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Abstract. An obfuscator is a compiler that transforms any program (which we will
view in this work as a boolean circuit) into an obfuscated program (also a circuit)
that has the same input-output functionality as the original program, but is “unintel-
ligible”. Obfuscation has applications for cryptography and for software protection.
Barak et al. (CRYPTO 2001, pp. 1–18, 2001) initiated a theoretical study of obfus-
cation, which focused on black-box obfuscation, where the obfuscated circuit should
leak no information except for its (black-box) input-output functionality. A family of
functionalities that cannot be obfuscated was demonstrated. Subsequent research has
showed further negative results as well as positive results for obfuscating very specific
families of circuits, all with respect to black box obfuscation. This work is a study of
a new notion of obfuscation, which we call best-possible obfuscation. Best possible
obfuscation makes the relaxed requirement that the obfuscated program leaks as little
information as any other program with the same functionality (and of similar size).
In particular, this definition allows the program to leak information that cannot be ob-
tained from a black box. Best-possible obfuscation guarantees that any information that
is not hidden by the obfuscated program is also not hidden by any other similar-size
program computing the same functionality, and thus the obfuscation is (literally) the
best possible. In this work we study best-possible obfuscation and its relationship to
previously studied definitions. Our main results are: (1) A separation between black-
box and best-possible obfuscation. We show a natural obfuscation task that can be
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achieved under the best-possible definition, but cannot be achieved under the black-
box definition. (2) A hardness result for best-possible obfuscation, showing that strong
(information-theoretic) best-possible obfuscation implies a collapse in the Polynomial-
Time Hierarchy. (3) An impossibility result for efficient best-possible (and black-box)
obfuscation in the presence of random oracles. This impossibility result uses a random
oracle to construct hard-to-obfuscate circuits, and thus it does not imply impossibility
in the standard model.

Key words. Obfuscation.

1. Introduction

An open question in computer security is whether computer programs can be obfus-
cated; whether code can be made unintelligible while preserving its functionality. This
question is important as obfuscation has wide-ranging applications, both for software
protection and for cryptography. Beyond its theoretical importance, the question of ob-
fuscation is of great practical importance. Numerous ad-hoc heuristical techniques are
used every day by practitioners to obfuscate their code, even though many of these
techniques do not guarantee any provable notion of security.

A theoretical study of obfuscation was initiated by Barak, Goldreich, Impagliazzo,
Rudich, Sahai, Vadhan and Yang [2]. They studied several notions of obfuscation, pri-
marily focusing on black-box obfuscation, in which an obfuscator is viewed as a com-
piler that, given any input program or circuit, outputs a program with the same function-
ality from which it is hard to find any deterministic information on the input program.
Loosely speaking, black-box obfuscation requires that anything that can be efficiently
computed from the obfuscated program, can also be computed efficiently from black-
box (i.e. input-output) access to the program. Their main result was that this (strong)
notion of obfuscation cannot always be achieved, as they were able to present an ex-
plicit family of circuits that provably cannot be black-box obfuscated.

Barak et al. [2] also considered an alternative notion of obfuscation called indistin-
guishability obfuscation that sidesteps the black-box paradigm. An indistinguishability
obfuscator guarantees that if two circuits compute the same function, then their obfus-
cations are indistinguishable in probabilistic polynomial time. This definition avoids the
black-box paradigm, and also avoids the impossibility results shown for the black-box
obfuscation notion. Indeed, Barak et al. showed that it is simple to build inefficient in-
distinguishability obfuscators. One disadvantage of indistinguishability obfuscation is
that it does not give an intuitive guarantee that the circuit “hides information”. This is
apparent in their proposed construction of an inefficient indistinguishability obfuscator,
which computes (inefficiently, by exhaustive search) a small circuit that is equivalent to
the one being obfuscated. For some functionalities, and some choices of the revealed
circuit, this is a great deal of information to give away. For example, when obfuscat-
ing a circuit computing an encryption functionality, the obfuscated circuit may always
reveal a secret key that allows decryption. Such an obfuscator does not satisfy our in-
tuitive notion of obfuscation (e.g. releasing only a key that allows encryption would
give a more secure obfuscation), but this (inefficient) obfuscator could still satisfy the
indistinguishability obfuscation definition of [2].
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1.1. This Work

We propose a new notion of obfuscation, best-possible obfuscation, which avoids the
black-box paradigm, and gives the appealing intuitive guarantee that the obfuscated
circuit leaks less information than any other circuit (of a similar size) computing the
same function. This work is a study of this new notion of best-possible obfuscation.

Instead of requiring that an obfuscator strip a program of any information that can-
not be obtained from a black-box, we require only that the (best-possible) obfuscated
program leak as little information as possible, i.e. does not leak anything that cannot be
obtained from any other code of an equivalent program. Namely, the obfuscated pro-
gram should be “as private as” any other program computing the same functionality
(and of a certain size). A best-possible obfuscator should transform any program so that
anything that can be computed given access to the obfuscated program should also be
computable from any other equivalent program (of some related size). A best-possible
obfuscation may leak information that cannot be obtained from a black-box (e.g. the
code of a hard-to-learn function), as long as whatever it leaks is efficiently computable
or “learnable”1 from any other similar-size circuit computing the same functionality.

While this relaxed notion of obfuscation gives no absolute guarantee about what in-
formation is hidden in the obfuscated program, it does guarantee (literally) that the
obfuscated code is the best possible. It is thus a meaningful notion of obfuscation, es-
pecially when we consider that programs are obfuscated every day in the real world
without any provable security guarantee.

In this work we initiate a study of best-possible obfuscation. We explore its possi-
bilities and limitations, as well as its relationship with other definitions of obfuscation
that have been suggested. We formalize the best-possible requirement in Definition 2.6,
by requiring that for every efficient learner who tries to extract information from an
obfuscated circuit, there exists an efficient simulator that extracts similar information
from any other circuit with the same functionality and of the same size. We consider
both computationally best-possible obfuscation, where the outputs of the learner and
simulator are indistinguishable with respect to efficient distinguishers, and information
theoretically best-possible obfuscation (perfect or statistical), where even an unbounded
distinguisher cannot tell the difference between the two. We emphasize that statistically
or perfectly best-possible obfuscation refer to the distinguisher, whereas for the learner
we only consider information that can be learned efficiently given the obfuscated circuit.
This computational restriction on the learner strengthens negative results (while our pos-
itive result on perfectly best-possible obfuscation applies also to unbounded learners).

In Proposition 2.9 we show that, in fact, the existence of an inefficient best-possible
obfuscator implies the existence of an efficient one. Using this fact, some of our negative
results for efficient best-possible obfuscation actually extend to inefficient best-possible
obfuscation (but whenever we refer to obfuscation we mean efficient obfuscation unless
we explicitly state otherwise).

1 We note that previous work [2] used the term “learning from a program” to refer to information that can
be computed from black-box access, whereas throughout this work we (extensively) use the term “learning
from a program” to refer to information that can be computed from direct access to a circuit computing the
program’s functionality.
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Relationship with Previous Definitions We study how best-possible obfuscation re-
lates to black-box obfuscation, and present a separation between the two notions of
obfuscation. The proof of this result also gives the first known separation between black-
box and indistinguishability obfuscation. The separation result considers the complex-
ity class of languages computable by polynomial sized ordered decision diagrams or
POBDDs; these are log-space programs that can only read their input tape once, from
left to right (see Sect. 3). We observe that any POBDD can be efficiently best-possible
obfuscated as a POBDD (Proposition 3.2), whereas there are many natural functions
computable by POBDDs that provably cannot be black-box obfuscated as any POBDD
(Proposition 3.3). These two results give new possibility results (for best-possible and
indistinguishability obfuscation), and simple natural impossibility results (for black-box
obfuscation). Note that the impossibility result for black-box obfuscation only applies
when we restrict the representation of the obfuscator’s output to be itself a POBDD.

We also compare the notions of best-possible and indistinguishability obfuscation.
Proposition 3.4 shows that any best-possible obfuscator is also an indistinguishability
obfuscator. For efficient obfuscators the definitions are equivalent (Proposition 3.5). We
note that Barak et al. showed that efficient indistinguishability obfuscators have a “com-
petitiveness” property: For any pair of circuits, no obfuscator can make that pair of cir-
cuits “more indistinguishable” than an indistinguishability obfuscator (up to polynomial
blowups in the security parameter). In particular, this also implies efficient best-possible
obfuscation (as in Proposition 3.5).

