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ON BI-SKEW BRACES AND BRACE BLOCKS

L. STEFANELLO AND S. TRAPPENIERS

Abstract. L. N. Childs defined a bi-skew brace to be a skew brace such that
if we swap the role of the two operations, then we find again a skew brace.

In this paper, we give a systematic analysis of bi-skew braces. We study
nilpotency and solubility, and connections between bi-skew braces and set-
theoretic solutions of the Yang–Baxter equation. Further, we deal with Byott’s
conjecture in the case of bi-skew braces, and we use bi-skew braces as a tool
to solve a classification problem proposed by L. Vendramin.

In the final part, we investigate brace blocks, defined by A. Koch to be
families of group operations on a given set such that any two of them yield a
bi-skew brace. We provide a characterisation of brace blocks, illustrate how
all known constructions in literature follow in a natural way from our charac-
terisation, and give several new examples.

1. Introduction

After the definition of skew braces in [GV17], built on the pioneering work
of [Rum07a], a considerable part of literature has been devoted to the study of
the main properties of these objects and their relations with other topics, such
as Jacobson radical rings, regular subgroups of the holomorph, the Yang–Baxter
equation, and Hopf–Galois structures [Bac18, Ced18, SV18, BCJO19]. In partic-
ular, these relations motivated even more the study of the involved topics, and
allowed various problems to be translated in different settings. For example, one
deep problem regarding the properties of the underlying groups of a skew brace
was initially formulated by N. P. Byott as a statement on regular subgroups of the
holomorph of a soluble group [Byo15], and it is now known as Byott’s conjecture.

In [Chi19], L. N. Childs defined a bi-skew brace to be a skew brace (A, ·, ◦) such
that also (A, ◦, ·) is a skew brace. His main focus was the relation with Hopf–Galois
theory; a bi-skew brace (A, ·, ◦) with A finite provides not only a Hopf–Galois
structure of type (A, ·) on every Galois extension with Galois group (A, ◦), but also
a Hopf–Galois structure of type (A, ◦) on every Galois extension with Galois group
(A, ·); see [Chi00] for a general treatment of Hopf–Galois theory, and the appendix
of [SV18], [CGK+21, Chapter 2], and [ST22] for the relation between skew braces
and Hopf–Galois structures.

A. Caranti studied different characterisations of bi-skew braces and gave vari-
ous constructions in [Car20]. These characterisations were formulated both using
gamma functions and from the point of view of regular subgroups of the holomorph.
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2 L. STEFANELLO AND S. TRAPPENIERS

Bi-skew braces were further studied by A. Koch in [Koc21], where a construction
for bi-skew braces is given starting from group endomorphisms with abelian image.
An iterative version of this construction was then obtained in [Koc22], where also
the notion of a brace block is given. This is a family of group operations on a fixed
set such that any two operations form a skew brace. In particular, every bi-skew
brace yields a brace block with two operations. The constructions by Koch and
a construction of Caranti [Car18] were subsequently generalised by Caranti and
the first author in [CS21, CS22]. In the recent manuscript [BNY22b], an iterative
construction is given to obtain a brace block from a given bi-skew brace satisfying
a certain property. A common factor in these works is the study of the questions,
"How can we better understand bi-skew braces or brace blocks? What are new, ef-
fective ways to construct them?" The same idea lives on throughout this paper. In
particular, a better understanding of bi-skew braces and brace blocks leads to new
ways of constructing them and explains known constructions and their conditions
in a natural way.

The paper is organised as follows.
In section 2 we recall the preliminaries that are used throughout the paper.
In section 3 we state several structural results of bi-skew braces. We relate

structural properties of a bi-skew brace to those of its associated skew brace with
swapped operations and also to properties of a suitable group associated with the
skew brace. Moreover, we give an affirmative answer to Byott’s conjecture in the
case of bi-skew braces, employing an approach that also works for several other
classes of skew braces. At last, we state a characterisation of a recently defined class
of skew braces [BNY22a], called γ-homomorphic skew braces, which bears a strong
resemblance to a characterisation of bi-skew braces by Caranti. This resemblance is
further emphasised when we discuss two slightly different constructions. One yields
a new construction of γ-homomorphic skew braces and the other is a new way to
obtain examples of bi-skew braces described by Childs.

