
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 134, Number 3, Pages 871–880
S 0002-9939(05)08017-2
Article electronically published on July 19, 2005

ON BERNSTEIN TYPE THEOREMS IN FINSLER SPACES
WITH THE VOLUME FORM INDUCED

FROM THE PROJECTIVE SPHERE BUNDLE

QUN HE AND YI-BING SHEN

(Communicated by Richard A. Wentworth)

Abstract. By using the volume form induced from the projective sphere bun-
dle of the Finsler manifold, we study the Finsler minimal submanifolds. It is
proved that such a volume form for the Randers metric F = α+β in a Randers
space is just that for the Riemannian metric α, and therefore the Bernstein
type theorem in the special Randers space of dimension ≤ 8 is true. Moreover,
a Bernstein type theorem in the 3-dimensional Minkowski space is established
by considering the volume form induced from the projective sphere bundle.

In classical differential geometry there is a well-known Bernstein theorem which
says that any complete minimal graphs in the Euclidean 3-space are planes. There
are various generalizations of the Bernstein theorem to higher dimensions (see [12],
[6], [16], etc. for details).

Recently, by using the Busemann-Hausdorff volume form, Z. Shen ([9]) investi-
gated the geometry of Finsler submanifolds from a new point of view. By avoiding
any connections to Finsler geometry, he introduced the notions of the mean curva-
ture and the normal curvature for Finsler submanifolds. Being based on it, minimal
surfaces and a Bernstein type theorem on a special Randers space were considered
in [14] and [13]. As is well known, there is another volume form induced from the
projective sphere bundle of the Finsler manifold ([2]), which appeared once in [5]
and [1]. By using this volume form, analogues such as the mean curvature and
the second fundamental form for Finsler submanifolds were introduced in [7] and
coincide with the usual notions for the Riemannian case.

In this paper we shall continue the work of [7]. By using the volume form induced
from the projective sphere bundle of the Finsler manifold, we study properties of
Finsler minimal submanifolds and establish the Bernstein type theorems for Finsler
minimal graphs in the Minkowski space and the Randers space.

The contents of the paper are arranged as follows. First, in §1 we describe the
volume form induced from the projective sphere bundle SM of an oriented Finsler
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manifold (M, F ) and the mean curvature form µ of Finsler submanifolds, which is
similar to that introduced in [9]. In §2, we prove that the volume form induced from
the projective sphere bundle for the Randers metric F = α+β in a Randers space is
just the volume form for the Riemannian metric α (Theorem 2.1). If α is Euclidean,
F = α + β is called a special Randers metric. Hence, by the Bernstein theorem
for Euclidean minimal graphs [12], it follows that, under considering the volume
form induced from the projective sphere bundle, any complete minimal graphs in
the special Randers m-space with m ≤ 8 are affine hyperplanes (Theorem 2.2).
Moreover, it is proved that complete stable minimal surfaces in a special Randers
3-space are planes (Theorem 2.3). In §3, we consider hypersurfaces in the Minkowski
space (Ṽ , F̃ ). It is proved that a constant mean curvature graph with respect to
the volume form induced from the projective sphere bundle in (Ṽ , F̃ ) satisfies the
so-called equation of mean curvature type (Theorem 3.1). Therefore, by [11], any
complete minimal graphs in a 3-dimensional Minkowski space with the volume form
induced from the projective sphere bundle are planes (Theorem 3.2).

It should be remarked that the mean curvature form of Finsler submanifolds used
here by us is different from that considered in [9, 13], so that the critical points
(minimal surfaces) of the volume functionals are not the same. By considering the
Busemann-Hausdorff volume form, a Bernstein type theorem on a special Randers
3-space has been shown in [13].

1. Finsler volume forms and minimal immersions

Let M be an n-dimensional smooth manifold and let π : TM → M be the natural
projection. A Finsler metric on M is a function F : TM → [0,∞) satisfying the
following properties: (i) F is smooth on TM \ {0}; (ii) F (x, λy) = λF (x, y) for all
λ > 0; (iii) the induced quadratic form g is positive definite, where

(1.1) g := gij(x, y)dxi ⊗ dxj , gij :=
1
2
[F 2]yiyj .