For inefficient obfuscation, the definitions are very different: Inefficient information-
theoretic indistinguishability obfuscators are easy to construct (see [2]), but the exis-
tence of inefficient statistically best-possible obfuscators even for the class of languages
recognizable by 3-CNF circuits (a sub-class of AC0) implies that the Polynomial-Time
Hierarchy collapses to its second level (see Theorem 4.1).

We believe that the equivalence of these two definitions for efficient obfuscation mo-
tivates further research on both, as the “best-possible” definition gives a strong intuitive
security guarantee, and the indistinguishability definition may sometimes be technically
easier to work with.

Impossibility Results We explore the limits of best-possible obfuscation. As noted
above, we begin by considering information-theoretically best-possible obfuscation. In
Theorem 4.1 we show that if there exist (not necessarily efficient) statistically secure
best-possible obfuscators for the simple circuit family of 3-CNF circuits (a sub-class of
AC0), then the Polynomial-Time Hierarchy collapses to its second level. Corollary 4.2
(which follows from Theorem 4.1 and the aforementioned equivalence) states that also
if there exists an efficient statistically secure indistinguishability obfuscator for the same
simple circuit family, then the Polynomial-Time Hierarchy collapses to its second level.
This is the first impossibility result for indistinguishability obfuscation in the standard
model.

We also consider best-possible obfuscation in the (“programmable”) random oracle
model. In this model, circuits can be built using special random oracle gates that com-
pute a completely random function. Previously, this model was considered by Lynn,
Prabhakaran and Sahai [19] as a promising setting for presenting positive results for
obfuscation. We show that the random oracle can also be used to prove strong neg-
ative results for obfuscation. In Theorem 5.2 we present a simple family of circuits
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with access to the random oracle that are provably hard to best-possible obfuscate. This
impossibility results extends to the indistinguishability and black-box notions of obfus-
cation. We note that using random oracles for obfuscation was originally motivated by
the hope that giving circuits access to an idealized “box” computing a random function
would make it easier to obfuscate more functionalities (and eventually perhaps the prop-
erties of the “box” could be realized by a software implementation). We, on the other
hand, show that the existence of such boxes (or a software implementation with the ide-
alized properties) could actually allow the construction of circuits that are impossible
to obfuscate. Although this negative result does not rule out that every circuit without
random oracle gates can be best-possible obfuscated, we believe it is illuminating for
two reasons. First, as a warning sign when considering obfuscation in the random ora-
cle model, and secondly as its proof hints that achieving general purpose best-possible
obfuscation in the standard model would require a significant leap (a discussion of this
point appears at the end of Sect. 5).

1.2. Related Work

Negative Results Hada [16] considered the problem of obfuscation, and gave negative
results for obfuscating pseudo-random functions under a strong definition of obfusca-
tion. Barak et al. [2] showed that black-box obfuscation cannot always be achieved.
They showed this by presenting families of functions that cannot be black-box obfus-
cated: There exists a predicate that cannot be computed from black-box access to a
random function in the family, but can be computed from (non-black-box access to) any
circuit implementing a function in the family. Thus they showed that there exist circuits
that cannot be obfuscated, but it remained possible that almost any natural circuit could
be obfuscated. Goldwasser and Kalai [14], showed that if the definition of obfuscation
is strengthened with a requirement that the obfuscation leak no more information than
black-box access even in the presence of auxiliary input, then a large class of more
natural circuits cannot be obfuscated.

Positive Results The functionalities for which obfuscation was ruled out in [2] and
[14] are somewhat complex. An interesting open question is whether obfuscation can
be achieved for simpler classes of functionalities and circuits. A significant amount of
attention has been paid to the question of obfuscating point functions. A point function
Ip(x) is defined to be 1 if x = p, or 0 otherwise. Canetti [6] showed (implicitly) how
to obfuscate point functions (even under a strong auxiliary-input definition), using a
strong variant of the Decisional Diffie–Hellman assumption. Lynn, Prabhakaran and
Sahai [19] suggested working in the random oracle model and focused on obfuscating
access control functionalities (note that impossibility results of [2] and [14] extend to the
random oracle model). They observed that, in the random oracle model, point functions
can be obfuscated, leading to obfuscation algorithms for more complex access control
functionalities. Wee [24] presented a point function obfuscator based on the existence
of one-way permutations that are hard to invert in a very strong sense.

Other solutions for obfuscating point functions are known if the obfuscator does not
need to work for every point, but rather for a point selected at random from a distri-
bution with some min-entropy. For this relaxed requirement Canetti, Micciancio and
Reingold [7] presented a scheme that uses more general assumptions than those used
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by [6] (however, their solution is not secure in the presence of auxiliary inputs). Dodis
and Smith [9] were able to obfuscate proximity queries in this framework.

Hohenberger, Rothblum, Shelat, and Vaikuntanathan [18] gave a positive result for
obfuscating a very natural and more complex cryptographic functionality (i.e., re-
encryption) under a security-oriented definition. Hofheinz, Malone-Lee, and Stam [17]
suggested a different security-oriented definition of obfuscation, argued its suitability
for security applications, and provided positive and negative results.

The Random Oracle Model The random oracle model is an idealization, in which it
is assumed that all parties have oracle access to a truly random function R. The parties
can access this function by querying the random oracle at different points. The Ran-
dom oracle methodology is a heuristic, in which the random oracle is used for building
provably secure cryptographic objects, but then, to implement the cryptographic object
in the real world, the random oracle is replaced by some real function with a succinct
representation. This methodology was introduced by Fiat and Shamir [10], and later
formalized by Bellare and Rogaway [3].

A clear question raised by this methodology is whether the security of the crypto-
graphic objects in an ideal world with a random oracle can be translated into security for
the real-world implementation. In principle, this was answered negatively by Canetti,
Goldreich, and Halevi [8], who showed that there exist cryptographic schemes that are
secure in the presence of a random oracle, but cannot be secure in the real world, re-
gardless of the implementation of the random oracle. Their work left open the possibility
that the random oracle methodology could still work for “natural” cryptographic prac-
tices. This was ruled out by Goldwasser and Kalai [13] for the Fiat-Shamir method [10],
which uses a random oracle for obtaining digital signatures from identification schemes.
This method was shown to have the potential of leading to insecure signature schemes
regardless of the possible implementation of the random oracle.

As mentioned above, in the context of obfuscation, Lynn, Prabhakaran and Sahai [19]
explored which circuits could be obfuscated in the random oracle model. In the random
oracle model, the view generated by the black-box simulator is indistinguishable when
taken over a randomly selected oracle (Sect. 5 of this work considers the same model).
We briefly review one of their constructions. They used the random oracle R to obfus-
cate a point function Ip (p is given to the obfuscator) using the value R(p). On input
x the obfuscated circuit outputs 1 if and only if R(x) = R(p). The only information
about p in the obfuscated circuit is the value R(p), and this ensures that the obfusca-
tion does not leak any information about Ip (beyond what can be obtained via black-box
access). They then proceeded to show how to obfuscate point functions with more gen-
eral outputs (on input x = p the function outputs some value, and otherwise it outputs
⊥), multi-point functions, and other more complex access control circuits. Narayanan
and Shmatikov [21] gave a positive result for obfuscating databases in the random ora-
cle model. In Sect. 5 of this work we explore whether indeed the random oracle model
is a promising setting for further work on obfuscation.

1.3. Organization

We begin by presenting notation and formal definitions in Sect. 2. We compare our
new definition of obfuscation with previous definitions in Sect. 3. In Sect. 4 we present
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impossibility results for statistically best-possible obfuscation. Section 5 deals with ob-
fuscation in the random oracle model, including an overview of the model, and gives
impossibility results for computationally best-possible obfuscation (in the random ora-
cle model). We conclude with discussions and extensions in Sect. 6.

2. Definitions and Discussion

2.1. Notation and Preliminaries

Let [n] be the set {1,2, . . . n}. For x, y ∈ {0,1}n we use x ◦y to denote the concatenation
of x and y (a string in {0,1}2n). For a (discrete) distribution D over a set X we denote
by x ∼ D the experiment of selecting x ∈ X by the distribution D. A function f (n) is
negligible if it smaller than any (inverse) polynomial; that is, for any positive polynomial
p(), there exists some n0 such that for all n ≥ n0 we have f (n) < 1

p(n)
.

Distributions, Ensembles, and Indistinguishability An ensemble D = {Dn}n∈N is a
sequence of random variables, each ranging over {0,1}�(n) for some l : N → N. We
consider only ensembles where �(n) is polynomial in n (we occasionally abuse notation
and use D in place of Dn). An ensemble D is polynomial time constructible if there
exists a probabilistic polynomial time Turing Machine (PPTM) M such that Dn =
M(1n).