Section 4 contains two classification results. We first prove an upper bound on
the right nilpotency class of braces with multiplicative group isomorphic to Zn. In
particular, we recover the known result that such a brace is trivial if n = 1 and
the new result that it is a bi-skew brace if n = 2. Secondly, we use bi-skew braces
to prove an open problem posed by L. Vendramin concerning the classification of
skew braces with a multiplicative group isomorphic to Z.

Section 5 starts with a short summary concerning the connection between skew
braces and set-theoretic solutions of the Yang–Baxter equation. We then give new
results which show that the property of being a bi-skew brace can still be recognised
when we look at the associated set-theoretic solution of the Yang–Baxter equation.
On the other hand, we show with a counterexample that the associated solutions
to both skew brace structures of a bi-skew brace can not be related in a direct way.
We also study when the structure group of a solution is a bi-skew brace.

In section 6 we investigate brace blocks. We start with a general characterisation
of brace blocks on a given group. It is only when we add an extra condition that
we obtain a more manageable characterisation from which we can construct new
brace blocks. Nonetheless, we illustrate that this more restrictive characterisation
still covers all known constructions of brace blocks in literature. This also allows to
work with abelian groups, a case where most known constructions only yield trivial
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examples. We further give two new concrete constructions of brace blocks using
rings and semidirect products.

2. Preliminaries

We begin with the definition of a skew left brace.

Definition 2.1. A skew left brace A = (A, ·, ◦) is a set A together with group
structures (A, ·) and (A, ◦) such that for all a, b, c ∈ A,

a ◦ (b · c) = (a ◦ b) · a−1 · (a ◦ c).

Here a−1 denotes the inverse of a in (A, ·).

Remark 2.2. From this definition it is already clear that in this work sets might be
endowed with more than one group structure. When there is possible confusion,
we specify the group structure when well-known notations concerning groups are
used. For example, the centre of (A, ·) is denoted by Z(A, ·), and the automorphism
group of (A, ◦) is denoted by Aut(A, ◦).

In a natural way, also right and two-sided skew braces can be defined. However,
for simplicity, we talk about skew braces when actually meaning skew left braces.
A skew brace (A, ·, ◦) is called a brace if (A, ·) is an abelian group. Given a skew
brace (A, ·, ◦), we call (A, ·) the additive group; this somewhat ambiguous notation
follows from the fact that for braces this group was originally denoted by (A,+)
and this notation is still common for skew braces. The group (A, ◦) is called the
multiplicative group. By a we denote the inverse of an element a ∈ A with respect
to the multiplicative group. For n ∈ Z and a ∈ A, we use an for the n-th power of
a in (A, ·) and a◦n for the n-th power in (A, ◦). It is easily proved that the neutral
elements of the additive and multiplicative group coincide; this common neutral
element is denoted by 1. Given two skew braces A and B, a map f : A → B is a
homomorphism of skew braces if both f(a ·b) = f(a) ·f(b) and f(a◦b) = f(a)◦f(b)
hold for all a, b ∈ A. Isomorphisms and automorphisms are defined accordingly,
and the group of automorphisms of a skew brace (A, ·, ◦) is denoted by Aut(A, ·, ◦).

One way to construct skew braces is to start from any group (G, ◦) and define
a · b = a ◦ b for all a, b ∈ G. This is called the trivial skew brace on (G, ◦), for which
we use the notation Triv(G, ◦). If we instead define a · b = b ◦ a, then we obtain
the almost trivial skew brace on (G, ◦), denoted by opTriv(G, ◦). When the group
operation on G is clear, also Triv(G) and opTriv(G) are used.

With each element a of a skew brace (A, ·, ◦) we associate the bijective map

γ(a) : A→ A, b 7→ γ(a)b = a−1 · (a ◦ b),

which we write as a left exponent. Note that this map is also denoted by λa in
literature. By [GV17, Proposition 1.9], this gives a well-defined group homomor-
phism γ : (A, ◦) → Aut(A, ·). Note that (A, ◦) is fully determined by (A, ·) and the
function γ, as

(2.1) a ◦ b = a · γ(a)b.