Here and from now on, [F ]yi , [F ]yiyj mean ∂F
∂yi , ∂2F

∂yi∂yj , etc., and we shall use the
following convention of index ranges unless otherwise stated:

1 ≤ i, j, · · · ≤ n; 1 ≤ a, b, · · · ≤ n − 1; ā = n + a; 1 ≤ α, β, · · · ≤ m (> n).

The simplest Finsler manifolds are Minkowski spaces, on which the metric function
F is independent of x.

The projection π : TM → M gives rise to the pull-back bundle π∗TM and its
dual π∗T ∗M , which sit over TM \ {0}. We shall work on TM \ {0} and rigidly use
only objects that are invariant under positive rescaling in y, so that one may view
them as objects on the projective sphere bundle SM using homogeneous coordi-
nates.

In π∗T ∗M there is a global section ω = [F ]yidxi, called the Hilbert form, whose
dual is l = li ∂

∂xi , li = yi/F , called the distinguished field. Each fibre of π∗T ∗M has
a positively oriented orthonormal coframe {ωi} with ωn = ω. Expand ωi as vi

jdxj ,
whereby the stipulated orientation implies that v := det(vi

j) =
√

det(gij). Set

(1.2) ωn+i = vi
jδy

j , δyi =
1
F

(dyi + N i
jdxj).
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ON BERNSTEIN TYPE THEOREMS IN FINSLER SPACES 873

The collection {ωi, ωn+i} forms an orthonormal basis on T ∗(TM \{0}) with respect
to the Sasaki-type metric gijdxi⊗dxj +gijδy

i⊗δyj [2]. The pull-back of the Sasaki-
type metric from TM \ {0} to SM is a Riemannian metric

(1.3) ĝ = gijdxi ⊗ dxj + δabω
ā ⊗ ωb̄.

Thus, the volume element dVSM of SM with the metric ĝ is

(1.4) dVSM = ω1 ∧ · · · ∧ ω2n−1 =
√

det(gij)dx ∧ ωn+1 ∧ · · · ∧ ω2n−1,

where dx = dx1 ∧ · · · ∧ dxn. It is easy to see that (1.4) can be rewritten as [7]

(1.5) dVSM = Ωdτ ∧ dx,

where

(1.6) Ω := det
(gij

F

)
, dτ :=

n∑
i=1

(−1)i−1yidy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn.

The volume form of a Finsler n-manifold (M, F ) is defined by [7]

(1.7) dVM := σ(x)dx, σ(x) :=
1

cn−1

∫
SxM

Ωdτ,

where cn−1 denotes the volume of the unit Euclidean (n− 1)-sphere Sn−1, SxM =
{y ∈ TxM |F (y) = ||y|| = 1}. This definition is essentially the same as in [5], and
dVM is also called the Holmes-Thompson volume form when F is the Minkowski
metric (cf. [10], §2.2, or [17]).

Let (M, F ) and (M̃, F̃ ) be Finsler manifolds, and let f : M → M̃ be an immer-
sion. If F (x, y) = F̃ (f(x), df(y)) for all (x, y) ∈ TM \ {0}, then f is said to be an
isometric immersion. It is clear that

(1.8) gij(x, y) = g̃αβ(x̃, ỹ)fα
i fβ

j

for the isometric immersion f : (M, F ) → (M̃, F̃ ), where

(1.9) x̃α = fα(x), ỹα = fα
i yi, fα

i =
∂fα

∂xi
.

Assume that M is complete and D ⊂ M is any compact domain. Let ft : M →
M̃ , t ∈ (−ε, ε), be a smooth variation of f with f0 = f and ft|M\D = f |M\D. Then
{ft} induces a variation vector field Ṽ along f defined by

(1.10) Ṽ :=
∂ft

∂t
|t=0 = Ṽ α ∂

∂x̃α
, Ṽ |M\D = 0.

ft induces a family of Finsler metrics Ft = (ft)∗F̃ , i.e., Ft(x, y) = F̃ (ft(x), dft(y)).
By (1.6) and (1.7), the volume of (D, Ft) is

Vt(D) =
∫
D

dVt =
∫
D

(
1

cn−1

∫
SxMt

Ωtdτ

)
dx,

where

(1.11) Ωt = det
(

1
Ft

gt|ij

)
= det

(
1
Ft

g̃αβfα
t|if

β
t|j

)
, Ω0 = Ω.