Definition 2.1. The statistical distance between two distributions X and Y over
{0,1}�, which we denote by �(X,Y ), is defined as

�(X,Y ) = 1

2

∑

α∈{0,1}�

∣∣Pr[X = α] − Pr[Y = α]∣∣ = max
S⊆{0,1}�

∣∣Pr[X ∈ S] − Pr[Y ∈ S]∣∣

Definition 2.2 (Statistical Indistinguishability). Two probability ensembles D and F

are ε(n)-statistically close or ε(n)-statistically indistinguishable if for every n we have
�(Dn,Fn) ≤ ε(n). We say that D and F are statistically indistinguishable if they are
ε(·)-statistically indistinguishable for a negligible function ε(·).

Definition 2.3 (Computational Indistinguishability [15,25]). Two probability ensem-
bles D and F are computationally indistinguishable if for any polynomial-size circuit
ensemble C , where Cn takes as input 1n and one sample s from either Dn or Fn, and
outputs 0 or 1, the difference

∣∣Prs∼Dn

[
Cn

(
1n, s

) = 1
] − Prs∼Fn

[
Cn

(
1n, s

) = 1
]∣∣

is negligible in n.

2.2. Previous Definitions of Obfuscation

In the subsequent definitions, we consider a family C of deterministic polynomial size
circuits to be obfuscated. For a length parameter n let Cn be the circuits in C with input
length n. The size of the circuits in Cn is polynomial in n. For all the notions of obfus-
cation discussed below, if the obfuscator O is a probabilistic polynomial-time Turing
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machine, then we say it efficiently obfuscates the family C , and that C is efficiently
obfuscatable. Whenever we refer to obfuscation, we will mean (efficient) black-box ob-
fuscation unless explicitly noted otherwise. For definitions of obfuscation in the random
oracle model, see Sect. 5.

Black-Box Obfuscation The first notion of obfuscation we present is black-box ob-
fuscation, due to [2]. The intuition behind the security guarantee is that the obfuscator
makes it difficult to compute predicates (boolean functions) of the circuit being obfus-
cated. For any predicate π : C → {0,1} on circuits in the family C , and any circuit C ∈ C ,
computing π(C) from an obfuscation of C should be no easier than computing π(C)

from black-box access to C. Formally this is captured by a simulation requirement (see
below).

Definition 2.4 (Black-Box Obfuscation [2]). An algorithm O that takes as input a
circuit in C and outputs a new circuit, is said to be a black-box obfuscator for the family
C , if it has the following properties:

• Preserving Functionality: For any input length n, for any C ∈ Cn:

Pr
[∃x ∈ {0,1}n : O(C)(x) �= C(x)

] ≤ neg(n)

where the probability is over O’s coins.2

• Polynomial Slowdown: There exists a polynomial p(·) such that for all input
lengths n, for any C ∈ Cn, the obfuscator O only enlarges C by a factor of p:
i.e., |O(C)| ≤ p(|C|).

• Virtual Black-box: For any polynomial size circuit adversary A, there exists a poly-
nomial size simulator circuit S such that for every input length n and every C ∈ Cn:

∣∣Pr
[

A
(

O(C)
) = 1

] − Pr
[

S C
(
1n

) = 1
]∣∣ ≤ neg(n)

where the probability is over the coins of the adversary, the simulator and the ob-
fuscator.

Indistinguishability Obfuscation The second notion we present in this section is that
of indistinguishability obfuscation, due also to [2]. Intuitively, the requirement here is
that the obfuscations of functionally equivalent circuits should be indistinguishable (in
a computational or information-theoretic sense).

Definition 2.5 (Indistinguishability Obfuscation [2]). An algorithm O that takes as
input a circuit in C and outputs a new circuit, is said to be a (computational/statistical/
perfect) indistinguishability obfuscator for the family C , if it has the preserving func-
tionality and polynomial slowdown properties as in Definition 2.4, and also has the
following property (instead of the virtual black-box property).

• Computationally/Statistically/Perfectly Indistinguishable Obfuscation: For all
large enough input lengths n, for any circuit C1 ∈ Cn and for any circuit C2 ∈ Cn

that computes the same function as C1 and such that |C1| = |C2|, the two distribu-
tions O(C1) and O(C2) are (respectively) computationally/statistically/perfectly
indistinguishable.

2 This is in fact a relaxation of the requirement in [2], which asked for a 0 probability of error.
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If in addition the obfuscator O is also efficient (runs in time polynomial in the size of
the circuit being obfuscated), then we say O is an efficient indistinguishability obfusca-
tor for the family C . In the remainder of this work, when we refer to indistinguishability
obfuscators we mean efficient indistinguishability obfuscators unless we explicitly note
otherwise.

2.3. New Definition of Obfuscation and Its Properties

In this section we introduce a new definition for an obfuscator that does as well as is
possible. This definition (similarly to Definition 2.5) avoids the black-box paradigm.

Informally, best-possible obfuscation, as presented in Definition 2.6 below, guaran-
tees that anything that can be learned efficiently from the obfuscated O(C1), can also
be extracted efficiently (simulated) from any program C2 of similar size for the same
function. Thus, any information that is exposed by O(C1) is exposed by every other
equivalent circuit of a similar size, and we conclude that O(C1) is no worse an obfusca-
tion than any of these other circuits (it is, in other words, the best obfuscation possible).

Definition 2.6 (Best-Possible Obfuscation). An algorithm O that takes as input a cir-
cuit in C and outputs a new circuit, is said to be a (computationally/statistically/perfectly)
best-possible obfuscator for the family C , if it has the preserving functionality and poly-
nomial slowdown properties as in Definition 2.4, and also has the following property
(instead of the virtual black-box property).

• Computational/Statistical/Perfect Best-Possible Obfuscation: For any PPTM
learner L, there exists a PPTM simulator S such that for any poly(n)-bit long
auxiliary input z, and any two circuits C1,C2 ∈ Cn that compute the same func-
tion and satisfy |C2| = |C1|, the two distributions L(z, O(C1)) and S(z,C2) are
(respectively) computationally/statistically/perfectly indistinguishable. If the two
distributions are always ε(n)-statistically indistinguishable, then we say the obfus-
cator is ε(n)-statistically best-possible.

Note that, unlike in Definition 2.4, here the simulator gets the explicit code of a
circuit, and not just black-box access to its functionality. For statistical indistinguisha-
bility, unless noted otherwise, we only assume that the distinguisher’s advantage ε(n)

(the statistical distance) is smaller than the constant 1/3. Statistical obfuscation with
ε(n) = 1/3 may be a weak security guarantee, but this strengthens negative results.
The positive result of Proposition 3.2 yields a perfectly best-possible obfuscator (i.e.
ε(n) = 0).

An Alternative Formulation We also present an equivalent formulation of best-
possible obfuscation, which is often easier to work with for technical reasons. For this
formulation (and elsewhere in this work) we often refer to the “empty” learner; this
is the learner that simply outputs whatever obfuscation it gets as input. The alternative
formulation focuses only on this empty learner, doing away with the need to consider
general learners. It only requires the existence of an efficient simulator for the empty
learner. That is, a simulator S such that for circuits C1,C2 of identical size and func-
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tionality, the distributions O(C1) and S(C2) are indistinguishable.3 We feel, though,
that this formulation (provided next) loses some of the intuitive appeal of Definition 2.6.

Definition 2.7 (Computational/Statistical/Perfect Best-Possible Obfuscation, alternative
formulation). There exists a PPTM simulator S , such that for any two circuits C1,C2 ∈
Cn that compute the same function and satisfy |C2| = |C1|, the two distributions O(C1)

and S(C2) are (respectively) computationally/statistically/perfectly indistinguishable.

Proposition 2.8. The best-possible obfuscation properties of Definitions 2.6 and 2.7
are equivalent.

Proof. The best-possible obfuscation property of Definition 2.6 immediately implies
that of Definition 2.7 by examining the simulator for the “empty learner” (the learner
that simply outputs its input).

In the other direction, if the obfuscator satisfies the property of Definition 2.8, then
there exists an efficient simulator S for the “empty” learner. This implies an efficient
simulator S ′ for every efficient learner L and auxiliary input z: On input C2, the sim-
ulator S ′ computes S(C2) and outputs the result of L(z, S(C2)). Since for circuits
C1,C2 of identical size and identical functionality the distributions O(C1) and S(C2)

are indistinguishable (perfectly, statistically or computationally), also L(z, O(C1)) and
S ′(C2) = L(z, S(C2)) must be indistinguishable. �

Efficient and Inefficient Obfuscation Throughout this work, when we refer to best-
possible or indistinguishability obfuscators we always mean computational (and effi-
cient) obfuscators unless we explicitly note otherwise.

