Lalonde et al.
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Figure 2: Plate notation (top) and random variables (bottom) in
our probabilistic graphical model for 3D model sizes. Latent vari-
ables are in white circles, observed variables are in gray. The do-
main of each plate is indicated by M (models), S (scenes), and I
(model instances observed in scenes).

2007; Russell and Torralba 2009]. This work also leverages the
insight that relative size observations in scenes can be used to prop-
agate size priors between objects. Our approach is inspired by this
insight as well, but in contrast to prior work, we present an over-
arching probabilistic model framework and evaluate our algorithm
against ground truth and human judgments. We investigate the us-
ability of results from this prior work as size priors for 3D models
and find that there is limited overlap in categories and a consistent
upward bias with respect to ground truth data (see Section 4.3).
Furthermore, these methods rely on manually annotated and cate-
gorized 2D object instances and do not address the issue of cate-
gorization, whereas we present an unsupervised 3D model catego-
rization algorithm. However, we believe this prior work illustrates
the importance and utility of methods for collecting and propagat-
ing physical size priors. Our aim is to address the problem of sizing
collections of 3D models, integrating different information sources
and systematically evaluating our results against ground truth data
and human judgments.

3 Approach

Our goal is to determine scales for 3D models so that the absolute
sizes of the models are plausible to human observers. We note that
this does not require determination of exact sizes due to size vari-
ation of many physical objects and variation of human size judg-
ments. Even in cases where categories of objects have standard
sizes, for example soda cans, human judgment of their size can vary
widely. We choose a probabilistic representation for object scales
to account for such noise and variability.

Our approach is based on two key insights: (a) in the real world
and in 3D scenes, co-occurrences of objects provide a dense set
of relative size observations and (b) object categories generalize
size knowledge and provide priors on the expected physical sizes of
objects. The latter relies on a categorization of objects and size prior
data for each category. The former relies on observing objects co-
occurring in scenes and having grounding data to convert relative
sizes to absolute sizes. This grounding data can either be a subset of
the observed models with known absolute sizes or category-based
priors from part (b).

We present algorithms that use these two insights independently



and an approach combining both. First, we formalize our problem
with a probabilistic model (Figure 2). The left side of the plate di-
agram corresponds to category-based size priors informing model
physical sizes. The right side represents observations of model in-
stances in 3D scenes with unobserved latent scene scales. The two
sides interact through the assumption that the product of model in-
stance scales 7; and an overall scene scale r should take models
from virtual dimensions v to physical dimensions p, as does the
model scale 7,,,. Formally: p = vry, = vrirs or ry, = rirs.

We will treat the conditional probability of a given model having
virtual size v: P(v|p,rm) = 1(v = p/rm) as a deterministic re-
lation involving the physical size of the represented object p and
the latent scale of the model r,,. Since we expect to see varia-
tion in the observed model instance scales, we will model them as
being drawn from a log-normal distribution: P(log(r;)|rm,rs) ~
N (log(rm) —log(rs), o). As r; is a ratio quantity, the variation in
its distribution can be viewed as a product of independent random
variables. Therefore r; is likely to follow a log normal distribu-
tion. Working in log space also ensures that r; is always positive
and accommodates a wide range of scales across orders of magni-
tude. We will similarly treat r,,, and 7 as log-normally distributed:
P(log(rm)) ~ N(0m,om) and P(log(rs)) ~ N(6s,05). Al-
though here we use relatively simple distributions over our random
variables, a probabilistic framework allows for principled future ex-
tensions. We discuss improvements to the model, such as using
multi-modal distributions or priors over the model scales in Sec-
tion 7.1.

For the physical and virtual units we use the 3D model’s bounding
box diagonal. The diagonal is relatively stable with respect to axis
aligned rotations in model alignment, which constitute the major-
ity of cases of alignment inconsistency in our model datasets (see
Section 4.1). A more advanced approach might use multivariate
Gaussians for the distribution of physical and virtual dimensions,
capturing additional information about the variability along each
dimension.

We will first look at the right side of our probabilistic model where
we only deal with observations of model instances in scenes, with-
out a notion of model categories (Section 5.1). We will show that
just using scene information we can get fairly accurate sizes for
models observed in scenes. However, we cannot cover models that
are not observed in any scenes.

To address this shortcoming, we will use categories and category
size priors. This corresponds to the left side of our probabilistic
model which we will first look at in isolation in Section 5.2. We
will describe how we collect and use priors for physical sizes p
and then how we determine model scales r,,, for given models with
virtual sizes v. Then we will connect these two approaches by using
the entirety of our probabilistic model (Section 5.3).

