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ON BENDING OF ELASTIC PLATES*
BY

ERIC REISSNER
Massachusetts Institute of Technology

1. Introduction. In two earlier publications1,2 the author has considered the theory
of bending of thin elastic plates with reference to the question of the boundary con-
ditions which may be prescribed along the edges of a plate. The principal result of
this work was a new system of differential equations for the deformations and stresses
in thin plates. With this system of equations it is possible and necessary to satisfy
three boundary conditions along the edges of a plate instead of the two conditions
which Kirchhoff has first established for the classical theory.

The physical basis of these results was recognition of the fact that omission of
the strain energy of the transverse shears is responsible for the contraction of the
three physical boundary conditions into two conditions,** and that the problem can
be treated without this omission.

While the subject is of interest from the point of view of the general theory of
elasticity,3'4 it is also of some practical importance, in particular with regard to the
problem of stress concentration at the edge of holes in transversely bent plates. For
such problems the classical theory leads to results which are not in accordance with
experiment as soon as the diameter of the hole becomes so small as to be of the order
of magnitude of the plate thickness,5 6 while the new equations which take transverse
shear deformation into account lead to results which are substantially in agreement
with experiment.7

The main purpose of the present paper is to give an account of the author's earlier
derivations2 in simpler and more general form. While previously an isotropic homo-
geneous material was assumed, plates of homogeneous or non-homogeneous construc-
tion are now considered, with elastic properties which in the direction perpendicu-
lar to the plane of the plate are different from the elastic properties in directions
parallel to the plane of the plate.

As a further example of application of the present system of equations, we treat
the bending of a cantilever plate due to a terminal transverse load. For the homo-
geneous plate our result represents a minimum energy approximation to St. Venant's

* Received Aug. 7, 1946.
1 E. Reissner, J. Math. Phys. 23, 184-191 (1944).
2 E. Reissner, J. Appl. Mech. 12, A68-A77 (1945).
** At a free edge the three physical conditions are those of vanishing transverse force, vanishing bend-

ing couple and vanishing twisting couple. The two Kirchhoff conditions which take their places are vanish-
ing bending couple and vanishing of the sum of transverse force and edgewise rate of change of twisting
couple.

3 A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th ed., Cambridge University
Press, Cambridge, 1927, pp. 27-29.

4 J. J. Stoker, Bull. Am. Math. Soc. 48, 247-261 (1942).
5 J. N. Goodier and G. H. Lee, J. App. Mech. 8, A27-A29 and A189 (1941).
6 D. C. Drucker, J. Appl. Mech. 9, A161-A164 (1942).
' D. C. Drucker, J. Appl. Mech. 13, A250-A251 (1946),
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solution, while for the non-homogeneous (sandwich) plate the problem appears not
to have been discussed previously.

As before, the results are obtained by an application of the basic minimum prin-
ciple for the stresses and the Lagrangian multiplier method is used to obtain approxi-
mate stress strain relations. The discussion of the significance of the Lagrange multi-
pliers is made more precise compared with that given in the earlier work, in accord-
ance with comments which have been made.8

2. Statics and strain energy of plates. Let Mx and My be the bending couples
H the twisting couple and Vx and Vv the transverse shear-stress resultants. Let p
be the surface load per unit of area (Fig. 1). The equilibrium conditions for an eleirent
dxdy of the plate are then

dVx dVv dM x dH dH dMy
■  +   +f = 0,   + Fx = 0, +   — Vy = 0. (1)

dx dy dx dy dx dy

Equations (1) hold regardless of the way in which the stresses are distributed over
the thickness of the plate. In terms of the stresses,

/h/2 /» h/2 s% h/2
zaxdzy My = I zvydz, H = I zt xydz,

-h/2 J -hi2 J -h/2
i h/2 h/2

/h/2 s* h
T XzdZf Vy = I Tyzdz.