It follows that any group (A, ·) and map γ : A→ Aut(A, ·) such that for all a, b ∈ A,

(2.2) γ(a · γ(a)b) = γ(a)γ(b),

determine a skew brace (A, ·, ◦), where (A, ◦) is given by (2.1). Any map γ satisfying
(2.2) is called a gamma function on (A, ·).
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Definition 2.3. Let A be a skew brace.

(1) A left ideal of A is a subgroup I of (A, ·) such that γ(a)I ⊆ I for all a ∈ A.
(2) An ideal of A is a left ideal I which is moreover normal in (A, ·) and (A, ◦).

From (2.1) we immediately see that (left) ideals of a skew brace A are also
subgroups of (A, ◦), so in particular they are subskew braces of A. Ideals are
precisely the appropriate substructures needed to define the quotient of a skew
brace by this substructure. Indeed, given an ideal I of A, we have a · I = I · a =
a ◦ I = I ◦ a for all a ∈ A. We can thus construct the quotient skew brace A/I in
the natural way. An example of an ideal is the socle of a skew brace A, defined
as Soc(A) = ker(γ) ∩ Z(A, ·). Another example is given by the kernel of any skew
brace homomorphism.

For a, b ∈ A, we define a ∗ b = γ(a)b · b−1 = a−1 · (a ◦ b) · b−1. One way to think
about this new operation is as a commutator which measures how close γ(a)b is to
b. Equivalently, a ∗ b can be seen as a measure in difference between a · b and a ◦ b.
Indeed, it is clear that these coincide if and only if a∗b = 1. Yet another way to see
this operation becomes apparent when we look at the correspondence between two-
sided braces and Jacobson radical rings, where ∗ yields precisely the ring operation
of the associated Jacobson radical ring [Rum07a]. For subsets X,Y ⊆ A we define
X ∗ Y as the subgroup of (A, ·) generated by

{x ∗ y | x ∈ X and y ∈ Y }.

Taking X = Y = A we obtain A2 = A ∗A, which is an ideal of A with the property
that A/A2 is a trivial skew brace.

We can associate with every skew brace (A, ·, ◦) its opposite skew brace Aop =
(A, ·op, ◦) where a ·op b = b · a. This construction was first considered by A. Koch
and P. J. Truman [KT20]. It is now clear where the notation of the almost trivial
skew brace on a given group (A, ◦) comes from, as opTriv(A, ◦) = Triv(A, ◦)op.
In general, we use “op” to denote that we consider a known construction in the
opposite skew brace. For example, γop, respectively ∗op, is the gamma function,
respectively ∗-operation, associated with Aop. Concretely, for all a, b ∈ A,

γop(a)b = (a ◦ b) · a−1,

a ∗op b =
γop(a)b ·op b

−1 = b−1 · (a ◦ b) · a−1.

Note that A = Aop if and only if A is a brace. It is still possible that A ∼= Aop when
A 6= Aop, although this is generally not the case. The internal structures of A and
Aop are strongly related however, as the following result, whose proof is immediate,
shows.

Proposition 2.4. Let A be a skew brace. Then the ideals of A and Aop coincide.

As a concrete application of Proposition 2.4 we observe that A2
op = A ∗op A is

an ideal of A.

Definition 2.5. A skew brace (A, ·, ◦) is a bi-skew brace if also (A, ◦, ·) is a skew
brace.

Given a bi-skew brace A = (A, ·, ◦) we use the notation A↔ = (A, ◦, ·). The
gamma function γ↔ associated with A↔ is given by γ↔(a) = γ(a)−1 and its ∗-
operation is denoted by ∗↔. The following characterisation of bi-skew braces using
the gamma function is a slight reformulation of [Car20, Theorem 3.1].
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Theorem 2.6. Let A be a skew brace. Then the following are equivalent:

(1) A is a bi-skew brace.
(2) γ : (A, ·) → Aut(A, ·) is a group antihomomorphism.
(3) A2

op is contained in ker(γ).