Different information sources impact the extent to which our ap-
proach can cover a model dataset, as illustrated in Figure 3. Using
scenes alone, we can only expect to predict sizes for models occur-
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Figure 3: Representation of a collection of 3D models and the par-
titioning of the models into sets based on available information.
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Figure 4: Left: model webpage, right: furniture page. la: model
name, b: description, c: tags, 2a: furniture name, b: dimensions.

ring in scenes (red). With just category size priors, we can only pre-
dict sizes for models of categories with priors (blue). By combining
scenes and categories, we expand our coverage of sizeable models
to include all models that have been categorized (light blue). How-
ever, 3D models that are not categorized and do not occur in any
scenes will still be unsizeable (light gray). So far, we assumed that
the category c is observed. When there are no manually assigned
categories, ¢ can be treated as a latent variable. In Section 5.4 we
present a categorization algorithm to infer a value for c. Before the
technical details, we first discuss our information sources.

4 Information Sources

The availability of data to use for training each part of our proba-
bilistic model is an important consideration. Our primary input is a
collection of 3D models (Section 4.1). We also use a dataset of 3D
scenes created with a subset of these models for retrieving relative
size observations (Section 4.2). Our absolute size information for
learning category size priors comes from online furniture catalogue
websites (Section 4.3). Finally, we use a small set of reference 3D
models with known absolute sizes both as an information source
and for evaluating our results (Section 6). Figure 4 gives examples
of our information sources. In the following sections we examine
each information source and present evidence that further motivates
the need for consistent scaling of 3D models.

4.1 3D Model Databases

We use two 3D model datasets retrieved from large public 3D
model repositories. One consists of 12490 models collected from
the Google 3D Warehouse (now Trimble) by crawling for a vari-
ety of terms relating to indoor objects.! We refer to this dataset as
3DW. The second dataset is a complete crawl of the Archive3D.net
(AR3D) repository which consists of 30062 models.”

After collecting these datasets, we semi-automatically annotated
approximately 70% of all models with category labels. We used
model tags to set these labels, and verified and augmented them
manually. We defined a category hierarchy with 270 categories, of
which 29 are parent categories with a total of 104 subcategories and
137 are childless parent categories. We chose categories so that a
subset can be associated with size priors (Section 4.3).

We observe that most models we collected are consistently aligned.
Though alignment in the horizontal plane varied, upright orienta-
tion was consistent for most objects and variations were primarily

13DW crawled during February 2012
2 AR3D crawled during September 2012
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Figure 5: Normalized histograms of the logarithms of vertical sizes
for some categories of models. Model virtual units are used directly.
The horizontal axis is logarithmic so the distributions are over or-
ders of magnitude in linear units (top).

due to 90 degree rotations in the horizontal plane, to which the di-
agonal is mostly stable. For example, 415 out of 419 tables in 3DW
and all 1101 beds in AR3D have their canonical Z coordinate axis
aligned with the upwards direction. To investigate the effect of mis-
alignment on size estimation we perform an experiment where the
3D pose of models is randomized by choosing Euler angles ran-
domly. We find that the performance of our size estimation algo-
rithm is not impacted significantly—overall size prediction accu-
racy decreased by 2.1% relative to results presented in Section 6.2.

In addition to the geometry of each model, we also retain the text
occurring in the webpage from which the model is downloaded.
Textual information can be critical for providing additional knowl-
edge about the model. Previous research has noted that the text in
such online 3D repositories is often sparse or inaccurate [Goldfeder
and Allen 2008]. While the quality of text can be lacking, it is still
a highly discriminative information source that we use for catego-
rizing model in Section 5.4.

Figure 5 shows normalized histograms of the vertical heights for
several categories of models. Many categories such as books,
clocks and computer mice have broad height distributions over sev-
eral orders of magnitude indicating inconsistent scales. In the pres-
ence of broad and noisy distributions such as these, guessing a sin-
gle “correct” scale is not a practical approach. Furthermore, though
guessing scales such as “1 unit = 1 inch” to put particular mod-
els into physical units can work well for unimodal distributions,
we cannot a priori confirm that these guesses are correct without
external information. We will focus on the case where the model
database is of unknown quality and make no assumptions about the
nature of existing model scales. This allows us to handle 3D model
datasets with arbitrary model scale distributions.

4.2 3D Scenes

If 3D scenes are available, we can size instances of models observed
in a scene with objects of known size. Unfortunately, there are few
3D scenes in online 3D model repositories, which means that the
vast majority of 3D models are observed out of context. For exam-
ple, the number of 3D scenes on Google 3D Warehouse is miniscule
(thousands) compared to the total number of models (millions).

To collect our model relative size observations we use a recently
published 3D scene dataset of 133 small indoor scenes created with
1723 3D Warehouse models [Fisher et al. 2012]. Since this dataset

primarily contains small indoor scenes, we added an additional set
of 18 larger outdoor and indoor open space scenes, as well as 16
room interiors using the same scene design tool and model dataset,
kindly provided by the authors. Furthermore, we recruited 20 par-
ticipants and instructed each to create two scenes: one starting from
an empty room with a bookcase and one from an empty room with
a desk. In total, we have a 207 scene dataset, comprising scenes
from previous work as well as the 74 scenes we created.