-h/2 J-h

(2)

-h/2 ^ -A/2

Equations (1) are three equations for five unknowns. To obtain further equa-

P

Fig. 1. Infinitesimal elements of a plate in interior and at boundary, showing
orientation of stress resultants and couples.

tions, use has to be made of the stress strain relations. This is done here through the
means of the basic minimum principle for the stresses (Castigliano's theorem of least
work) according to which the true state of stress is distinguished from all statically
correct states of stress by the condition that the complementary energy be a minimum.9

8 J. N. Goodier, J. Appl. Mech. 13, A251-A2S2 (1946).
9 E. Trefftz in Handbuch der Physik, J. Springer, Berlin, 1927, vol. 6, p. 73 and Z. angew. Math.

Mech. 15, 101-108 (1935); I. S. Sokolnikoff and R. D. Specht, Mathematical theory of elasticity, McGraw-
Hill Book Co., Inc., New York, 1946, pp. 284-287.



1947] ON BENDING OF ELASTIC PLATES 57

For a material obeying Hooke's law, and for given surface stresses or displacements,
the complementary energy is the difference of the strain energy II8 and of the work Ili,,
which the surface stresses do over that portion of the surface where the displacements
are prescribed.

Appropriate expressions for II, and lib are

1Ts = TIf {(1 1V2)D " 2vM*Mv + 2(! + ")#J
2 .1.2 2,

- — P(MX + My) + ~r (F; + f;)} dxdy, (3)

rr& = (b (Mnfin + H„I3S + V„w)ds. (4)
■/

The values of the constants D, Cr. and Cs depend on the properties of the material
and on the nature of the stress distribution across the thickness of the plate. Ex-
amples of their calculation for homogeneous and non-homogeneous plates will be
given later on.

The functions /3„, (3„ and w are the generalized boundary displacements of the
problem. As Ili, measures the work of the boundary stresses it follows that /3„ must be
considered as the angle through which the moment M„ turns. A corresponding defini-
tion holds for /3S. For the same reason the quantity w is to be considered as the
appropriate measure of the transverse deflection of the plate. The precise meaning
of /3„, /3„ and w, in terms of weighted averages of the three components of boundary
displacement Un, Us and W, will be obtained in the following by equating the work of
the boundary stresses as given by Eq. (4) to the work of the boundary stresses ac-
cording to the three-dimensional theory and by reducing the expression of the three-
dimensional theory to Eq. (4) by introducing the assumed variation of the stresses
over the thickness of the plate.

3. Variational derivation of the stress strain relations. To make the complemen-
tary energy ns —Hi, a minimum subject to the equations of equilibrium (1), these
equations are multiplied by Lagrangian multipliers X„, \b and Xc, respectively, and
integrated over the plate area. The result is added to II,— lit and the variation of the
resulting expression is made to vanish:

C r (Mx — vMv My — vMx 2(1 + v)H
< 8MX + 8MV + — —SH

J J I (1 - v2)D (1 - v*)D (1 - v2)D
p 1 /dVx dVy \

- — {bMX + SMy) + — (F X8VI + VySVy) + X„5 (  +   + P)
C„ Cs \ dx dy /

/dMx dH \ /dH dMy
+  + Vx) + M( +   - Vv)\dxdyV dx dy / \dx dy Jj

a {P„8Mn + (3S8HS + w8Vn} ds = 0. (5)

Applying Eq. (5) to a rectangular plate and eliminating variations of derivatives by
integration by parts, we find that the boundary values of the Lagrangian multipliers
must be
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\a ~ W, \b = ft xi Xc = fiy'

As Eq. (5) also holds for any part of the plate if the boundary displacements referring
to this part are identified with the displacements occurring in the actual solution of
the problem, it follows that the Lagrangian multipliers throughout the plate are re-
lated to the generalized displacements in the interior of the plate through the equa-
tions

Aa — Wj A& ~ @ xy /■ (6)

Introducing Eqs. (6) into (5) and integrating by parts, we obtain the variational
equation

r r /r MX-vMy p V My - vM X P
J J iL (1 - V2)D Cn dx\ X |_ (1 - v*)D Cn dy\ v

+ r2(1 + -)g - ft-WU + p- i!! - t.\r.
L (1- v2)D dy dx J ICs dx J
r Vy dw "I )