It is easy to see that

(1.12)
d

dt
Vt(D)|t=0 =

∫
D

(
1

cn−1

∫
SxM

(
∂

∂t
Ωt)|t=0dτ

)
dx.
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Set

(1.13) fα
ij =

∂2fα

∂xi∂xj
,

(1.14) h :=
hα

F 2

∂

∂x̃α
, hα = fα

ijy
iyj − fα

k Gk + G̃α,

where Gk and G̃α are the geodesic coefficients for (M, F ) and (M̃, F̃ ), respectively.
Let π∗N = (π∗TM)⊥ be the orthogonal complement of π∗TM in π∗(f−1TM̃)

with respect to g̃, and let

N ∗ = {ξ ∈ C(f−1T ∗M̃) | ξ(df(X)) = 0, ∀X ∈ C(TM)},
which is called the normal bundle of f [9]. Clearly, π∗N ∗ is the dual bundle of π∗N .
By (1.14), we can see that h ∈ π∗N [7]. For some Ñ ∈ π∗N , we define µÑ ∈ N ∗

by

(1.15) µÑ (X̃) :=

∫
SxM

g̃(Ñ , X̃)Ωdτ∫
SxM

Ωdτ
=

∫
SxM

g̃(Ñ , X̃)Ωdτ

cn−1σ(x)

for any X̃ ∈ C(f−1TM̃). Then µÑ is a global section of f−1T ∗M̃ . Set

(1.16) µ = µh =
1

cn−1σ

∑
α

(∫
SxM

hα

F 2
Ωdτ

)
dx̃α,

where h is defined by (1.14). By (1.11)∼(1.16), a straightforward calculation (see
[7] for details) gives the following (cf. [7])

Theorem 1.1. Let f : (M, F ) → (M̃, F̃ ) be an isometric immersion, let ft be a
smooth variation with f0 = f and let the variation field Ṽ satisfy (1.10). Then the
first variation formula of the volume for D ⊂ M is

(1.17)
d

dt
Vt(D)|t=0 = −n

∫
D

µ(Ṽ )dVM ,

where µ is defined by (1.16) and dVM is defined by (1.7).

Definition 1.2. An isometric immersion f : (M, F ) → (M̃, F̃ ) is called a minimal
immersion if any compact domain of M is the critical point of its volume functional
with respect to any variation vector field (1.10).

We call µ defined by (1.16) the mean curvature form of f , of which the norm is
defined by

||µ|| := sup
X̃∈C(f−1TM̃)

|µ(X̃)|
||X̃||

.

It is obvious that ||µ|| = 0 if and only if µ = 0. Thus, we have (cf. [7])

Theorem 1.3. An isometric immersion f : (M, F ) → (M̃, F̃ ) is minimal if and
only if the mean curvature form µ defined by (1.16) vanishes identically.

Recall that for an isometric immersion f : (M, F ) → (M̃, F̃ ) we have (see for-
mulas (2.14) and (3.14) of Chapter V in [8])

Gk = fα
l glkg̃αβ(fβ

ijy
iyj + G̃β),
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ON BERNSTEIN TYPE THEOREMS IN FINSLER SPACES 875

from which together with (1.14) it follows that

(1.18) hβ = g̃βγhγ = Tαβ(fα
ijy

iyj + G̃α),

where

(1.19) Tαβ := g̃αβ − g̃αγfγ
i fσ

j gij g̃σβ .

Hence, by Theorem 1.3, we see that f is minimal if and only if

(1.20)
∫

SxM

1
F 2

Tαβ(fα
ijy

iyj + G̃α)Ωdτ = 0

for all β. Let p⊥ : π∗(f−1TM̃) → π∗N = (π∗TM)⊥ be the orthogonal projection
with respect to g̃, and let X⊥ = p⊥X for X ∈ C(π∗(f−1TM̃)). Thus,

(1.21) T (X, Y ) = g̃(p⊥X, Y ) = g̃(X⊥, Y ),

where T = Tαβdx̃α ⊗ dx̃β . Then (1.20) can be rewritten as

(1.22)
∫

SxM

1
F 2

g̃(v⊥,
∂

∂x̃α
)(fα

ijy
iyj + G̃α)Ωdτ = 0

for any vector field v ∈ C(f−1TM̃)).

2. Submanifolds in Randers spaces

Let (M, F ) be a Randers space, where

(2.1) F = α + β =
√

aijyiyj + biy
i, ||β|| =

√
aijbibj = b (0 ≤ b < 1).