During the above scene construction experiments, we log the Ul in-
teractions of each participant and compute an estimate for the time
spent rescaling models. This estimate counted the contiguous time
between consecutive scale actions with less than 0.5s between them
(actions were 1.05 or 0.95 uniform multiplicative rescalings). Total
scaling time averaged over all participants and scenes was approx-
imately 10% of total scene creation time. Comparing this to 9%
for rotation and 25% for model search and retrieval, we see that the
burden of rescaling models during 3D scene design is significant.

4.3 Category Size Priors

As described in Section 4.1, we defined a set of categories over
our model datasets, for which we would now like to obtain size
priors. We first investigate the usability of the 2D image-based
approaches. We compared against both the results of Lalonde et
al. [2007] from a set of 13000 LabelMe object instances (149 cate-
gories), as well as a 49 category subset provided by the authors of
LabelMe3D [2009]. Overall, the overlap with the categories of our
3D models and ground truth data was limited (a dozen of mostly
indoor categories such as chairs, tables, books and benches). Fur-
thermore, we observed a consistent upward bias in the height pri-
ors derived from images, likely due to over-estimation of physical
heights in approximating 3D objects as 2D planes perpendicular to
the ground. The bias was particularly severe for objects typically
not on the ground (for example, books were inferred to have a mean
height of 2.7m and cups 1.0m). We suspect this is due to these
methods using perspective back-projection with estimated camera
parameters and assuming that all objects lie on the ground plane.
This assumption is reasonable for outdoor scenes which were the
focus of that work, but is unacceptably restrictive in indoor settings.
For example, in the 3D scene dataset of Fisher et al. [2012], only
27.1% of objects are supported by the ground.

Since the height estimates from 2D images are not usable for our
problem, we extract size priors corresponding to a subset of our
categories by aggregating and processing textual descriptions from
online furniture websites. We choose this source of information
because furniture dimensions are well specified, easily accessible
and reliable. Furthermore, our model datasets contain many indoor
objects with furniture comprising approximately half of all models.

We scrape the websites of two online furniture retailers.’> We extract
the dimension DOM elements from the HTML pages of each fur-
niture item and convert measurements to meters. For each furniture
item we automatically map the manufacturer’s categorization—also
available in the HTML page—to our category hierarchy. We col-
lect a total of 3099 furniture items in 55 categories. We then aggre-
gate all dimensions per category and treat them as samples to fit a
Gaussian prior for the probability distribution of physical sizes p:
P(p|c) of the particular category c. Thus, we augment a subset of
the models in our database with category size priors from trustwor-
thy external information. Figure 6 illustrates size priors for some of
the furniture categories we collected. We provide this data, along
with estimated size priors.

3http: //www.furniture.comand www.ashleyfurniture.com
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Figure 6: Data collected from furniture product webpages. The
plot shows normalized histograms of vertical height ( m) distribu-
tions for a few categories of furniture. We use this raw data to create
a set of size priors for 55 furniture and indoor item categories.

5 Algorithm

We present our method for estimating model scales using these
two information sources independently and in combination. Each
method is evaluated independently and also compared against hu-
man judgments and ground truth data in Section 6. We show that
the method combining information sources outperforms the simpler
independent algorithms.

5.1 Leveraging Scene Information

When users construct scenes, they implicitly provide us with judg-
ments about the sizes of objects relative to other objects in the same
scene. Specializing our graphical model by omitting categories
leads to a linear least squares optimization computation which out-
puts estimates for the model scales.

We ignore the left hand portion of the graphical model (Figure 2)
and focus on the right hand side where we only have relationships
between model scales r,,,, scene scales s and model instance scales
ri. For any instance ¢ of a particular model m occurring in a scene
s, we have the relationship 7;’—’: = r;. As discussed in Section 3, we
express these scale variables logarithmically. Thus we express the
relationship in log space with Gaussian noise

log ry, — logrs = logr; + €, where e ~ N(0, o)

By converting each observed instance of an object in a scene into
such an equation, we arrive at a system of linear equations with
unknowns log r,,, and logrs. Since we have assumed Gaussian
noise, the maximum likelihood estimate of this model can be found
via linear least squares, which can be solved easily with a general
sparse linear system solver.

Because there are two unknown variables for each constraint, in
general the above system can be under-determined, in which case
we must disambiguate between potential solutions by grounding
one of the variables to a known value. This corresponds to spec-
ifying known model scales for at least one model per connected
component in the graph of scene observations, thus removing the
extra degree of freedom for the component. We use our reference
models for this purpose. For each reference model, we remove the
relevant variable 7, from the list of unknowns and substitute the
known scale into every equation the variable appears.