Remark 2.7. We remark that another equivalent condition to the ones in Theo-
rem 2.6 is that A2

op ∗ A = {1}. Indeed, this follows from the fact that a ∗ b = 1 if

and only if γ(a)b = b. Also note that in particular A2
op is a trivial skew brace in this

case.

We recall the following notion, introduced as λ-homomorphic skew braces by
V. G. Bardakov, M. V. Neshchadim, and M. K. Yadav [BNY22a].

Definition 2.8. A skew brace A is γ-homomorphic if γ : (A, ·) → Aut(A, ·) is a
group homomorphism.

From Theorem 2.6 we recover the following result; see [Car20, Lemma 3.7].

Lemma 2.9. Let A be a skew brace. Then any two of the following statements
imply the third:

• A is γ-homomorphic.
• A is a bi-skew brace.
• γ(A) is abelian.

To conclude this section, we move our attention to solubility and nilpotency
properties of skew braces. Define inductively A(1) = A1 = A[1] = A1 = A, and

A(n) = A(n−1) ∗A,

An = A ∗An−1,

A[n] =

〈

n−1
⋃

i=1

A[i] ∗A[n−i]

〉

,

An = An−1 ∗An−1

for all n ≥ 2, where on the third line we mean the subgroup generated in (A, ·).
Here A(n) is an ideal of A, An and A[n] are left ideals of A, and An is a subskew
brace of A; see [CSV19, KSV21].

Definition 2.10. A skew brace A is

• right nilpotent if there exists n ≥ 1 such that A(n) = {1}; if n is minimal
with this property, then we call n− 1 the right nilpotency class of A.

• left nilpotent if there exists n ≥ 1 such that An = {1}; if n is minimal with
this property, then we call n− 1 the left nilpotency class of A.

• strongly nilpotent if there exists n ≥ 1 such that A[n] = {1}; if n is minimal
with this property, then we call n− 1 the strong nilpotency class of A.

• soluble if there exists n ≥ 1 such that An = {1}; if n is minimal with this
property, then we call n− 1 the solubility class of A.

For two-sided braces, the above notions all coincide with nilpotency of the as-
sociated Jacobson radical ring. Note that when the skew brace is almost trivial,
then a ∗ b is the commutator of a−1 and b, so the above notions coincide with
their group theoretical counterparts. We have the following connection between
left, right and strongly nilpotent skew braces, proved in [Smo18, Theorem 12] for
braces and generalised in [CSV19, Theorem 2.30] to skew braces.
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Theorem 2.11. Let A be a skew brace. Then the following are equivalent:

(1) A is left and right nilpotent.
(2) A is strongly nilpotent.

We conclude with the following result, which was stated in [BCJO19, Proposition
2.4] for braces but can easily be generalised to skew braces.

Lemma 2.12. Let A be a skew brace and let I be an ideal. Then A is a soluble
skew brace if and only if A/I and I are soluble skew braces.

3. Structural results for bi-skew braces

In this section, we deal with results on nilpotency and solubility of bi-skew braces.
We start by relating the structure of a bi-skew brace A with that of A↔.

Lemma 3.1. Let A be a bi-skew brace. Then the (left) ideals of A and A↔ coincide.

Proof. Let I be a subskew brace of A. As γ↔(a) = γ(a)−1 = γ(a), we have that
I is mapped to itself by γ(a) for all a ∈ A if and only if I is mapped to itself by
γ↔(a) for all a ∈ A. �

Lemma 3.2. Let A be a bi-skew brace, and let I be a left ideal of A. Then A ∗ I =
A ∗↔ I. If furthermore I is an ideal, then I ∗A = I ∗↔ A.

Proof. Suppose that I is a left ideal of A. Take a ∈ A and b ∈ I. We have

a ∗ b = γ(a)b · b−1 = (γ(a)b ◦ b ◦ b) · b−1

= (γ(a)b ◦ b) · γ(
γ(a)b◦b)b · b−1

= (a ∗↔ b) · ((a ∗↔ b) ∗ b).(3.1)

Hence a ∗↔ b = (a ∗ b) · ((a ∗↔ b) ∗ b)−1 ∈ A ∗ I, and thus A ∗↔ I ⊆ A ∗ I. By a
symmetric argument and Lemma 3.1, we also obtain A ∗ I ⊆ A ∗↔ I.