For the general question of obfuscation (not necessarily in the best-possible sense),
in applications we would want an efficient obfuscator. Still, we find even the question
of inefficient obfuscation to be interesting, both from a complexity-theoretic and pos-
sibly also from a practical point of view. In some applications, it may be sufficient to
obfuscate a small kernel of the program, and the program owner may be willing to in-
vest a huge amount of time in this obfuscation procedure (especially if the obfuscation
guarantee is information-theoretic). The main focus of our work, though, is efficient
obfuscation.

We observe that for the best-possible notion of obfuscation, the existence of an inef-
ficient best-possible obfuscator (perfect, statistical or computational), implies the exis-
tence of an efficient one that uses the simulator to obfuscate (albeit with some possible
loss in the security parameters). This is formalized in the next proposition.

Proposition 2.9. Let O be an inefficient best-possible obfuscator for a circuit fam-
ily C , where O can be a perfect, ε(n)-statistical or computational. Then, there exists
an efficient best-possible obfuscator O′ for C , where O′ is perfect, (ε(n) · polylog(n))-
statistical, or computational (respectively).

3 In fact, this shows that efficient indistinguishability obfuscation implies efficient best-possible obfusca-
tion, by taking the indistinguishability obfuscator O to be both the best-possible obfuscator and its simulator
(i.e. circuit C1 will be obfuscated by O(C1), whereas this code will be simulated by O(C2)). See Proposi-
tion 3.5 for a full proof.
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Proof. In all three cases (perfect, statistical, and computational), we construct O′ us-
ing the (efficient) simulator S of O for the “empty learner” (i.e. the simulator of Defi-
nition 2.7).

The Case of Perfectly Best-Possible We construct O′ to simply run the (efficient) sim-
ulator S on its input, and simulate O′ by the same simulator S . The simulator’s output
on two equivalent circuits of the same size is perfectly indistinguishable (i.e., identical)
by the best-possible obfuscation guarantee, and it clearly satisfies polynomial slow-
down. The main concern is maintaining functionality, but O′ almost always maintains
the circuit’s functionality (because O almost always does).

The Case of ε(n)-Statistically Best-Possible The simulator’s output is ε(n)-statisti-
cally close to the obfuscators. With all but negligible probability, the obfuscator’s output
maintains functionality, and so the simulator maintains functionality with probability at
least 1 − (ε(n)+ neg(n)), where we assume ε(n) ≤ 1/3.4 We construct O′ that runs the
simulator polylog(n) times on its input. Each of these executions outputs a circuit, and
O′’s output is a circuit that runs all these circuits on its input, and outputs the majority
answer. Each execution outputs a circuit that maintains functionality with probability
at least 3/5. Thus with all but at negligible probability, a majority of the polylog(n)

outputs maintain functionality, and so O′’s output maintains functionality. Since S is
a simulator for the best-possible obfuscator O, and by a hybrid argument, O′ is an
(ε(n) · polylog(n))-best-possible obfuscator.

The Case of Computationally Best-Possible We begin by observing that while in the
computational case the simulator’s output may never fully maintain functionality of the
input circuit, it does satisfy a weaker guarantee. For any computationally best-possible
obfuscator, for every input circuit, for every input, with all but negligible probability
the simulator’s output maintains functionality on that input. This is because otherwise
the “bad” inputs, those for which with non-negligible probability functionality is not
maintained, can be “hard-wired” into a (non-uniform) distinguisher that distinguishes
the obfuscator’s and simulator’s outputs (recall that with overwhelming probability the
obfuscator maintains functionality for every input).

We construct the obfuscator O′, as we did in the statistical case, by running the sim-
ulator many times and outputting the circuit that takes the majority answer. In this case,
we take O(n) copies. This means that for each input, functionality is maintained with
probability 2−2n, and by a union bound with probability at least 2−n the output of O′
maintains functionality for all inputs. By a hybrid argument O′ is also a computationally
best-possible obfuscator. �

3. Comparison with Prior Definitions

In this section we compare the new definition of best-possible obfuscation to the black-
box and indistinguishability definitions proposed by Barak et al. [2].

4 We do not know whether the result of Proposition 2.9 applies to all functions ε(n) bounded away from 1.
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3.1. Best-Possible vs. Black-Box Obfuscation

Best-possible obfuscation is a relaxed requirement that departs from the black-box
paradigm of previous work. We first observe that any black-box obfuscator is also a
best-possible obfuscator.

Proposition 3.1. If O is an efficient black-box obfuscator for circuit family C , then O
is also an efficient (computationally) best-possible obfuscator for C .

Proof. Assume for a contradiction that O is not a best-possible obfuscator for C.
By Proposition 2.8, this implies that there is no best-possible simulator for the “empty”
learner that just outputs the obfuscated circuit it gets. In particular, O itself is not a good
simulator. Thus there exists a polynomial p and a distinguisher D, such that for infinitely
many input lengths n, there exist two circuits C1,C2 ∈ Cn, such that |C1| = |C2| and C1
and C2 are equivalent, but

∣∣Pr
[

D
(

O(C1)
) = 1

] − Pr
[

D
(

O(C2)
) = 1

]∣∣ ≥ p(n)

Now consider D as a predicate adversary for the black-box obfuscator O. The black-
box simulator S for D clearly behaves identically on C1 and C2 (because they have
the same functionality), but D’s behavior on O(C1) and O(C2) is non-negligibly dif-
ferent. Thus (for infinitely many input lengths) S is not a black-box simulator for D, a
contradiction. �

Next, we provide a (weak) separation result. We exhibit a natural (low) complexity
class, that of languages computable by polynomial size ordered binary decision dia-
grams (POBDDs), such that best-possible obfuscation within the class, i.e. with the
output itself being a POBDD, is achievable, but there are simple functionalities that are
provably impossible to black-box obfuscate within the class (i.e. black-box obfuscation
with a POBDD output is impossible).

Ordered Binary Decision Diagrams (OBDDs) The computational model of ordered
binary decision diagrams was introduced by Bryant [5]. An ordered binary decision di-
agram is a rooted directed acyclic graph with a vertex set V containing non-terminal
vertices, each with two children, including a “root” vertex, and terminal vertices (with-
out children). Each non-terminal vertex v is labeled with the name of an input bit �v

(e.g. �v = x1 or �v = x5), the terminal vertices are labeled 0 or 1, and for each non-
terminal vertex, one of its outgoing edges is labeled 0 and the other is labeled 1. An
input x ∈ {0,1}n is accepted by an OBDD if and only if after removing, for every vertex
v with label �v = xi , its outgoing edge labeled by 1−xi (i.e. removing the outgoing edge
whose label is not equal to the value of the input bit labeling the vertex), there exists a
path from the root node to a terminal node labeled by 1. In addition, in an OBDD, on
every path from the root vertex to a terminal vertex, the indices of the input bits labeling
vertices on the path must be strictly increasing. We will focus on polynomial-size OB-
DDs, or POBDDs. We note that another way to view POBDDs is as logarithmic-space
deterministic Turing Machines whose input tape head can only move in one direction
(from the input’s first bit to its last).
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Bryant [5] showed that OBDDs have a simple canonical representation. For any func-
tion, there exists a unique smallest OBDD that is its canonical representation. Moreover,
for polynomial-size OBDDs, this canonical representation is efficiently computable.

Note that we defined obfuscation for circuits, not OBDDs, but for every OBDD,
there exists a boolean circuit (which computes the same functionality) from which it
is easy to extract the OBDD. When we refer to obfuscating the family of OBDDs, we
are implicitly referring to obfuscating the underlying family of circuits representing
OBDDs.

Best-Possible Obfuscation of POBDDs We begin by observing that POBDDs can be
perfectly best-possible obfuscated as POBDDs (namely the output of the obfuscator is a
POBDD itself). This is a corollary of POBDDs having efficiently computable canonical
representations.

Proposition 3.2. There exists an efficient perfectly best-possible (and perfectly indis-
tinguishable) obfuscator for POBBDs.