5.2 Using Categories to Generalize

Categories generalize information from particular instances to
groups of objects. They allow us to connect prior knowledge to
3D models in a principled manner. The approach we take here cor-
responds to the left part of the probabilistic model in Figure 2. If
we assume that the physical size p for models of a given category ¢
is drawn from a normal distribution, i.e. P(p|c) ~ N (uec,o.), the
maximum likelihood estimate for p is simply the mean . for that
particular category. As we will show in Section 6.2, this method
allows for good coverage of the 3D model dataset and is very ef-
fective when combined with scene information. By itself, it gives
plausible approximate sizes which are limited in their precision.

We note that, though categorization of 3D models is a separate
research problem which is beyond our direct focus, the effort re-
quired to manually categorize large 3D model databases is signif-
icant. We therefore present an automatic categorization algorithm
for 3D models in Section 5.4.

5.3 Combining Scenes and Categories

What can we do for objects neither covered by our background
knowledge nor covered by scenes directly? A few options are avail-
able. We can expand our categorical priors, create more scenes, or
propagate knowledge using both category priors and scenes. We’ll
focus on the latter approach.

We integrate information from both relative size observations and
category priors by viewing the model scales and scene scales as
latent variables. This probabilistic approach allows us to recon-
cile inconsistencies or incompatibilities in the data in a natural
way. We are interested in the probability distribution of the model
scales 7.,,, so we will treat the scene scales rs as parameters in
our model and use an iterative algorithm based on Expectation
Maximization [Dempster et al. 1977] to find the maximum like-
lihood estimates (MLE) for the scene scales and the category size
means. Once we have optimized the scene scales, we can use our
model to obtain either a probability distribution for the model scales
P(rm|c,v,7;;75) or to pick the most likely value for a given model
scale. Our algorithm is given as pseudocode in Algorithm 1. Note
that under the assumption of Gaussian distributions, this algorithm
simplifies to iterating between computing MLE for scene scales and
category means, and MLE for model scales. However, the above al-
gorithmic outline allows for more complex prior distributions to be
incorporated by adjusting the update steps.

To initialize at a good starting point and avoid propagating noisy
information, we keep track of which models, categories, and scenes
we have scale estimates for, and use only them in each iteration. We
start with known model scales 7,, for the set of reference models
‘R, and known category size means pi. for categories with collected
size priors. These are then used to estimate scene scales rs. Once
we have some known scene scales, we compute new estimates for
more model scales 7,,. With these new model scales we can in
turn compute updated estimates for more scene scales 75 and cate-
gory size means j.. Through this iterative approach, we eventually
cover all models reachable through either categories or scene obser-
vations. We terminate when no more new models are sized. For the
results presented here we use 3 iterations. In general, the number of
iterations is bounded by the length of chained model co-occurrence
observations across the scene set (i.e. the diameter of the biggest
component in the graph of connected co-occurring models).

This combined algorithm can be reduced to the approach of Sec-
tion 5.1 by removing propagation of category information and not
updating model scales using that information. It can also be re-
duced to the category size priors approach in Section 5.2 if we do
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not provide scene data.

Algorithm 1: EM for size propagation.

input : set of 3D models M= {m = (c,v)}

input :setofscenes S = {1...S5}

input : set of categories C={1... K’}

input : set of priors on physical size conditioned on category
P = {(c,12,00)}

input : set of reference models R = {(m,rm )}

input : set of model observations in scenes Z = {(s, m,7;)}

// 1Initialize mean of log of model scales @, and scene scales 05 to {}
// 1nitialize O for ref models
foreach (m, ry,) in R do

L Om = log(rm)

// 1Initialize category size mean pe to prior mean

foreach (c, 19, 02) in P do

—,,0
He = He
// repeat for T iterations until convergence:
fort=1to T do
// E-step: update MLE for non-ref model scales using estimated scene

scales and category means

foreach model m in M - R do
L // average over Nypi = # of inst.

scales for model m

0, — log(pe)+>2,(0s+log(ri))
m

T(pe>0)+Npi
// w-step:

estimated model scales
foreach scene sin S do
L // nverage over Ng; = # of inst.

_ 2i(8m—log(rs))
0s = Ns;

update MLE for scene scales and category means using

scales for scene s

foreach category c in C do

// Average physical size for category c

e = 1 3 Vm exp(Om)

output : estimated mean of log of model scales 6,,
output : estimated mean of log of scene scales 0

5.4 Automatic Categorization

Our method relies on categories to establish and propagate size pri-
ors. We have defined a manual categorization for our models, but to
handle an open-world scenario we need to automatically categorize
beyond a small set of pre-defined categories. There is much litera-
ture on retrieval and classification of 3D models using a variety of
approaches [Min et al. 2004; Tangelder and Veltkamp 2008]. The
problem of unsupervised 3D model categorization is a challenging
one, and not our direct research focus but we present a sensible
approach leveraging both text and geometry. To motivate our al-
gorithm we first describe the semantic taxonomy we use, and then
empirically compare the predictive performance of text and geom-
etry features on our 3D model dataset.