By [2], we know that

(2.2) det(gij) = a

(
F

α

)n+1

, a = det(aij).

Thus, we have

dVM = σ(x)dx =
dx

cn−1

∫
SxM

Ωdτ,

(2.3)
∫

SxM

Ωdτ =
∫

SxM

det(gij)
Fn

dτ = a

∫
SxM

F

αn+1
dτ =

√
a

∫
Sx

(1 + biy
i)dVSx

,

where

(2.4) Sx =
{
y ∈ Rn|aijy

iyj = 1
}

, dVSx
=

√
adτ.

Let {λi} be the eigenvalues of the matrix (aij), of which the corresponding unit
eigenvectors are {vi} with respect to the Euclidean metric 〈 , 〉 in Rn. Set

(2.5) yi =
∑

k

vi
k

zk

√
λk

with |z|2 = 〈z, z〉 = 1,

so that y ∈ Sx. Thus, we have

dVSx
=

√
a

n∑
i=1

(−1)i−1yidy1 ∧ · · · ∧ dŷi ∧ · · · ∧ dyn

=
n∑

i=1

(−1)i−1zidz1 ∧ · · · ∧ dẑi ∧ · · · ∧ dzn = dVSn−1 .

(2.6)
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876 QUN HE AND YI-BING SHEN

Because Sn−1is symmetric with respect to every zk and the zk’s are odd functions,
we get

(2.7)
∫

Sx

yidVSx
=

∑
k

vi
k

1√
λk

∫
Sn−1

zkdVSn−1 = 0,

from which it follows that

(2.8) dVM =
√

adx

cn−1

∫
Sx

(1 + biy
i)dVSx

=
√

adx.

Hence, from (2.8) we have the following.

Theorem 2.1. The volume element of the Randers space (M, α + β) is just that
of the Riemannian manifold (M, α).

Let f : (M, F ) → (M̃, F̃ ) be an isometric immersion into a Randers space (M̃, F̃ )
with

F̃ = α̃ + β̃ =
√

ãαβ(x̃)ỹαỹβ + b̃α(x̃)ỹα, ||β̃|| =
√

ãαβ b̃αb̃β = b̃ (0 ≤ b̃ < 1).

Clearly, we have

(2.9) F = f∗F̃ = α + β =
√

aijyiyj + biy
i,

where

(2.10) aij = ãαβfα
i fβ

j , bi = b̃αfα
i .

This means that (M, F ) is also a Randers n-space. By Theorem 2.1, the volume
element of (M, α + β) is just that of the Riemannian manifold (M, α). Therefore,
we have

Proposition 2.2. The mean curvature form µ of the submanifold (M, α + β) iso-
metrically immersed in the Randers space (M̃, α̃+ β̃) is just that of the submanifold
(M, α) isometrically immersed in the Riemannian manifold (M̃, α̃).

By Theorem 1.2 and Proposition 2.2, we have immediately

Proposition 2.3. The minimal submanifolds in the Randers space (M̃, α̃ + β̃) are
just the minimal submanifolds in the Riemannian manifold (M̃, α̃), and vice-versa.

Recall that a Randers space (M̃, F̃ ) is said to be special if M̃ is a real vector
space Ṽ and α̃ is Euclidean [13]. So, by Bernstein’s theorem on minimal graphs in
the Euclidean space ([12]), we have immediately

Theorem 2.4. Any complete minimal graph in a special Randers (n + 1)-space
(Ṽ n+1, F̃ ) with n ≤ 7 is an affine n-subspaces.

Remark 2.5. By means of the Busemann-Hausdoff measure, a Bernstein type the-
orem in a special Randers 3-space (M̃, F̃ ), which is also a Minkowski space and
satisfies 0 < ||β̃|| < 1√

3
, was given in [13].

Let f : (M, α+β) → (M̃, α̃+ β̃) be a minimal isometric immersion, and let ft be
a smooth variation with f0 = f . Then the second variation formula of the volume
functional for any compact domain D ⊂ M is the same as that of (M, α) viewed as
a minimal submanifold in the Riemannian manifold (M̃, α̃). Recall that a minimal
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submanifold is said to be stable if its second variation is always nonnegative for any
deformation with compact support.