Suppose now that I is an ideal. By (3.1) with a ∈ I and b ∈ A and Lemma 3.1, we
get that I ∗↔A ⊆ I ∗A. Therefore the result follows by a symmetric argument. �

As a consequence, we derive the following propositions.

Proposition 3.3. Let A be a bi-skew brace. Then A is soluble of class n if and
only if A↔ is soluble of class n.

Proposition 3.4. Let A be a bi-skew brace. Then A is left, respectively right,
nilpotent of class n if and only if A↔ is left, respectively right, nilpotent of class n.

We show now that we can check whether a bi-skew brace is right nilpotent or
soluble just looking at a suitable group. A prominent role is played by Theorem 2.6
and Remark 2.7. Also the following lemma is used throughout the rest of this
section.

Lemma 3.5. Let A be a bi-skew brace. Then ker(γ) is an ideal of A.

Proof. It suffices to note that γ : A→ opTriv(Aut(A, ·)) is well-defined skew brace
homomorphism. �

Theorem 3.6. Let A 6= {1} be a bi-skew brace. Then A is right nilpotent of class
n+ 1 if and only if γ(A) is a nilpotent group of class n.
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Proof. As A is a bi-skew brace, ker(γ) is an ideal, trivial as a skew brace. Because
A 6= {1}, it is clear that A is right nilpotent of class n+ 1 if and only if A/ ker(γ)
is right nilpotent of class n.

As A2
op ⊆ ker(γ), we know that A/ ker(γ) is an almost trivial skew brace. In par-

ticular, A/ ker(γ) is right nilpotent of class n if and only if the group (A/ ker(γ), ◦)
is nilpotent of class n, and (A/ ker(γ), ◦) is clearly isomorphic to γ(A). �

Corollary 3.7. Let A be a bi-skew brace such that (A, ·) or (A, ◦) are nilpotent.
Then A is right nilpotent.

Proof. It suffices to note that γ(A) is a quotient of both (A, ·) and (A, ◦), and then
to apply Theorem 3.6. �

Corollary 3.8. Let A be a bi-skew brace. Then A is left nilpotent if and only if A
is strongly nilpotent.

Proof. By Theorem 2.11, it suffices to show that in this case left nilpotency im-
plies right nilpotency. If A is left nilpotent, then so is the skew brace A/ ker(γ).
But as A/ ker(γ) is almost trivial, we find that this is equivalent to the group
(A/ ker(γ), ◦) ∼= γ(A) being nilpotent. The result then follows from Theorem 3.6.

�

Proposition 3.9. Let A be a bi-skew brace. Then A is a soluble skew brace if and
only if γ(A) is a soluble group.

Proof. As A is a bi-skew brace, ker(γ) is an ideal, trivial as a skew brace. Therefore
A is soluble if and only if A/ ker(γ) is soluble, by Lemma 2.12.

Now as A2
op ⊆ ker(γ), we know that A/ ker(γ) is an almost trivial skew brace.

In particular, A/ ker(γ) is soluble if and only if the group (A/ ker(γ), ◦) is soluble,
and (A/ ker(γ), ◦) is clearly isomorphic to γ(A). �

We conclude this section by proving Byott’s conjecture in the case of bi-skew
braces.

Conjecture 3.10 (Byott’s Conjecture). Let A be a finite skew brace. If (A, ·) is
soluble, then (A, ◦) is soluble.

Theorem 3.11. Let A be a bi-skew brace. Then (A, ·) is soluble if and only if
(A, ◦) is soluble. Moreover, in this case also A is soluble as a skew brace.

Proof. Assume that (A, ·) is soluble. As A/A2
op is an almost trivial skew brace,

(A/A2
op, ·)

∼= (A/A2
op, ◦), and in particular it follows from the assumption that

both are soluble. Since A2
op is a trivial skew brace, clearly (A2

op, ·)
∼= (A2

op, ◦). In
particular, it once again follows from the assumption that both groups are soluble.
We conclude that (A/A2

op, ◦) and (A2
op, ◦) are soluble, so (A, ◦) is also soluble.