Taxonomy Our algorithm maps each model to a node in the
WordNet hierarchy [Miller 1995]. WordNet is a lexical database
for the English language which groups English words into sets of
synonyms known as synsets, roughly corresponding to a seman-
tic category. It provides short, general descriptions of each synset
and the synsets are arranged in a hierarchy containing hypernyms
(wider categories) and hyponyms (narrower categories). Since we
are interested in physical objects we consider only children of the
“physical object” synset. We also filter out synsets corresponding to
processes, locations and events. There are approximately 40 thou-
sand physical object noun synsets that are valid prediction targets
for our algorithm.
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Figure 7: Precision-Recall plot comparing 3D Zernike descrip-
tors (green), light field descriptors (blue) and bag of words cosine
similarity (orange) performance in predicting WordNet synsets for
30225 models, with 10-fold cross validation.

Evaluation Setup For evaluating our categorization algorithm,
we manually map the category hierarchy used by our model datasets
to matching WordNet synsets. Of our 270 categories, 252 are
mapped to a WordNet synset. The remaining 18 are not found
in WordNet and consist mainly of recent electronic devices such
as video game consoles and USB drives. With this mapping, we
have synset correspondences for 28243 models (out of 30225 mod-
els with category labels) which we treat as our evaluation set.

Comparing Text and Geometry We use the above evaluation set
to see how well we can propagate synset labels using text and ge-
ometry features. We base our approach on prior work dealing with
propagation of text tags through geometrical similarity [Goldfeder
and Allen 2008]. The method uses a distance-weighted nearest
neighbor voting scheme, embedded in the space of the chosen geo-
metrical descriptor. We experimented with both the 3D Zernike de-
scriptors of Novotni and Klein [2003] as implemented by Goldfeder
and Allen (1283 voxelization, 20 moments resulting in 121 dimen-
sions) and also with the light field descriptors (LFD) of Shen et
al. [2003]. Though we chose simple and well-known methods
there is much prior work in shape similarity measures that could
be applied to this problem—a survey is provided by Tangelder and
Veltkamp [2008]. We compare these geometry features against a
bag of words cosine similarity measure which is standard in infor-
mation retrieval [Manning et al. 2008]. We perform 10-fold cross
validation on the above dataset and measure precision and recall to
evaluate the predictive strength of each method (see Figure 7).

The bag of words cosine similarity feature using the model text
performs much better than the geometry features—its average F1
score (harmonic mean of precision and recall) is 0.52 compared
to 0.32 for the light field descriptors and 0.26 for the 3D Zernike
descriptors. This is not surprising—since text search is still the pri-
mary retrieval method for 3D models, we can expect the text to be
fairly indicative of the model category. Some categories such as mi-
crowave ovens, cardboard boxes and refrigerators are hard to distin-
guish using only geometry, but are easily disambiguated with text.
Naturally, when there is no text we have to rely on geometry. The
constraints of unsupervised categorization and these observations
motivate the design of our algorithm. First, we use any available
textual information to predict synset labels. Then, we propagate the
results using geometrical similarity based on the light field descrip-
tors to handle missing annotations and expand our coverage.
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Figure 8: Three sets of models selected through sorting by bounding box diagonal, binning into 10 bins and randomly sampling from the
central 10% of each bin. Top: models in original scales. Bottom: Corrected scales using our Combo algorithm (unsized models in gray).

Algorithm In the first stage, the names, tags and descriptions as-
sociated with each 3D model are preprocessed for tokenization,
lemmatization and part of speech annotation using the Stanford
CoreNLP pipeline [Toutanova et al. 2003]. Then we identify words
in the model name that are most indicative of a matching synset.
To do this we first match the entire name, then the longest possible
phrase in the name, or extract and match the head word (the word
that determines the semantic category of a phrase). If no match is
found, we take nouns in the name and match them against synsets.
Since each word can map to multiple synsets, we prefer synsets
that are furniture and fixtures over synsets for body parts, people
and media. Beyond this preference, we use the default ordering
of synsets in WordNet, which follows sense frequency. To select
among candidate synsets for different words, we take the TF-IDF
(term frequency - inverse document frequency [Salton and Buckley
1988]) of words in the model text (¢,,,) and words associated with
each synset (ts). We then compute the cosine similarity between
them sim(m,s) = m, and select the synset with highest
cosine similarity. After this step, we have a set of 3D models that
are partially corresponded to WordNet synsets. To handle cases
where there was no textual information for a model or where no
synset was matched with text, we use the propagation algorithm of
Goldfeder and Allen [2008] with LFD features to select the highest
probability synset from the 15 nearest neighbor models.

Results  After the first stage, our algorithm automatically derives
synsets for the 30225 models used for evaluation and we retrieve
21746 (72%) matches. 17251 (57%) of these matches are exact,
3191 (11%) belong to hyponyms of the target, and 1322 (4%) to
hypernyms. The second stage then propagates synset predictions to
unmatched models using light field descriptor similarity, matching
a further 586 (2%) models correctly and bringing the output synset
match accuracy to 74%.