+ Lc~ ~~ "a7 ~ MbVy) dxdy = °"

From (7) follow the generalized stress strain relations of the problem:

/dpx d$y 1 + v \ /dpv dpx 1 + v \
Mx = D(-r + v-1-+-7-p), My = £>(—— + v — 1 — pj,

\ox dy C n / \oy ox Cn /

(7)

(8)
dy Cn / \ dy

1 — v /d{ix dfiy\ dw V x dw Vy
H = d[ h J, Px — + > Py = h 

2 \dy dx / dx Cs dy Cs

The conditions along a boundary fb{x, y)= 0 are

Pn = i$n or Mn = Mn, (3S = /3S or II, = 7l,„ w = w or F„ = V„. (9)

Equations (9) are the three boundary conditions appropriate to the present theory
when displacements or stresses are prescribed. They include the case of a free edge
(Mn = ffs=Vn = 0) and the case of a built-in edge (/Sn = j3, = w = 0). Appropriate con-
ditions for more general edge conditions (such as elastic support) may be derived in
a similar way.

The five Eqs. (8) together with the three Eqs. (1) represent a complete system of
equations for the eight functions Vx, Vy, Mx, My, H, fix, /?„, w. When C, = Cn = »
they reduce to the customary equations of plate theory. To obtain the appropriate
(Kirchhoff) form of the boundary conditions in this limiting case one must, however,
go back to Eq. (3) and therein make C, = » before carrying out the remaining analy-
sis.

4. Integration of the system of plate equations. It is possible to transform the sys-
tem of Eqs. (1) and (8) such that integration in terms of harmonic and "wave" func-
tions is possible.

The first of the equations in final form is
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dVX dVy
 + -=-p. (10a)

dx dy

Two further equations for Vx, Vy and w are obtained by introducing the first
three Eqs. (8) into the last two Eqs. (1) and by observing the remaining Eqs. (8)
and (1). The result is

(1 — v)D dV2w / 1 1 \ dp
Vx - ——— V2F. = - D— - (1 + v)D[— - -)f, (10b)

2Cg doc \2C8 (sn/ ox

(1 — v)D dV2w /I 1 \ dp
v- - ~^ETV'V- " " D17 ~(1 + 'Kia " ck' (10c)

where V2 = di/dx} -\-d2/dy2.
Once Eqs. (10a) to (10c) are solved, the remaining five quantities Mx, Mv, H,

fix, j3y are found from Eqs. (8) by differentiations only. The first three Eqs. (8) may
be written in the alternate form

/d2w d2w\ D dVx /l + v v \

/a2w d2w\ D dVy /l + V v\

d2w 1 — v D / dVx
H = - (1 - v)D + ( + -),

dxdy 2 Cs\ dy dx )
(lOf)

where (lx and /3V have been taken from the last two Eqs. (8) and use has been made
of (10a).

The system (10a) to (lOf) is completed by the last two Eqs. (8).
The solution of equations (10a) to (10c) requires finding a particular integral for

the load function p and finding sufficiently general solutions of the homogeneous equa-
tions. The latter is accomplished, as in the paper quoted in Footnote 2, by satisfying
the homogeneous equation (10a) by means of a stress function % in terms of which

dx &X
Vx = —> Vv=~ — ■ (11)

dy dx

With
1 - v D

= k2 (12)
2 C.

the homogeneous equations (10b) and (10c) become

— (X - *2V2x) = - (DV2w), ~7~ (x ~ *2V2x) = ~ (DV*w). (13)
dy dx dx dy

Since Eqs. (13) are Cauchy-Riemann equations, we have

DV2w — i(x — k2V\) = <t> iip = f{x + iy). (14)
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From x — &2V2x = —^follows

X = ii — t (15)

where \pi is the general solution of the "wave" equation (with imaginary velocity of
propagation)

- £2VVi = 0. (16)

Thus, the stress function x is a combination of a harmonic function \p and a wave
function i/^. And if the harmonic contribution to x is taken as the imaginary part of
a complex function/(x+fy) then DV2w is the corresponding real part. From

DV2w = <t> (17)

it follows that, when p = 0, w itself is a biharmonic function, just as in the theory
without transverse shear deformation.