Proof. The best-possible obfuscator on input a POBDD P , computes (efficiently) P ’s
canonical representation and outputs that program as the best-possible obfuscation. The
canonical representation has the same functionality as P , is no larger than P , and (most
significantly) is unique, depending only on the functionality of P . The simulator gets
a POBDD P ′ and also efficiently computes its canonical representation. The canonical
representations of P and P ′ are identical if and only if P and P ′ compute the same
functionality. Thus the obfuscator is indeed a perfectly best-possible obfuscator for the
family of POBDDs. �

Note this construction gives a very strong information-theoretic obfuscation: Any-
thing that can be learned from the obfuscation even by an inefficient learner, can also be
simulated perfectly by an efficient simulator (from any functionally equivalent circuit of
the same size). This is stronger than the perfectly best-possible obfuscation requirement
we made in Definition 2.6 (the weaker requirement made there strengthens negative
results).

No Black-Box Obfuscation for POBDDs We next show that there exists a family of
languages computable by POBDDs that cannot be black-box obfuscated (efficiently
or inefficiently) as POBDDs (i.e, the resulting program itself being represented as a
POBDD). This gives a (weak) separation between best-possible and black-box obfusca-
tion. The weakness is that it remains possible that any input POBDD can be black-box
obfuscated such that the output circuit is no longer a POBDD but is in some higher
complexity class.

Proposition 3.3. There exists a family of languages computable by POBDDs that can-
not be black-box obfuscated as POBDDs.

Proof. By the results of [5], from any POBDD (obfuscated or not) we can extract a
canonical smallest equivalent POBDD. We will show, however, that for some (simple



On Best-Possible Obfuscation 493

and natural) functions that are computable by POBDDs, computing a canonical smallest
equivalent POBDD is impossible from black-box access. This implies that POBDDs that
compute such functions cannot be black-box obfuscated, the details follow.

We proceed by considering the family of point functions {Ip}p∈{0,1}n , where the func-
tion Ip outputs 1 on input the point p and 0 everywhere else. Point functions are com-
putable by (linear size) POBDDs. Using Bryant’s algorithm [5], from any POBDD com-
puting the point function Ip , we can learn the canonical POBDD Pp that computes the
function Ip . On examination this canonical Pp is a very simple POBDD: It has n + 1
vertices, two of which are terminal vertices labeled 0 and 1. The POBDD Pp has a path
of length n from the root to terminal vertex 1, where the edges in the path are labeled by
all n bits of the input x, i.e. (x1, x2, . . . , xn) in increasing order. The literal labeling the
ith edge is negated if and only if pi = 0. This path accepts if x = p. In addition, every
vertex along this path also has an edge leading to the terminal vertex 0 (the rejecting
vertex). This rejecting edge from vertex i is labeled with the ith input bit (just like the
edge from vertex i that is on the “accepting path”), and the literal is negated if and only
if pi = 1.

Now since the canonical POBDD Pp can be computed from any POBDD that com-
putes Ip , it can also always be computed from the obfuscator’s output. If we analyze Pp

we can easily extract every bit of the point p by examining whether or not the literals
labeling edges on the accepting path are negated. Thus, for any p ∈ {0,1}n, from any
(allegedly obfuscated) POBDD computing Ip , we can extract all the bits of p.

On the other hand, no polynomial time black-box simulator that only gets black box
access to Ip for a random point p can extract any bit of p with probability significantly
greater than 1/2. We conclude that there exists no black-box obfuscator that obfuscates
POBDDS computing point functions as POBDDs. �

We mention that many other natural languages computable by POBDDs cannot be
black-box obfuscated as POBDDs. Black-box obfuscation of POBDDs by more com-
plex circuits remains an intriguing open question.

3.2. Best-Possible vs. Indistinguishability Obfuscation

As mentioned above, the notions of best-possible obfuscation and indistinguishability
obfuscation are related, though the guarantees given by these two types of obfuscation
are different. In this section we will show that any best-possible obfuscator is also an
indistinguishability obfuscator. Furthermore, for efficient obfuscation, the two notions
are equivalent. For inefficient obfuscation (which we still find interesting), however,
the notions are not equivalent unless the Polynomial-Time Hierarchy collapses. In fact,
inefficient indistinguishability obfuscators exist unconditionally (see [2]). On the other
hand, building inefficient best-possible obfuscators (for arbitrary circuits) remains a fas-
cinating open question, and in particular it would lead (up to some loss in the security
parameters) to a construction of efficient best-possible obfuscators (see Sect. 2.3). We
begin by showing that best-possible obfuscation is in fact at least as strong as indistin-
guishability obfuscation.

Proposition 3.4. If O is a perfectly/statistically/computationally best-possible obfus-
cator for circuit family C , then O is also a (respectively) perfect/statistical/computa-
tional indistinguishability obfuscator for C .
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Proof. The intuition is that (by definition) the best-possible simulator’s output distri-
butions on any two functionally equivalent circuits (of the same size) are indistinguish-
able. Since the best-possible obfuscator’s output on any circuit is indistinguishable from
the simulator’s, this means that the obfuscator’s output distributions on two equivalent
circuits (of the same size) will also be indistinguishable.

More formally, let δ be a bound on the distinguishability (computational or statis-
tical) of the best-possible obfuscator’s output and the simulator’s output. Let S be the
simulator for the “empty learner” L (the learner that just outputs its input) as guaranteed
Definition 2.7. Then by a hybrid argument, the distinguishability (computational or sta-
tistical) of the distributions O(C1) and O(C2) is at most the sum of the distinguishability
(computational or statistical) of the two distributions O(C1) and S(C2) and the distin-
guishability (computational or statistical) of the two distributions O(C2) and S(C2).
When the circuits C1 and C2 are of the same size and compute the same functionality,
the distributions O(C1) and S(C2) are δ-indistinguishable (computationally or statisti-
cally) by the best-possible obfuscation guarantee. The same indistinguishability holds
for the distributions O(C2) and S(C2). We conclude that O is an indistinguishability
obfuscator, with a 2δ bound on the (computational or statistical) distinguishability. �

As noted above, if we restrict our attention to efficient obfuscators, indistinguisha-
bility obfuscators are also best-possible obfuscators. This is shown in Proposition 3.5
below.

Proposition 3.5. If O is an efficient perfect/statistical/computational indistinguisha-
bility obfuscator for a circuit family C , then O is also an efficient perfectly/statistically/
computationally (respectively) best-possible obfuscator for C .

Proof. Following the alternative formulation of Definition 2.7 (best-possible obfus-
cation with an “empty learner”), the intuition is that the (efficient) indistinguishability
obfuscator itself can be used as a best-possible simulator. The obfuscator’s and the sim-
ulator’s outputs are indistinguishable (on any pair of functionally equivalent circuits) by
the indistinguishability obfuscation guarantee.

More formally, let O be an efficient indistinguishability obfuscator. We construct
an efficient simulator S , s.t. when it gets a circuit C2 it runs O(C2). Note that the
efficiency of the indistinguishability obfuscator is essential to guarantee the efficiency of
the simulator, without which the obfuscator does not meet the best-possible definition.
If O is a perfect/statistical/computational indistinguishability obfuscator, then for any
two circuits C1 and C2 that are of the same size and compute the same functions, the
two distributions O(C1) and S(C2) = O(C2) are perfectly/statistically/computationally
indistinguishable (because O is an indistinguishability obfuscator). Thus O is also a
best-possible obfuscator. �

It is important to note that there is no reason to believe that the two notions of obfus-
cation are equivalent for inefficient obfuscation. In fact, whereas [2] design exponential-
time indistinguishability obfuscators, there is no known construction for inefficient best-
possible obfuscators.
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We end this subsection by observing that if P = NP, then it is possible to construct
efficient perfect best-possible obfuscators (and indistinguishability obfuscators) for ev-
ery polynomial-size circuit. In fact this complexity assumption is “almost tight”. We
will show in Theorem 4.1 that if statistically best-possible obfuscators can be built even
for very simple circuits, then the Polynomial-Time Hierarchy collapses to its second
level.

Proposition 3.6. If P = NP, then the family of polynomial-sized circuits can be effi-
ciently perfectly best-possible obfuscated.

Proof. Assuming P = NP, we show that for any circuit C, it is possible to efficiently
extract the smallest lexicographically first circuit Cmin that is equivalent to C (this prob-
lem is solvable using a language in the second level of the Polynomial-Time Hierarchy).
To see this, fix a binary encoding for circuits (i.e., a way of representing circuits as bi-
nary strings). Observe that a co-NP machine can test whether two circuits are equivalent,
rejecting if the two circuits are not equivalent (i.e. there exists an input on which their
outputs differ). Now, given an input circuit C, a prefix p ∈ {0,1}∗, and a target size s,
an NP machine with a co-NP oracle can find whether there exists a circuit whose bi-
nary encoding begins with prefix p, is of size s, and is equivalent to C. This is done by
“guessing” an encoding with prefix p of size s, testing its equivalence to C using the
co-NP oracle, and accepting if the two circuits are equivalent. This problem is thus in
the second level of the Polynomial-Time Hierarchy, and if P = NP it can be solved in
polynomial time.