By Proposition 2.3 and the generalized Bernstein theorem on minimal surfaces
in Euclidean space ([6]), we have immediately

Theorem 2.6. Any complete stable minimal surface in a special 3-dimensional
Randers space is a plane.

3. Hypersurfaces in a Minkowski space

In this section we assume that (M̃, F̃ ) = (Ṽ n+1, F̃ ) is a Minkowski space of
dimension m = n+1. Let {ẽα} be a given orthonormal basis of Ṽ n+1 with respect to
the Euclidean metric 〈, 〉. Let f = fαẽα : (M, F ) → (Ṽ n+1, F̃ ) be an isometrically
immersed hypersurface. Noting that G̃α = 0 for (Ṽ n+1, F̃ ), it follows from (1.22)
that f is minimal if and only if

(3.1) fα
ij

∫
SxM

1
F 2

g̃(v⊥, ẽα)yiyjΩdτ = 0

for any v ∈ C(f−1Ṽ n+1).
Let n = nαẽα be the unit normal vector field of f(M) with respect to the

Euclidean metric 〈 , 〉 in Ṽ n+1, and let ñ = ñαẽα be the unit normal vector field
with respect to g̃ỹ for ỹ = df(y) in (Ṽ n+1, F̃ ). These mean that∑

α

nαfα
i = 0, g̃αβñαfβ

i = 0,

|n|2 = 〈n,n〉 =
∑
α

(nα)2 = 1, g̃(ñ, ñ) = g̃αβñαñβ = 1.
(3.2)

It is clear that there is a function λ(x, y) on (M, F ) such that

(3.3) λnα = g̃αβñβ with λ = g̃(n, ñ) = 〈n, ñ〉−1.

Since n ∈ C(f−1(Ṽ n+1)) is linearly independent of { ∂
∂xi } and µ(dfX) = 0 for

X ∈ C(TM), we see that µ = 0 if and only if µ(n) = 0, i.e., by (3.1),

(3.4) fα
ij

∫
SxM

1
F 2

g̃(n⊥, ẽα)yiyjΩdτ = 0.

Definition 3.1. The mean curvature H of a hypersurface M in (Ṽ n+1, F̃ ) is defined
by

(3.5) H(x) =
1
n

µ(n) =
1

ncn−1σ(x)
fα

ij

∫
SxM

1
F 2

g̃(n⊥, ẽα)yiyjΩdτ,

where n is defined by (3.2).

From (3.2) and (3.3) it follows that

(3.6) g̃(n⊥, ẽα) = g̃(n, ñ)g̃(ñ, ẽα) = λg̃αβñβ = λ2nα.

Set

aij = aij(x) =
∑
α

fα
i fα

j , a = det(aij), ∂i =
∂

∂xi
= fα

i ẽα.
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Since (
ñ
∂i

)
(g̃αβ)

(
ñ
∂j

)T

=
(

1 0
0 gij

)
,

(
n
∂i

)
(g̃αβ)

(
ñ
∂j

)T

=
(

λ ∗
0 gij

)
,

(
n
∂i

) (
n
∂j

)T

=
(

1 0
0 aij

)
,

we have

(3.7) det(gij) =
a

λ2
det(g̃αβ).

Thus, by Definition 3.1, we have the following.

Proposition 3.2. Let f = fαẽα : (M, F ) → (Ṽ n+1, F̃ ) be an isometrically im-
mersed hypersurface. Then the mean curvature of M can be expressed by

(3.8) H =
1∫

Sx
F 2ηdVSx

∑
α,i,j

nαfα
ij

∫
Sx

ηyiyjdVSx
,

where Sx is defined in (2.4), and

η =
det(g̃αβ)

Fn+2
.

In particular, f is minimal if and only if

(3.9)
∑
α,i,j

fα
ijn

α

∫
Sx

ηyiyjdVSx
= 0.

Similarly as in §2, let {λi} be the eigenvalues of the matrix (aij), of which the
corresponding unit eigenvectors are {vi} with respect to the Euclidean metric 〈 , 〉
in Rn. Then we have

(3.10)
∑

k

vk
i vk

j =
∑

k

vi
kvj

k = δij , aij =
∑

k

λkvi
kvj

k, aij =
∑

λ−1
k vi

kvj
k,

where (aij) = (aij)−1. From (2.5), (2.6) and (3.9), by reasoning similar to proving
(2.7), we can prove that∫

Sx

yiyjdVSx
=

∑
k,l

vi
kvj

l

1√
λkλl

∫
Sn−1

zkzldVSn−1

=
∑

k

vi
kvj

k

1
λk

∫
Sn−1

(zk)2dVSn−1 .