Some applications of these results to the solution of specific problems for isotropic
homogeneous plates are to be found in an earlier paper.2

5. Homogeneous plates. The values of the constants D, C„ and Ca in the strain
energy expression depend on the nature of the plate material. Their determination
will now be carried out under the assumption that the material of the plate is subject
to the following system of stress strain relations

dU 1 v„
ex = = — (ex — vo-y) <jz. (18a)

dx E Ez

dV 1 vz
ey = =-—(<»■» — vo*) — — a*, (18b)

dy E E2

dU dV 2(1 + v)
7i« = ~~ I ~ = ~ T "v (18c)

dy dx E
dW 1

tz = = [<Tz — MIT, + ff»)Ji (18d)
dz Ez

dW dU 1
y xz = 1 ~ ~~ T xzi (18e)

dx dz Gz

dW dV 1
7 yz = — I" —— = — Tyz. (18f)

dy dz &z

Equations (18) stipulate that the plate is isotropic with respect to directions paral-
lel to the plane of the plate but has elastic properties in the direction normal to the
plane of the plate which are different.

The strain energy for a plate of thickness h with the stress strain relations (18)
is given by

1 C C C h'2 ( I 2 2 2
n, = — I I I <— [ax + ffy — 2vaxffy + 2(1 + y)rx„]

2 J J J —h/2 \E
1 2 1 2 2 ^

+ — [<rz — 2vzgz(<jx + o-y)] + — [rxz + ryz]> dzdxdy. (19)
Ez Gz )
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Equation (19) is reduced to (3) by appropriate assumptions regarding the variation
of the stresses across the thickness of the plate. It is rational to assume that the bend-
ing stresses vary linearly over the thickness of the plate, while the transverse shear
stresses vary parabolically:

Mx z My z Hz
(J x J O" y J T xy (20)

A2/6 A/2 A2/6 A/2 A2/6 A/2

2 A/3 L \h/2/ J 2A/3L \h/2/ J (21)

Equations (20) and (21) satisfy two of the three three-dimensional differential equa-
tions of equilibrium provided the stress couples and stress resultants satisfy (1). From
the third of the three-dimensional equilibrium equations, and from the condition that
the load p is acting on the face z= +h/2, the transverse normal stress <rz is obtained:

3pr 2 z 1 / z \H
<Tz ~ 4 L 3 + h/2 3 (a/2/ J' ^2T>

Substituting Eqs. (20) to (22) into Eq. (19) for IIS, we find that the integration with
respect to z may be carried out and that (19) reduces to (3).* The values of the con-
stants D, Cn and Cs are found to be

Eh3 5 Ezh 5
D = » C„ = , C„ = —Gzh. (23)

12(1 - v2) 6 Vz 6

Equations (23) are introduced into Eqs. (10). There occurs in particular

1 - v D 1 £A2
P =

C> 10 2(1 + V)GZ
\i'±)

/I + V V \ 1 £A2 /vz{ 1 + v) v\

D\ Cn ~ ~C.)~ 10 1 - f2\ ~EZ ~GJ'

For an isotropic material (EZ=E, vz = v, GZ = E/2(1+^)) the terms in (24) reduce to
the values for these quantities which were first obtained in an earlier paper of the
author2 and Eqs. (10a) to (lOf) reduce to Eqs. (I) to (VI) of the earlier paper.