Given a polynomial-time algorithm, we can now find the smallest lexicographically
first equivalent circuit. First, find the size of the smallest equivalent circuit by trying
all possible (polynomially many) target sizes. For each target size, test whether there
exists an equivalent circuit beginning with the empty prefix. Once the minimal size is
known, we can find the lexicographically first equivalent circuit of this size. This is
done by fixing the bits of the circuit one-by-one and using them as the prefix (i.e., we
first compute whether there exists an equivalent circuit with prefix 0, if so we look for
one with prefix 00, if such a circuit does not exist then we know one exists with prefix
01, now we try prefix 010 etc.). We terminate when we have found the encoding of the
lexicographically first equivalent circuit of this minimal size. If P = NP, then this is a
polynomial-time procedure.

The smallest lexicographically first circuit is unique, and depends only on the cir-
cuit’s functionality. Thus, as Barak et al. [2] note, the above extraction procedure is a
perfectly indistinguishable obfuscation of C. We conclude that there exists an efficient
perfect indistinguishability obfuscator for the family of polynomial-size circuits. By
Proposition 3.5 it is also an efficient perfectly best-possible obfuscator for the family of
polynomial-size circuits. �

We note once more that, as observed in [2], even if P �= NP, the procedure described
in the proof of Proposition 3.6 gives an inefficient indistinguishability obfuscator. It
remains unclear, however, whether we can get an inefficient best-possible obfuscator,
as the simulator, which is required to be efficient, can no longer run the above “circuit
minimization” procedure.
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4. Impossibility Results for Statistically Best-Possible Obfuscation

In this section we present a hardness result for statistically best-possible obfuscation. In
Sect. 3 it was shown that if P = NP then every polynomial-sized circuit can be perfectly
best-possible obfuscated, and thus we cannot hope for an unconditional impossibility
result. We show that the condition P = NP is (somewhat) tight, and in fact the existence
of statistically best-possible obfuscators even for the class of languages recognizable
by 3-CNF circuits (a sub-class of AC0) implies that the Polynomial-Time Hierarchy
collapses to its second level. This result gives evidence that statistically best-possible
obfuscation is impossible for any class that contains 3-CNF formulas (and in particular
also for the class of general polynomial sized circuits).

Theorem 4.1. If the family of 3-CNF formulas can be statistically best-possible ob-
fuscated, then the Polynomial-Time Hierarchy collapses to its second level.

Proof. A Simple Case. We begin by considering a simple case: Suppose that the family
of 3-CNF formulas can be perfectly best-possible obfuscated while perfectly preserving
functionality (i.e. the obfuscated circuit never errs). We can use the simulator S for the
“empty” learner, to construct an NP proof for co-SAT (a co-NP-complete problem). To
see this, consider an input 3-CNF formula ϕ (and denote its size by |ϕ|). We would
like to find a witness for non-satisfiability of ϕ. Towards this end, we first construct an
unsatisfiable formula ψ of size |ϕ|. A witness for the non-satisfiability of ϕ is a pair of
random strings (r, r ′) such that the output of the simulator S on ϕ with randomness r is
equal to its output on ψ with randomness r ′. This proof system is indeed in NP:

• Efficiently Verifiable. The simulator is efficient, and thus the witness is efficiently
verifiable.

• Complete. If ϕ is unsatisfiable, then ϕ and ψ compute the same function (the
constant 0 function), and are of the same size. We know that O is a perfect
best-possible obfuscator and thus the distributions O(ϕ) and S(ϕ), as well as
S(ψ) and O(ψ), are identical. This implies that there must exist (r, r ′) such that
S(ϕ, r) = S(ψ, r ′).

• Sound. If ϕ is satisfiable, then because the obfuscator perfectly preserves func-
tionality, the distributions O(ϕ) and O(ψ) are disjoint (they are distributions of
circuits with different functionalities). Thus, the distributions S(ϕ) and S(ψ) of
the (perfect) simulator’s output are also disjoint, and there exist no (r, r ′) such that
S(ϕ, r) = S(ψ, r ′).

In conclusion, we find that a perfectly best-possible obfuscator for 3-CNF formulas
that perfectly preserves functionality implies that NP equals co-NP.

Full Proof The full proof for the case of statistically best-possible obfuscation follows
along similar lines, giving a reduction from a co-NP-complete problem (circuit equiva-
lence) to a problem in AM. By the results of Fortnow [11], Aliello and Håstad [1], and
Boppana, Håstad and Zachos [4], this collapses the Polynomial-Time Hierarchy to its
second level. First, assume that the statistically best-possible obfuscator guarantees sta-
tistical distance at most 1

10 between the simulator and obfuscator. We begin with some
complexity theory background:
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Background The statistical difference (SD) problem was introduced by Sahai and Vad-
han [23]. It is a promise problem that refers to pairs (C1,C2) of polynomial-size circuits,
which can each be used to sample a distribution. The yes-instances of the problem are
pairs of circuits for which the statistical distance between the distributions (generated
by the two circuits) is at least 2

3 , whereas no-instances are pairs of circuits for which
this distance is at most 1

3 . Sahai and Vadhan [23] prove that SD is complete for the com-
plexity class SZK (consisting of languages with statistical zero-knowledge interactive
proofs). The complement of SD, the problem SD is thus also in SZK (and is in fact also
complete), by the result of Okamoto [22] (see also Goldreich and Vadhan [12] that SZK
is closed under complement.

The results of Fortnow [11], Aliello and Håstad [1], and Boppana, Håstad and Zachos
[4] show that if there is a co-NP-complete problem in SZK, then the Polynomial-Time
Hierarchy collapses to its second level.

The problem of checking the equivalence of 3-CNF formulas consists of checking,
given two 3-CNF formulas over n boolean input variables (say that the formulas must
be of the same size), whether they agree on all possible assignments to the n variables.
Checking the equivalence of 3-CNF formulas is co-NP complete (there is a simple re-
duction to it from the co-NP complete problem 3SAT).

Outline We assume that the family of 3-CNF formulas can be statistically best-
possible obfuscated. We will use the simulator to construct an efficient (Karp) reduction
from the CoNP-compete problem of 3-CNF equivalence testing, to the SD problem,
which has a statistical zero-knowledge protocol. In particular, this reduction will imply
that if there exists a statistically best-possible obfuscator for the family of 3-CNFs, then
there exists a statistical zero-knowledge protocol checking the equivalence of 3-CNFs,
which collapses the Polynomial-Time Hierarchy.

The Reduction Let S be the (efficient) simulator for the “empty” learner that just out-
puts the obfuscated circuit that it is given. The reduction receives two identical size
3-CNF formulas, φ1 and φ2. It proceeds to generate two circuits C1 and C2. The circuit
Ci is simply the simulator S with the formula φi hardwired as its input. The two circuits
(C1,C2) generate the distributions S(φ1) and S(φ2), respectively, and they will be the
input to SD.

• Completeness: If φ1 ≡ φ2, then by the properties of the best-possible obfuscator
�(O(φ1), S(φ1)) ≤ 1

10 , and �(O(φ1), S(φ2)) ≤ 1
10 . Thus �(S(φ1), S(φ2)) < 1

3 ,
and (C1,C2) ∈ SD

• Soundness: If φ1 �≡ φ2, then by the preserving functionality property of the obfus-
cator, the two distributions O(φ1) and O(φ2) are very far (at statistical distance
almost 1). On the other hand, �(O(φ1), S(φ1)) ≤ 1

10 , and �(O(φ2), S(φ2)) ≤ 1
10 ,

and thus we conclude that �(S(φ1), S(φ2)) > 2
3 , and (C1,C2) /∈ SD.

Note that the reduction is efficient even if the obfuscator is not, as it only uses the
code of the simulator (which is always efficient). �

Proposition 3.2 and Theorem 4.1 give examples of circuit classes that can and cannot
be statistically best-possible obfuscated. The proofs give (non-matching) sufficient and
necessary conditions for circuit classes that can be statistically best-possible obfuscated.
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A sufficient condition for statistically best-possible obfuscation of a class of circuits is
having an efficiently computable canonical representation, whereas a necessary condi-
tion is having a statistical zero knowledge proof for the equivalence problem.