The algorithm can be improved in a variety of ways. Shape simi-
larity can be used to identify noisy text and help disambiguate be-
tween different word senses. Another potential improvement would
be to use 3D scene context in categorization, whenever it is avail-
able [Fisher and Hanrahan 2010].

This categorization algorithm can predict any matching target
WordNet synset, not just the categories with which we annotate our
model datasets. We incorporate the output synsets of this algorithm
into our framework by using them instead of manual categories. In
Section 6.2, we present results using this automatic categorization.

6 Evaluation

We first demonstrate our approach by using it to rescale randomly
sampled models from the 3DW dataset and showing that corrected
scales result in more plausible object sizes. Figure 8 shows three
randomly sampled model sets, each spanning a range of sizes. We
see that the rescaled versions are more plausible. The Rubik’s cube
in the middle remains at an implausible size because it is not cov-
ered by our algorithm (indicated in gray).

We evaluate size predictions from our algorithms against human
size judgment and ground truth sizes. Section 6.1 describes how
we collect size judgments from people. In Section 6.2 we compare
human judgments against ground truth and our algorithmic predic-
tions. We show that there is a large variation in human judgment
and that our algorithm predicts sizes with more accuracy than peo-
ple on average. By combining information from scenes and cate-
gories, we achieve higher accuracy and coverage than using each
independently. Section 6.3 analyzes the impact of the number of
available scenes, reference models and category priors. Finally, we
show we can use automatic categorization to achieve improved cov-
erage of our model database.

6.1 Human Size Judgment

We performed an experiment to collect human perceptions of 3D
model size. The experiment was designed to require relative size
judgments against reference objects to avoid having people per-
form a numerical value recall task. To create our evaluation model
dataset, we first sampled from the combined 3DW and AR3D
dataset to obtain 105 models. A third (35) were uniformly sam-
pled from models observed in scenes, a third from categories with
size priors and a third having neither observations nor priors.

We used a simple online interface that randomly presented the par-
ticipant with a model from the evaluation set initialized at a random
size (Figure 9). To the left and right of the focus model were two
reference models: one of smaller height and one of larger height.
As an additional reference, we included the figure of a person to the
far right. The set of reference objects consisted of 6 models that we
manually sized: a finger ring, a soda can, a CPU case with moni-
tor and keyboard, a study desk, an office chair, and the person. The
models were selected from categories with narrowly defined typical
sizes and such that they cover a range of sizes. As the participant
resized the focus model, the side models were automatically rese-
lected to bracket the focus model in height and the view zoomed in
for small objects. We recruited 20 participants (10 female) from the
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Figure 9: Ul for collecting human size judgments. Participants
are presented with a random model in the center. On the sides are
reference models to facilitate relative size judgments. Participants
drag to rescale the central model. The reference models are auto-
matically reselected to bracket the central model in height.

Human Judgments, Ground Truth and Algorithmic Size Prediction
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Figure 10: Comparison of size responses by people (mean response
is darker), ground truth sizes and size predictions by Combo. The
vertical axis plots the 3D model bounding box diagonal in meters
and is logarithmic. Each column represents one of 33 models in the
evaluation set and columns are sorted by mean ground truth size.

computer science department of a large university. Individual size
predictions were aggregated and used to determine the acceptable
ranges of size for each model.

We also manually collected ground truth absolute sizes for a total
of 100 models, of which 33 are in this evaluation set. We do this
by matching the 3D models to physical objects described in on-
line product catalogues, or other known standardized sizes (such as
DVDs, batteries and soda cans). We use the 33 models in the evalu-
ation set for comparing human judgments against ground truth, and
the remaining 67 as known size reference models for our algorithm.
We provide both the human judgments for our evaluation set and the
ground truth annotations as part of our supplemental materials.

Figure 10 shows the human judgments along with ground truth sizes
and algorithmic predictions. We observe that human size judgments
exhibit significant variation. The standard deviation compared to
the ground truth data was 0.267 m. We normalize standard devi-
ation against mean size for each model to get a relative standard
deviation of 20%. This implies that human judgment exhibits 20%
relative error with respect to a given absolute size. This result con-
firms previous research that shows human size judgments have sig-
nificant variation, and can be influenced by context and familiar-
ity [Fredebon 1992]. Results in the following section show that our
algorithm can be more accurate than human size judgment.

Predictor | Human | InchU | InchP | SS CP | Combo | ComboWN
RMSE 0.241 | 274.0 | 170.0 | 0.126 | 0.257 | 0.167 0.284
sized 33 33 33 22 9 33 32

Table 1: Root-mean-square error in meters against ground truth
object sizes for: mean human judgments, naive guessing of inch
scales on unperturbed and perturbed model evaluation sets, and
the predictions from each of our methods. The sized row gives the
number of models for which the method had a prediction.