In order to determine the significance of the generalized displacements j8x, /3j, and
w, we write the work of the surface stresses in the form

» hi2

[<Tn Un + Tnsu* + T„zW]dzds, (25)
-h/2n' -/ c

where Un, U, and W are the actual displacement components of a point of the bound-
ary. Substituting (20) and (21) into (25), we have

r rhl2 ( Mn z _ h, z _ vn r / z \2"i_)
n6=0 { Un + —; Us +  l-( ) \w\dzds. (26)

J J_4/2lA2/6 A/2 A2/6 A/2 2A/3 L \A/2/J j '
Comparison of Eqs. (26) and (4) gives

* With the exception of a term containing p1 which disappears when the variation is carried out and
which is therefore not evaluated explicitly.



62 ERIC REISSNER [Vol. V, No. 1

6 rhl2  2 6 rh'2 z
0" = T: Un—-dz, & = — I Us dz,

h J —h/2 hi A2 J —h/2 A/2
3 pW r- , (27).irvi-wv
2AJ_a/2 L \A/2/ J .

As Eqs. (26) and (4) hold for any portion of the plate it follows from Eqs. (27) that
throughout the interior of the plate.

6 rhl2 z 6 rh'2 z
Px = — I U dz, py = — I V —

h2J h/i hi A2 J »„ A/

3 f T / z VIw = — IT 1 - I —- ) A.
2AJ_a/2 L VA/2/J

From Eqs. (28) it is concluded that 0* and @y represent quantities which are equiva-
lent to but not identical with components of change
of slope of the normal to the undeformed middle
surface, while w is a weighted average, taken over
the thickness, of the transverse displacements of
the points of the plate. Thus, according to the third
Eq. (28), the present theory leads to approximate val-
ues not for the deflection of the middle surface of the
plate but for a weighted average across the thickness
of the deflections of all points of the plate which lie on
a normal to the middle surface.

6. Sandwich plates. We consider a composite
plate consisting of a core layer of thickness A and
of two face layers of thickness t. It is assumed that r
/ is small compared with h and that the core ma-

... , n -i i ^1 r i • i Fig. 2. Infinitesimal element ofterial is much more flexible than the face material. , . , , . , • ..sandwich plate, showing dimensions
Under these assumptions the transverse shears are ancj reievant components of stress.
predominantly taken by the core plate while the
bending stresses are primarily taken by the face plates (Fig. 2).

We take for the strain energy of the composite plate the following expression*

na = — JJ" [<r\j + a\,f — 2vaxjOy.f + 2(1 + v)Txv,f\dxdy

i r r rhli 2 2
+ I I I + Tvz.c\dzdxdy, (29)

2Gc J J J -h/2

where the subscript/refers to the face layers. The stresses in the face plates are taken
to be uniform across the thickness and the relations between stresses and couples are
then,

* While the assumptions made in what follows should give an accurate picture (within the linear the-
ory of bending) for combinations such as a foamy core substance and aluminum face plates they will not
be sufficiently accurate for plates composed for instance of two different kinds of wood.
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Mx M-y H
<Tx,f = +   ' Vy.f — +  > T„,/ - +   • (30)t(k + t) t(h + t) t(h + t)

As no stresses <rx, try, txv are assumed to be acting through the core material, it
follows from the differential equations of equilibrium that the transverse shear stresses
do not vary across the thickness of the core,

V X Vv
> TV',c ~ ,h h (31)

Substituting Eqs. (30) and (31) into (29), we obtain

n*= f ff„ [Ml+Ml-2vMxMy+2(l + v)H*]+^r-[vl+vl]\dxdy.(32)
J J \t(h-\-tyEf 2Gch j

Comparison of equation (32) with equation (4) shows that for the sandwich plate
the constants occurring in the system of differential equations (10) are given in terms
of the dimensions and elastic properties of the plate as follows

1 (h+tYEf
D = — v \ Cn =oo, Cs = hGc; (33)

\ — v D t(h+t)3Ef (V 1 + A (vt(h+ tfEf
k =   — =  j D | ) = 

2 C3 4A(1 + v)Gc \C. Cn ) 2h(\ - »)(1 + v)G0

The magnitude of the effect of transverse shear deformation is primarily deter-
mined by the magnitude of the quantity k. Comparing the first Eq. (24) for the iso-
tropic homogeneous plate with the first Eq. (34) for the sandwich plate it is seen that
the effect is of greater importance for the sandwich plate than for the isotropic plate
whenever

th Ef ^ 2(1 + v)