Finally, a corollary of Theorem 4.1 is that the same class of 3-CNF formulas cannot be
statistically indistinguishability obfuscated in polynomial time, unless the Polynomial-
Time Hierarchy collapses. This is the first impossibility result for indistinguishability
obfuscation in the standard model.

Corollary 4.2. If the family of 3-CNF formulas can be efficiently statistically indis-
tinguishability obfuscated, then the Polynomial-Time Hierarchy collapses to its second
level.

Proof. By Proposition 3.5, if there exists an efficient statistical indistinguishability
obfuscator for the family of 3-CNFs, then there also exists an efficient statistically best-
possible obfuscator for the same family. This, in turn, implies (by Theorem 4.1) that the
Polynomial-Time Hierarchy collapses to its second level. �

5. Best-Possible Obfuscation in the Random Oracle Model

In this section we present an impossibility result for (efficient) computationally best-
possible obfuscation in the (programmable) random oracle model. We begin by describ-
ing the model and recasting the definitions of obfuscation in the presence of random
oracles.

5.1. Definitions, Revisited

The Random Oracle Model In the random oracle model we assume that all parties (the
circuits, obfuscator, adversary etc.) have access to a random oracle and can make oracle
queries. All oracle queries are answered by a single function R that is selected uni-
formly and at random from the set of all functions. Specifically, for each input length n,
the function R maps {0,1}n to {0,1}p(n), for some polynomial p. For simplicity, we
will assume throughout this work that for all n’s the function R is a random permuta-
tion5 on {0,1}n. Circuits access the random oracle by making oracles queries using a
special oracle gate. It is important that we assume that calls to these oracle gates are
clearly visible when running the circuit.

Obfuscation in the Random Oracle Model When considering obfuscation in the ran-
dom oracle model, all circuits are allowed oracle access (including the circuits to be
obfuscated), and all probabilities are taken over the selection of a random oracle.

In all definitions of obfuscation (Definitions 2.4, 2.5, 2.6), in the preserving func-
tionality requirement, the probability that there exists an input for which the obfuscated
circuit gives the wrong answer is taken also over the selection of the random oracle.

5 Note that the injective condition holds for random function oracles (as long as the function’s range is
significantly larger than its domain, say at least twice as large).
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In the Virtual Black-box requirement of Definition 2.4, we require that for any poly-
nomial size circuit adversary A, there exists a polynomial size simulator circuit S such
that for every input length n and every C ∈ Cn:

∣∣Pr
[

A R(
O

(
CR)) = 1

] − Pr
[

S CR,R(
1n

) = 1
]∣∣ ≤ neg(n)

where the probability is over the random oracle, the coins of the adversary, the simulator
and the obfuscator.

In the Indistinguishability Obfuscation requirement of Definition 2.5 and the Best-
Possible Obfuscation requirement of Definition 2.6, all distributions are taken over the
random oracle.

5.2. The Impossibility Result

We show how to use a random oracle to build circuits that cannot be best-possible ob-
fuscated for point functions. We note that the use of the random oracle both strengthens
and weakens this result. The result is strengthened because a random oracle could con-
ceivably help obfuscation (a la [19]), but weakened because the random oracle is used
to build a circuit that cannot be obfuscated. Moreover, in the proof we need to assume
that a distinguisher can see the obfuscated circuit’s oracle calls and that it can access the
random oracle itself. It is still possible that all circuits that do not use the random oracle
can be best-possible obfuscated.

We show that a specific family of circuits for computing point functions cannot be
obfuscated in the presence of a random oracle R. A point function Ip is the function
that outputs 1 on input p and 0 on all other inputs. We begin by presenting the family
of point function circuits for which we will show impossibility of obfuscation.

Definition 5.1 (The circuit family {Cr
p}). For any input length n, the family of circuits

{Cr
p}n defines a set of circuits on inputs of length n. Each point p ∈ {0,1}n and pad

r ∈ {0,1}n define a circuit Cr
p that computes the point function Ip . The data contained

in the circuit Cr
p is:

• The pad r is included in Cr
p “in the clear”.

• The point p is “hidden”, the only information that is given about it is y = R(p ◦ r).

For an input x ∈ {0,1}n, to compute the point function Ip , the circuit Cr
p outputs 1 if

and only if R(x ◦ r) = y (recall y = R(p ◦ r)). Otherwise the circuit outputs 0.

We claim that the family of point function circuits {Cr
p} cannot be best-possible ob-

fuscated.

Theorem 5.2. The circuit family {Cr
p} cannot be efficiently computationally best-

possible obfuscated.

Proof Intuition Observe that any obfuscator O must preserve the functionality of a
circuit Cr

p . Furthermore, the only information the obfuscator has about the point p is
the value R(p ◦ r). To preserve functionality, for any input x, the obfuscated circuit
O(Cr

p) needs to find whether x = p. Now, because the only information available to
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the obfuscator and the obfuscated circuit about p is the value R(p ◦ r), for most inputs
x, the obfuscated circuit must ask the random oracle for the value R(x ◦ r). In fact,
with all but negligible probability over p, r, x and the coins of the obfuscator and the
obfuscated circuit, the obfuscated circuit O(Cr

p), when activated on input x, queries the
random oracle on the point (x ◦ r). This is shown in Claim 5.3.

On the other hand, for a uniformly random pad s, the probability that O(Cr
p), when

activated on input x, queries the random oracle on the point (x ◦ s) is negligible. This is
simply because the number of oracle calls made by O(Cr

p) is polynomial. See Claim 5.4.
We conclude that for uniformly random p, r, s, the obfuscations O(Cr

p) and O(Cs
p)

can be distinguished. The distinguisher Ds runs its input (obfuscated) circuit on a ran-
dom input x, and accepts iff the circuit queries the random oracle at point (x ◦ s). By
the above, with high probability over p, r, s and the coins of the distinguisher and ob-
fuscated circuit, it will accept O(Cs

p) but reject O(Cr
p). This is a contradiction to the

best-possible obfuscation property. See the full details below.

Proof. Throughout this proof we restrict our attention to the “empty” learner that just
outputs the obfuscation it gets, and the simulator S for this “empty” learner. We begin
by describing the distinguisher (family) we will use.

The Distinguisher Ds Every pad s ∈ {0,1}n defines a distinguisher Ds . This distin-
guisher gets as input a (probabilistic) oracle circuit C with n-bit inputs (we will consider
input circuits that are obfuscations of circuits in the family {Cr

p}). The distinguisher
chooses a random input x ∈ {0,1}n and random coins for the circuit C, and then runs C

on input x with the randomness it chose. If in this execution C makes the oracle query
x ◦ s then Ds outputs 1, otherwise Ds outputs 0.

Claim 5.3. Let O be any efficient obfuscator.

Pr
[

Ds

(
O

(
Cs

p

)) = 1
] ≥ 1 − neg()

where the probability is over random s,p ∈ {0,1}n, the coins of O and Ds , and the
selection of the random oracle R.

Proof. We show that for random s,p, x ∈ {0,1}n, with high probability over the coins
of O and O(Cs

p) and the random oracle R, during its execution O(Cs
p)(x) queries the

random oracle on x ◦ s.
To see this, first assume that with probability a (over random x,p, s ∈ {0,1}n, O,

O(Cs
p) and R) neither O(Cs

p) nor O(Cs
p)(x) query the random oracle on p ◦ s or x ◦ s.

Now we claim that also with probability a, neither O(Cs
p) nor O(Cs

p)(p) queries the
random oracle on p ◦ s or x ◦ s. This is because as long as neither O(Cs

p) nor O(Cs
p)(z)

queries either p ◦ s or x ◦ s, their views (over the random variables and the selection of
a random oracle) are identically distributed regardless of whether z = x or z = p. We
conclude that with probability a the behavior of O(Cs

p)(x) and O(Cs
p)(p) are identi-

cal, in particular their outputs are identically distributed, even though Cs
p(x) is 0 (with

all but negligible probability) and Cs
p(p) is 1! Thus, by the preserving functionality

requirement, a must be negligible.
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For a random s,p, x ∈ {0,1}n, the probability that the obfuscator O on input Cs
p

queries p ◦ s or x ◦ s is negligible (over its coins and R). The probability that O(Cs
p)(x)

queries p ◦ s is also negligible (recall x is random). But we just saw that to maintain
functionality either O(Cs

p) or O(Cs
p)(x) must make one of the oracle queries p ◦ s,

x ◦ s! We conclude that with all but negligible probability O(Cs
p)(x) must query x ◦ s.