6.2 Comparing Humans and Algorithms

We evaluate our algorithmic size predictions against those collected
from people. Since we do not assume a known distribution of
scales, we randomly perturb the original model scales in order to
avoid bias in the evaluation set models.

Using our 33 model ground truth set as the baseline, we compare the
error of different prediction methods for object scales. Table 1 re-
ports the root-mean-square error (RMSE) in meters across all mod-
els for which each method can predict sizes. For brevity, we refer
to our algorithmic methods as follows: SS for scene scales, CP
for category size priors, Combo for combined with manual cate-
gorization and ComboWN for combined with WordNet categoriza-
tion. To compare with the accuracy of human judgment, we use
the mean human-estimated model size for each object. We also
compare against a default inch scale on the original (InchU), and
perturbed 3D models (InchP).

From Table 1 we observe that using scene scales (SS) has the least
error with respect to ground truth. While not as accurate as SS, us-
ing mean category size (CP) has comparable error to human judg-
ment. By combining scene scales and categories, Combo can pre-
dict sizes for more models but has a higher error than SS. Over-
all, Combo predicts ground truth sizes better than the mean human
judgment. This is also reflected in Figure 10: some algorithmic
predictions are closer to the ground truth than the human mean. For
example, see (a) in the figure, where a pencil model was judged to
be much larger than ground truth and our algorithmic prediction.
Using a naive approach of guessing inches, the resulting RMSE for
both perturbed and original model scales is much higher than any
other approach, indicating the limitations of guessing a single scale.

We now compare our algorithmic predictions directly against hu-
man judgments. We count an automatically predicted size as correct
with respect to human judgment if it is within 2 standard deviations
of the mean size provided by people. Assuming human judgment
is normally distributed around a correct size, this corresponds to
the predicted size being statistically indistinguishable from human
judgment at a 95% confidence level. Figure 11b summarizes the
performance of our algorithm on the evaluation set. Each method is
evaluated on the subset of models for which it can be applied (eval-
uation subset accuracy), as well as the entire evaluation set (eval-
uation set accuracy). The former gives us a sense of how well the
method performs on models it can cover while the latter gives an
indication of the overall performance of the method taking its cov-
erage into account. Taking the evaluation subset accuracies, we can
predict how well our algorithm will do on our entire model dataset
based on the coverage of each method as shown in Figure 11c.

Overall, we note that using scene scales (SS) gives the best evalua-
tion subset accuracy (88%), with other methods not far behind. The
high evaluation subset accuracy for all methods indicates that any of
these methods can achieve good results against human judgment for
the models they can cover. However, despite SS’s high evaluation
subset accuracy, it actually has the worst projected model dataset
accuracy (6%) due to its limited coverage (6%). In contrast, using
category size priors (CP) gives much higher coverage (52%) and



thus better overall accuracy (42%) despite lower evaluation subset
accuracy. By combining the two in Combo we increase the cover-
age significantly (72%) and obtain higher overall accuracy (58%),
showing that we can effectively propagate size information using
both scenes and categories.

An important factor in performance is categorization. While
ComboWN has slightly lower evaluation set accuracy than Combo,
it improves overall coverage (84%) and accuracy (60%) by auto-
matically categorizing models. The coverage of ComboWN is not
confined by missing category labels and extends into previously un-
categorized models (gray area).

6.3 Impact of Reference Models, Scenes, Size Priors

We analyze the impact of varying the number of available 3D
scenes, the number of sized reference models and the number of
category size priors. This gives us a sense of how the performance
of our approach changes under situations with different amounts of
input data. Analyzing the behavior of our algorithms under such
variation is important because the availability of each information
source varies across different datasets.

We test how the coverage over a combined (3DW+AR3D) 42327
model dataset and the overall accuracy on the 105 model evaluation
set change as we increase each resource. In each case, we select
the most informative resource first. For scenes, we select the ones
with most model instances first. The intuition is that scenes with
the most models give us the highest number of model observations.
For reference models, we select models in descending order of the
number of observations in different scenes. Lastly, for category size
priors, we select the ones with largest model dataset coverage first.

Figure 12 plots the accuracy on the 105 model evaluation set across
these dimensions of variation—coverage is not shown as it largely
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(a) Evaluation subset accuracy, defined as percentage of correct models for subset of
models to which method is applicable.
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(¢) Predicted accuracy and actual coverage over combined dataset (3DW+AR3D).
Predicted accuracy is extrapolated from partial accuracy and coverage.

Figure 11: Performance of our methods on the 105 model evalua-
tion set and the combined dataset (3DW+AR3D). Gray represents
models with neither manual categories nor observations in scenes.

follows the same trend. Based on our experiments, coverage and ac-
curacy on the evaluation set is primarily determined by the number
of scenes and the categorization scheme. With more scenes both the
coverage and accuracy increase. In contrast, increasing the number
of reference models or the number of category size priors does not
impact coverage or accuracy significantly.