The exact same argument proves the other implication.
To prove that in this case A is also soluble as a skew brace, it suffices to note

that γ(A) is a soluble group as it is a quotient of (A, ◦). The solubility of A then
follows by Proposition 3.9. �

Remark 3.12. The same idea can be used to prove Byott’s conjecture for skew
braces with a composition series where the factors are trivial or almost trivial skew
braces, so in particular for soluble skew braces. This means that Byott’s conjecture
holds for several classes of skew braces studied in recent years, but as there exist
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finite simple skew braces which are neither trivial nor almost trivial [BCJO19], this
does not provide a general way to prove the conjecture.

3.1. Bi-skew braces and γ-homomorphic skew braces. Recall from Theo-
rem 2.6 that the gamma function of a bi-skew brace is an antihomomorphism with
respect to the additive group. It is therefore to be expected that there is a con-
nection with γ-homomorphic skew braces. Indeed, as we noted before these two
notions coincide when γ(A) is abelian. In the remainder of this section we further
discuss some similarities.

We start with a theorem for γ-homomorphic skew braces similar to Theorem 2.6
and Remark 2.7.

Theorem 3.13. Let A be a skew brace. Then the following are equivalent:

(1) A is γ-homomorphic.
(2) A2 is contained in ker(γ).
(3) A is right nilpotent of class at most 2.

Proof. Assume that A is γ-homomorphic. Then for all a, b ∈ A,

γ(a ∗ b) = γ(a)−1γ(a)γ(b)γ(b)−1 = 1.

It follows that A2 ⊆ ker(γ). Conversely, assume that ker(γ) contains A2. As A/A2

is a trivial skew brace it follows for all a, b ∈ A that (a · b) ◦A2 = (a ◦ b) ◦A2. The
assumption then implies

γ(a · b) = γ(a ◦ b) = γ(a)γ(b).

The equivalence of the second and third condition is clear. �

Recall that a skew brace A is metatrivial if it is soluble of class at most 2,
which by definition means that A2 is a trivial skew brace. As a consequence of
Theorem 3.13, we find a short proof of [BNY22a, Theorem 2.12], as follows.

Corollary 3.14. Every γ-homomorphic skew brace is metatrivial.

Proof. Let A be a γ-homomorphic skew brace. Then by Theorem 3.13, A(3) = {1},
and this clearly implies that A2 ∗A2 ⊆ A2 ∗A = {1}. �

Note that the converse does not hold.

Example 3.15. Let A = opTriv(S3), with S3 the symmetric group on 3 elements.
Then A is metatrivial because S3 is metabelian. As S3 is not nilpotent, it follows
that A is not right nilpotent and in particular not γ-homomorphic.

Example 3.16. Recall that if A is a Jacobson radical ring, then A yields a two-
sided brace [Rum07a]. By Theorem 2.6 (or equivalently, Theorem 3.13), we find
that the corresponding brace is a bi-skew brace (or equivalently a γ-homomorphic
skew brace) if and only if A(3) = A3 = {1}, as already shown in [Chi19, Proposition
4.1] when A is finite or nilpotent.

We conclude the section by showing that one can use the semidirect prod-
uct of skew braces to obtain two slightly different constructions, one yielding γ-
homomorphic skew braces and one yielding bi-skew braces. For bi-skew braces it
turns out that we find a different construction for examples which were already
described by Childs.
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We recall first the semidirect product of skew braces, as developed in [SV18,
Corollary 2.36]. If A and B are skew braces, an action of A on B is a group
homomorphism α : (A, ◦) → Aut(B, ·, ◦). If we have such an α, whose action is
written as a left exponent, then the set A×B, with operations

(a, b) · (a′, b′) = (a · a′, b · b′),

(a, b) ◦ (a′, b′) = (a ◦ a′, b ◦ α(a)(b′)),

is a skew brace, which we denote by A⋉B.

Example 3.17. Let G and H be groups, and let G act by automorphisms on H ,
with the action denoted by α. This induces an action of the trivial skew brace
A = Triv(G) on the trivial skew brace B = Triv(H). By the semidirect product
construction, we find a skew brace A⋉B. Explicitly,

(g, h) · (g′, h′) = (gg′, hh′),

(g, h) ◦ (g′, h′) = (gg′, hα(g)(h′)).