Because
∫

Sn−1(zk)2dVSn−1 =
∫

Sn−1
(zl)2dV

Sn−1 for k �= l, it is obvious that

n

∫
Sn−1

(zk)2dVSn−1 = cn−1.

From this and (3.10),

(3.11)
∫

Sx

yiyjdVSx
=

1
n

cn−1a
ij .

Define

(3.12) Bij :=
∫

SxM

ηyiyj
√

adτ =
∫

Sx

ηyiyjdVSx
.
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It is remarkable that η = 1 and Bij = 1
ncn−1a

ij when (Ṽ n+1, F̃ ) is the Euclidean
space. In such a case, the quantity

H =
1

cn−1

∑
α,i,j

nαfα
ij

∫
Sx

yiyjdVSx
=

1
n

∑
α,i,j

nαfα
ija

ij

is just the mean curvature of the Euclidean hypersurface M .
Now assume that M is a graph of Ṽ n+1 defined by

(3.13) f(x1, · · · , xn) = (x1, · · · , xn, u(x1, · · · , xn))

for x = (x1, · · · , xn) ∈ U ⊆ Rn. Thus, we have

a = 1 + |∇u|2, n = a−1/2(−u1, · · · − un, 1),

where ∇u = (u1, · · · , un) and ui = ∂u/∂xi. Since Bij = Bij(x, u,∇u) and aij =
aij(x,∇u), we have from (3.8) and (3.12)

Proposition 3.3. In the Minkowski space (Ṽ n+1, F̃ ) the graph (3.13) has the con-
stant mean curvature H0 if and only if

(3.14) Bij(x, u,∇u)uij = b(x, u,∇u),

where uij = ∂2u/∂xi∂xj, b(x, u,∇u) = H0
√

a
∫

Sx
F 2ηdVSx

.

Definition 3.4. The equation (3.14) is said to be of mean curvature type if there
are constants C1 and C2 such that

aij(x, w)ξiξj ≤ Bij(x, u, w)ξiξj ≤ (1 + C1)aij(x, w)ξiξj ,

|b(x, u, w)| ≤ C2

√
1 + |w|2,

(3.15)

where (x, u, w) ∈ U × R × Rn and ξ = (ξ1, · · · , ξn) ∈ Rn.

When n = 2, aij = δij − uiuj

1+|∇u|2 , the equation of mean curvature type in two
variables, has been defined in [11].

Theorem 3.5. Let f : U ⊆ Rn → (Ṽ n+1, F̃ ) be a graph defined by (3.13) so that
M = f(U), which has the constant mean curvature H0. Then there is a constant κ
such that the equation κBijuij = κb is an elliptic equation of mean curvature type.

Proof. Since η = (det(g̃αβ)/Fn+2)|SM > 0, then

(3.16) Bijξiξj =
∫

Sx

ηyiyjξiξjdVSx
=

∫
Sx

η(yiξi)2dVSx
≥ 0

for ξ ∈ Rn, where the equality holds if and only if yiξi = 0 for y ∈ Sx, i.e., ξ = 0.
This implies that the equation (3.14) is elliptic.

On the other hand, for y ∈ Sx, we see that ỹ = df(y) ∈ Sn ⊂ Ṽ n+1. So, we have

min{η(x, y) : y ∈ Sx} ≥ min{det(g̃αβ)

F̃n+2
: ỹ ∈ Sn} = κ1 > 0,

max{η(x, y) : y ∈ Sx} ≤ max{det(g̃αβ)

F̃n+2
: ỹ ∈ Sn} = κ2 > 0,

where κ1 and κ2 are constants. Hence, from (3.11) and (3.16) it follows that

κ1a
ijξiξj ≤ Bijξiξj ≤ κ2a

ijξiξj ,

κ1|H0|
√

a ≤ |b| ≤ κ2|H0|
√

a.

These mean that (3.14) is of mean curvature type. �
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By Theorem 3.5 and Theorem 4 of [11], we have immediately

Theorem 3.6. Any complete minimal graph in the 3-dimensional Minkowski space
(Ṽ 3, F̃ ) is a plane.
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