We now separate out the contribution of each component of the
Combo method. From the middle column of Figure 12, we see the
benefit of just adding category label information to SS. We intro-
duce a variant of Combo that does not have access to category size
priors (Combonepriors). However, Comboyepriors does take advan-
tage of category labels and is able to propagate size information
from scenes into a larger set of models with matching categories,
achieving higher accuracy—see (a). There is an additional gain in
accuracy from adding the category size priors—see (b)—which is
purely due to more accurate seed information.

To study the impact of reference models, we use a variant of Combo
which has no reference models: Combonorets. Just by adding
scenes without any reference models, we surpass the performance
of CP substantially—see (c). Again, the contribution of the refer-
ence models—see (d)—is due to more accurate seed information.

6.4 Summary of Results

We observed that 3D scenes are a good source of size information
and, along with known size reference models, result in the most
accurate size predictions. An approach using them is ideal when
available scenes cover a large proportion of a model dataset. How-
ever, the number of scenes is typically small compared to models so
the coverage of this approach is limited. Using categories we can
propagate size information to a much larger set of models and gen-
eralize observations from scenes. However, relying on categories
alone results in less accurate predictions.

We showed that by combining categories and scenes we obtain high
model dataset coverage (72% of 42327 models) and size prediction
accuracy (80%), as well as prediction error lower than human judg-
ment. Furthermore, we showed that we can bypass manual catego-
rization via an automatic categorization scheme that improves cov-
erage to 84% (ComboWN). In this way, we address the open-world
problem of continuously expanding model datasets with unknown
or untrustworthy object categories and size information.

7 Discussion and Conclusion

7.1 Limitations and Extensions

Our approach has several limitations that suggest avenues for fu-
ture work. Firstly, we explored only unimodal Gaussian priors for
category sizes. To handle categories with latent subcategory struc-
ture, we might use Gaussian mixtures as priors for category sizes.
This would for example handle bookcases with varying numbers of
shelves. Furthermore, for models that can be interpreted as physi-
cal objects of different sizes (such as toy airplanes vs real airplanes)
we might incorporate the context of the model instance to inform
sampling of the size prior. This can be used to facilitate scene cre-
ation by automatically suggesting appropriate sizes, depending on
the context. If we place an airplane model inside a hangar, it should
be much larger than when placed upon a desk.

Another avenue for future work is to use external knowledge for a
more informed prior on the expected model scales. This can take
the form of a mixture of Gaussians on scales, corresponding to stan-
dard units such as inches, centimeters, millimeters and meters.



1.0
B Combo
0.8
>
§ \/’_W f+ref models (d) .Combo
=1 NoPriors
806
<
c . +scenes ()
-(.§ 0.4 +categories (a) CP Accuracy Limit chmsbo
© SS Accuracy Limit
>
w
0.2
0 cp
0.0
50 100 150 200 10 20 30 40 50 60 10 20 30 40 50 60 - SS
Scenes Reference Models Category Size Priors

Figure 12: Plots of the overall accuracy on the 105 model evaluation set. Left column varies number of scenes available to each method.
Middle column varies number of sized reference models. Right column varies number of category size priors.

We focused on an algorithmic approach to predicting 3D model
scales. An alternative is to use crowdsourcing platforms such as
Amazon’s Mechanical Turk to collect size predictions from people.
However, as we have seen in our evaluation, care should be taken
since human size judgments can be unreliable. Typically, crowd-
sourcing requires verification and sanity checking so our method
can be complementary to this approach by suggesting good start-
ing scales for confirmation, or validating human input and flagging
dubiously scaled models.

7.2 Conclusion

In this paper, we addressed the problem of determining model
scales to give plausible real-world sizes to collections of 3D mod-
els. We presented an approach combining information from 3D
scenes, category size priors and known size reference models. Our
approach uses scenes and categories to generalize beyond observed
instances and propagate size information to large collections of 3D
models. We showed that our approach obtains favorable results
evaluated against both human judgment and ground truth data. The
probabilistic framework we have presented when formalizing this
problem can be used to extend the approach and to address limita-
tions. We provide all collected size prior data, 3D scene datasets,
ground truth size annotations and predicted 3D model sizes for the
benefit of the research community. We hope our work will inspire
others to investigate applications utilizing previously unavailable
size information for large collections of 3D models.

Such size data can be used to improve high level 3D scene synthe-
sis algorithms and interactive systems. Model databases augmented
with clean size metadata are of great value to the wider research
community and 3D content creators. Probability distributions over
sizes of categories of objects can be used as input to classification
and object recognition systems. Novel 3D model search interfaces
can leverage size data to allow retrieval and navigation with size
ranges or size words. A knowledge base of 3D models with physi-
cal sizes can enable powerful forms of inference such as predicting
the affordance of graspability for hand-sized objects with shapes
similar to cups. We believe that reliable size data for 3D models
can have far reaching implications in computer graphics and many
other fields.
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