2 Gc 5

or whenever the ratio Ef/Gc is greater than the ratio h/t.
The significance of the Lagrangian multipliers /3X, and w in the present case is

determined in the same manner as for the homogeneous plate. One finds here, in-
stead of Eqs. (28), that in terms of the components of displacement U, V, W,

- tKt) -"(- y)]' - tKt) - r(-m
.ir

h j-
Wdz.

h! 2

7. Plate equations in polar coordinates. For the applications to stress concentra-
tion problems it is convenient to have Eqs. (10) in terms of plane polar coordinates
r, 9. Appropriate transformation leads to
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drV r dVe
—— + —— = - rp, (36a)

dr 66

T 2 dVe 1
Vr - k*\ V2Fr - — — - — Fr | = - D-- (1 + v)D I—(36b)

r 2 37,
Ve - kA V2F9 + — —

r2 66

i n av2w / 1 i\d/>
 Fr = - D— (1 + v)Z?( )—.

r2 J dr \2C. C„/dr

>]
/I 1\ 1 dp

-(1 + -)d\k.~cJ 7» (36c)
i av2w= - D —
r 66

I~d2w v~ 6w v 62w~| dVr /I + v v\
M"-DV^+-^+v^A + n'^ + D\--i) (36d)

r 1 6w 1 62w 62w 1
l — 1 )- v  
L r dr r2 dd2 dr2 J

Me = - D\

f 1 dVe Fr~l /I + w f\+2S![7^+7j + cbr-5)'' (36e)
d / 1 dw\ r I dVr d /FAl

Hre = - (1 - v)D — [ ) + k2 — - + r —(—J (36f)
dr\r 66 J I r dd dr\ r J J

dw Vr 1 3w Ve
+c.' (368) -*;+c.- (36h)

Equations (36d) to (36f) have been given in the paper quoted in Footnote 2 for
the case of the isotropic homogeneous plate. Equations (36b) and (36c) have not pre-
viously been given. They are included in order to facilitate the obtaining of particular
integrals of the system of equations for load functions of the form p— cos ndf(r).

Equations (11) which define the stress function x f°r the solution of the homo-
geneous equations take on the form

1 dx dx
VT = -> Ve =   • (37)

r 66 dr

Equations (15) and (16) remain unchanged:

X = t (15)

where \p(r, 6) is a harmonic function and i^i now satisfies the equation

r a2 id i a2i

<'-Fb+7*+7;id*'-0- (,6)
Also, as before

DV2w = <j>, (17)

where now

4>(r, 6) + i\p(r, 6) = f{rea). (14)
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Suitable expressions for <£, ip and \pi are given in Eqs. (42) to (46) of the paper
quoted in Footnote 2. In the present formulation which includes nonisotropic, non-
homogeneous plates the quantity h/y/10 in these equations is replaced by the quan-
tity k defined in Eq. (12) above.

8. Bending of cantilever plate by terminal transverse load. As an example of the
application of the formulas of this paper we may treat Saint Venant's problem of
flexure of a beam with rectangular cross section.10'11'12 Taking a plate of width 2a
and length I, held at x = 0, acted upon by a force P at x = I and free of stress along the
edges y= ±a, Saint Venant's semi-inverse procedure amounts to setting

From (10a),

and from (10c),

My = Vv = p = 0. (38)

dvx
dx

= 0, V x = Vx(y), (39)

dDV2w
= 0, DV2w = /(*). (40)

dy

Introducing (39) and (40) into (10b), we obtain

dWx df
Vx - W-  = - — • (41)

dy2 dx

From Eq. (41) it follows, in view of (39) and (40), that

Vx = C + A cosh — > (42) DV2w = — Cx + B. (43)

From (43) follows

OC X
Dw = — C 1- B H y). (44)