In particular, this implies that for random s,p ∈ {0,1}n, when Ds chooses a random
x ∈ {0,1}n and runs O(Cs

p)(x) (with random coins), with all but negligible probability
(over all the random variables, O’s coins and the random oracle) O(Cs

p)(x) queries x ◦ s

and Ds(O(Cs
p)) outputs 1. �

Claim 5.4. O be any efficient obfuscator.

Pr
[

Ds

(
O

(
Cr

p

)) = 1
] ≤ neg()

where the probability is over random s, r,p ∈ {0,1}n, the coins of O and Ds , and the
selection of the random oracle R.

Proof. For any input x, the oracle queries made by O(Cr
p)(x) are completely indepen-

dent of s. Since O(Cr
p)(x) only makes a polynomial number of queries, the probability

that one of those queries is to x ◦ s is negligible. �

Putting together Claims 5.3 and 5.4, we conclude that for any efficient obfuscator,
for a random s, r,p ∈ {0,1}n, the distinguisher Ds distinguishes O(Cs

p) from O(Cr
p), a

contradiction to the best-possible obfuscation requirement. We conclude that the circuit
family {Cr

p} cannot be best-possible obfuscated.
The pad s is a source of non-uniformity in the distinguisher. We have shown that

a random s makes for a good distinguisher with high probability, and thus for every
alleged obfuscator there certainly exists a good (non-uniform) distinguisher that breaks
it. �

The family of circuits that we show cannot be obfuscated is a family that computes
point functions. This may seem contradictory, as Lynn, Prabhakaran, and Sahai [19]
showed that a class of circuits computing point functions can be obfuscated in the ran-
dom oracle model. The source of this disparity is that they (as well as all other known
positive results on obfuscating point functions) only consider obfuscators that get the
point in the clear, whereas the family of point function circuits that we present ({Cr

p})
hides information about the point. Malkin [20], was the first to ask whether any point
function implementation can be black-box obfuscated.

Theorem 5.2 shows impossibility for simpler and more natural functionalities than
those considered in previous results, but does so using circuits with random oracle gates.

Extensions We note that this impossibility result applies also to black-box obfusca-
tion (because black-box obfuscation also implies best-possible obfuscation, see Propo-
sition 3.1).

One possible objection to this impossibility result, is that the information revealed
by obfuscation of circuits in the family {Cr

p} (namely the pad r) is not related to the
point p. We believe, however, that it is essential that an obfuscator strip programs of
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all non-black-box information. Indeed, we view leaking information that is unrelated
to the functionality as a serious problem, as one of the goals of obfuscation for soft-
ware protection is “stripping” programs of non-essential information (e.g. embarrassing
comments, indications of software bugs etc.).

Implications for a World Without Random Oracles We conclude with an informal dis-
cussion of the ways in which our proof uses the random oracle model, and how one
could hope to remove this assumption. Our construction uses the random oracle R in
two ways. First, R is used to hide information about p in the circuit family {Cr

p}. Essen-
tially, we use R to obfuscate a point function (where the point is p ◦ r). Intuitively, since
we know how to (black-box) obfuscate point functions without using random oracles,
we could use (strong) cryptographic assumptions in place of the random oracle for this.

The second place in our proof where we use the properties of random oracles is when
we assume a distinguisher can see the points on which the obfuscated circuit queries
the random oracle. If we want to get rid of the random oracles, this is a more troubling
assumption. The issue is that even if we could use some other method to hide infor-
mation about the point p in the standard model, there is no reason to assume we could
identify any internal computation of the obfuscated circuit. For example, consider us-
ing Canetti’s point function obfuscation and giving the obfuscator a circuit C that hides
some information on p by exposing only fz(p, r) = (z, zp◦r ).6 Even if on every input x

the obfuscated circuit always computes the value fz(x, r) = (z, zx◦r ), there is no guar-
antee that a distinguisher can identify these computations! Thus O(C) may not expose
any information on r . We note, however, that to prove that an obfuscator can obfuscate
any circuit computing a point function, one would have to construct an obfuscator that
indeed hides internal computations. Thus it seems that even for achieving the (seem-
ingly modest) goal of best-possible obfuscation for polynomial-size point-function cir-
cuits, one would have to present a method for hiding complex internal computations of
a circuit. Such a method, in and of itself, seems to require significant progress on the
problem of obfuscation.

6. Concluding Remarks and Discussions

We conclude with a discussion of best-possible obfuscation and issues raised in this
work.

Input/Output Representation Several of our results highlight the issue of the represen-
tation of an obfuscator’s input and output. At times (in Sect. 3) we restrict the repre-
sentation of both the obfuscator’s input and output functionality to be “simple” circuits
representing POBDDs. At other times (in the proof of Theorem 5.2), we construct com-
plex circuits that hide information about their functionality from the obfuscators. In
general, restricting the input representation makes the task of obfuscation easier (see
discussion in Sect. 5), whereas restricting the output representation makes the task of

6 Here z is a randomly chosen member of Z∗
b

(for b selected randomly by choosing a random prime a

such that a = 2b + 1), and p ◦ r corresponds to some member of the group.
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obfuscation harder, and we use this in Proposition 3.3 to show that point functions can-
not be black-box obfuscated as POBDDs. Previous positive results on obfuscation con-
sidered obfuscators that get a particular representation of the functionality (e.g. the point
p for the point function Ip). Future work on black-box (and non black-box) obfuscation
should consider the question of which representations of the desired functionality are
obfuscated.

This issue was also raised by Malkin [20], who asked whether any point function
implementation can be black-box obfuscated in the standard model. A relaxed (but re-
lated7) formulation of this question is whether the family of polynomial-size circuits
computing point functions can be best-possible obfuscated. The proof of Theorem 5.2
answers this question negatively in the presence of random oracles, but either an impos-
sibility proof or a provably secure obfuscator (in a world without random oracles) may
have interesting consequences.

Circuit Sizes In our definition of best-possible obfuscation (Definition 2.6) we com-
pare the obfuscated circuit O(C1) with circuits C2 of the same size as C1 (and com-
puting the same functionality). This definition requires that the obfuscation of C1 leak
as little information as any equivalent circuit of a specific (polynomially) smaller size.
We could make stronger requirements, such as leaking less information than an equiv-
alent circuit C2 that is as large as O(C1), twice as large as C1, etc. (all results would
still hold). In general, the larger the circuit used as a benchmark (C2), the stronger the
definition. The important point is guaranteeing that O(C1) leaks as little information as
any other functionally equivalent circuit of a related size.

Weaker Variants In light of the negative results of Theorems 4.1 and 5.2 it is interest-
ing to consider weaker variants of best-possible obfuscation (Definition 2.6). While the
variants below lose some of the appealing intuitive appeal of Definition 2.6, meeting
any of them would all give at least some indication that the obfuscator truly garbles
circuits.

• Hiding Less Information. One natural approach is to follow in the footsteps of
Barak et al. [2], and consider best-possible predicate obfuscators: An obfuscation
is predicate best-possible if any predicate of the original circuit that can be learned
from the obfuscation, could also be learned from any other circuit of a similar
size computing the same functionality. While this definition is weaker than com-
putationally best-possible obfuscation, the proof of Theorem 5.2 rules out even
general-purpose predicate best-possible obfuscation in the random oracle model
(and perhaps gives some intuition that this type of obfuscation would be hard to
achieve in the standard model).

• Weaker Indistinguishability. Canetti [6] and Wee [24] relax the virtual black-box
requirement, by requiring only polynomially small indistinguishability between the
output of an adversary and its simulator. Moreover, they allow the simulator’s size

7 This formulation is equivalent to the original question raised by Malkin under the assumption that point
functions can indeed be obfuscated when the point is given in the clear. In this case, a best-possible obfuscation
leaks as little information as the black-box obfuscated point function circuits, and is thus also a black-box
obfuscation.
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to depend (polynomially) on this indistinguishability parameter. We note that neg-
ative results in this work (Theorems 4.1 and 5.2) hold even if we require only
polynomially small (or, in some of the results, even constant) indistinguishability,
and allow the simulator’s size to depend (polynomially) on the indistinguishability
parameter.

• Weaker Functionality. Definition 2.6 requires that with all but negligible proba-
bility, the obfuscated circuit perfectly preserves the functionality of the original
circuit. We could relax this, and require only that for every input, with all but a
small constant error probability, the obfuscated circuit outputs the same output as
the original circuit. The negative result of Theorem 5.2 (impossibility in the ran-
dom oracle model) applies even under this weakened preserving functionality re-
quirement. The positive result on best-possible obfuscation of POBDDs (Proposi-
tion 3.2) gives an obfuscator that perfectly preserves the functionality of the circuit
it obfuscates.
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