6 2

where 4>(x, y) is a harmonic function which, according to (38) and (lOe), is determined
from the relation

My
_dy

Evaluation of Eq. (45) leads to the relation

r<32<£ /d2</> \"|

— 1 / x3 x2\ v y2
Dw = 1 C B — ) H — (Cx - B) + Fx + I. (46)

1 — v\ 6 2/ 1 — ̂ 2

10 S. Timoshenko, Proc. London Math. Soc. (2) 20, 398-407 (1922).
11 S. Timoshenko Theory of elasticity, McGraw-Hill Book Co., Inc., New York, 1934, pp. 292-298.
12 A. E. H. Love, loc. cit., pp. 327-346.
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From Eqs. (42) and (46) follows for the relevant stress couples as defined by equa-
tions (lOe) and (lOf),

Mx = (1 + v)(Cx - B), (47) 11 = — vCy -\- A k sinh (y/k). (48)

The five constants of integration A, B, C, F, I are determined by the following five
conditions

■w = 13X = 0 for x = 0, y = 0 (49)

Mx = 0, f Vxdy = P for x = I, (50)
" —a

H = 0 for y = + a. (51)

It is apparent that as in Saint Venant's theory it is not possible to satisfy the condi-
tion of complete restraint at the fixed end and also the actual distribution of the termi-
nal load cannot be prescribed but only its resultant. As a consequence of this the
solution has general validity only at distances from the ends x — 0 and x = l which are
at least of the order of magnitude of the width 2a of the plate.

With px from the fourth Eq. (8), Eqs. (49) become

F C + A
7 = 0,    (52)

D C,
_

Equations (50) become, with (47) and (42),

CI - B = 0, 2aC + 2kA sinh (a/k) = P. (53)

Equation (51) becomes, with (48),

— vaC + A k sinh (a/k) = 0. (54)

Solving Eqs. (52) to (54) and substituting into Eqs. (42), (46), (47) and (48), we ob-
tain the following relations for the stresses and deflections

Pf v /(a/k) cosh (y/k) \"1
P'—2^[1 + r+A sinhWt) -')]• <55)

„ p± /±(±Y_±('J1Y_.1(,±.\Y1 _ ±)
2aD(\ - r2) I 2 \ l J 6 \ I / 2 \ I / \ I J

k2 / a/k \ x 1
+ 2—11 + V ) — }, (56)

I2 \ sinh (a/k)) I )

P / x \ P — v f y sinh (y/k)'1
Mx = —[ 1), (57) H= — . (58)

2a\ I / 21 + j<Lff sinh (a/k)A

Of particular interest is the distribution of shear stress as given by equations (55)
and (58). For an isotropic plate the results are similar to a known approximate solu-
tion10-11 for the beam with rectangular cross section. They reduce in fact to this known
solution for large values of a/h.

The maximum transverse shear occurs at the ends y= ±a of the plate,
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Vi,max = — [~ 1 -f  — (—a~~rr - lX\- (59)
2a L 1 + >» \ tanh a/£ /J

The factor in brackets is the correction to the result of elementary beam theory.
The following table gives numerical values of this factor for the isotropic plate, the
orthotropic plate and the sandwich plate, in comparison with the exact values for
the isotropic plate and the known approximate values for the isotropic plate.10,11

Table I. Values of Stress Concentration Factor for Transverse Shear in Cantilever Plate.

a/k
(d/It) isotropic

(a/h)s/GJG

(a/V 1|

.790 1.581 3.162 6.324 9.486 12.648

Eq. (59), Vf=\ 1.050 1.180 1.545 2.331 3.121 3.91
Eq. (59), vs = \ 1.040 1.144 1.436 2.065 2.682 3.33
Appr., 1.040 1.143 1.426 1.934
Exact, v = \ 1.033 1.126 1.396 1.988 2.582 3.176

The magnitude of the shear rxy parallel to the faces of the plate follows from equa-
tion (58). rxy is greatest at the points (±h/2, +77) with 77 determined from

77 sinh (a/k)
cosh -— =   (60a)

k a/k
For sufficiently large values of a/k (practically when a/k>3) Eq. (60a) becomes

77 In (a/k)
— = 1 - —, (60b)
a a/k

and the corresponding value of iTma* is

v P r In (a/k) + 11
 I (61a)

1 -f- v 2 L a/ k _J
For homogeneous plates Eq. (61a) gives for the shear stress TI„,max = 6iTmax//s2,

2A 4
3PT™ = V!0

/ G v r a a
i/  In 1 . (61b)V Gz 1 + xL k k J

The following table contains some values of 77 and of the factor in brackets in the
expression for H.

Table II. Location and Magnitude of Maximum Shear Stress Couple and
Face-Parallel Shear Stress (j> = .25).

a/k
Hi fo-
ri sinh (rj/k)
a sin (a/k)

(2A_ /G,
hp V g
[exact13 G.=G

.790

.578

.038

.008

1.581
.594

.129

.0.2

3.162
.634

.32

.256

6.324
.71

.45

.72

.968

12.65
.80

.72

2.30

2.452
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By means of (59) and (58) we may calculate the ratio of maximum shear parallel
to the plane of the plate and maximum transverse shear. For a homogeneous plate
we have, in view of (20) and (21),

Txvivi h/2) 4v a F r] sinhjj/£~|r v ( a/k M_1a I" ii sinhi7/£"jr v / a/k AT
v h\_a sinha/^JL 1 + p \tanh a/£ /Jr„(s, 0) 1 + v h\_a sinha/^JL l + i>\tanha/£

and with h/a from equation (24a)

Txy{Vt ^/2)

T zz(a, 0)

4 /G v a p 7/ sinh "] |~a v ( a/k

~ Vio
From equation (62b) follows in particular the limit relation

Txy(v, h/2) 4

(62a)

-J2-JL+1- [JL- +  AT' (62b)
)r Gz 1 + v k\_ a sinho/^JL l + vVtanha/^ / J

lim i/£= 1-266i/£ (62c)» Txi(a, 0) V10

which is independent of Poisson's ratio. Equation (62c) shows the interesting fact
that, for very thin plates, the horizontal shear may be larger than the transverse shear
even for isotropic plates. We have confirmed this result for an isotropic plate by an
exact calculation13 in which the factor 1.266 is replaced by a factor 1.342.

The analogue of Eq. (62a) for sandwich plates is obtained, by means of (30), (31)
and the first Eq. (34). One finds

TxvAv) _   / hGf aVv__ sinh y/kl T v / a/k _ XT"1
TXz,c{a) 1 + v r 2tGc k\_a sinha/fcJL l + ^\tanhtt/^ /J
Table III contains values of the stress ratio as given by equations (62a) and (63)

for a range of values of a/k and when v =

Table III. Values of Ratio of Maximum Horizontal Shear Stress to Maximum Transverse
Shear Stress for Homogeneous Plates (v = l/4) and for Sandwich Plates.

a/k 1.581 3.162 6.324 12.65 30 100 »

/16tGc maxr/ /
^\Un r mOYT. ' I

Gz max Tji

5hGf maxr, ' G maxtxz
.046 .179 .470 .695 .950 1.15 1.266

Finally, it may be indicated which form the solution assumes in plate theory
without the transverse shear terms. Equations (55) and (58) become

PI P y v
V x = —, H= —  (64a, b)

2a 1 + v 2 a 1 + v

Eq. (57) remains unchanged and Eq. (56) for the deflection loses the terms involv-
ing k.

The load P is thus carried in part by transverse shears distributed uniformly across
the width of the plate and in part by means of concentrated forces at the edges y = + a
of the plate. As one would expect, no estimate is possible within the frame of the sim-
pler theory without the transverse shear terms of the actual magnitude of the shear
stresses which balance the applied load.

13 E. Reissner and G. B. Thomas, J. Math. Phys. 25, 241-243 (1946).