We have recovered in this way [GV17, Example 1.4]. Note that here the gamma
function is γ(g, h) = (id, α(g)). In particular, A ⋉ B is a γ-homomorphic skew
brace, and it is a bi-skew brace if and only if [G,G] ⊆ ker(α), as an immediate
computation shows.

Example 3.18. Let G and H be groups, and let G act by automorphisms on H ,
with the action denoted by α. This induces an action of the almost trivial skew
brace A = opTriv(G) on the trivial skew brace B = Triv(H). By the semidirect
product construction, we find a skew brace A⋉B. Explicitly,

(g, h) · (g′, h′) = (g′g, hh′),

(g, h) ◦ (g′, h′) = (gg′, hα(g)(h′)).

The skew brace A ⋉ B has gamma function γ(g, h) = (φ(g), α(g)), where φ(g)
denotes conjugation by g. This immediately implies that A⋉B is a bi-skew brace,
already obtained in [Chi19, Proposition 7.1] from the semidirect product of the
groups G and H . Moreover it is γ-homomorphic if and only if [G,G] ⊆ ker(α) ∩
Z(G). Note that when G is abelian, this construction coincides with the one in
Example 3.17.

4. Some classification results

We begin this section by showing that all the braces with multiplicative group
isomorphic to Z2 are in fact bi-skew braces. We need the following result.

Theorem 4.1. Let (A, ·, ◦) be a two-sided brace such that (A, ◦) is finitely generated
abelian of rank n. Then (A, ·) is finitely generated abelian of rank n.

Proof. By [Wat68, Theorem 3], if (A, ◦) is finitely generated abelian, then (A, ·) is
finitely generated. By [AD95, Theorem B], the ranks of (A, ◦) and (A, ·) coincide.

�

Proposition 4.2. Let A be a brace with multiplicative group isomorphic to Zn.
Then A is right nilpotent of class at most n.
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Proof. By Theorem 4.1, (A, ·) is finitely generated of rank n. Let T be the (neces-
sarily finite) torsion subgroup of (A, ·). As T is a characteristic subgroup of (A, ·),
it is a left ideal of A, so also a finite subgroup of (A, ◦), and thus T is trivial. It
follows that (A, ·) ∼= Zn.

Now for a prime p, let Ip ∼= (pZ)n be the characteristic subgroup of (A, ·) gen-
erated by all p-powers of elements. Then A/Ip has order pn, and therefore it is
left nilpotent of class at most n by [Rum07a, Corollary of Proposition 8]. As A/Ip
is a two-sided brace it is also right nilpotent of class at most n, or equivalently,
A(n+1) ⊆ Ip. We conclude that

A(n+1) ⊆
⋂

p prime

Ip = {1}. �

We immediately recover [CSV19, Theorem 5.5], and we find the result we have
claimed.

Corollary 4.3. Let A be a brace with multiplicative group isomorphic to Z. Then
A is a trivial skew brace.

Corollary 4.4. Let A be a brace with multiplicative group isomorphic to Z2. Then
A is a bi-skew brace.

Proof. It follows from Proposition 4.2 that A is right nilpotent of degree at most
2. The statement then follows from Theorem 2.6 and the fact that Aop = A. �

Motivated by Corollary 4.3, we now want to classify all the skew braces with
multiplicative group isomorphic to Z, as asked in [Ven19, Problem 2.27]. Let (A, ·)
be an infinite cyclic group, with generator x. We can define the following operation
on A:

xi ◦ xj = xi+(−1)ij .

Then, as shown in the proof of [Rum07b, Proposition 6], the operation ◦ is the
unique one such that (A, ·, ◦) is a nontrivial brace, and (A, ◦) is isomorphic to the
infinite dihedral group

〈x, y | y2 = 1, yxy = x−1〉 ∼= C2 ⋉ Z.

We can easily see that (A, ·, ◦) is a bi-skew brace. Moreover, there are just two
group automorphisms of (A, ◦), namely the identity and the inversion, and it is
easily verified that both are also automorphisms of the skew brace (A, ·, ◦) and
therefore also of (A, ◦, ·).

We claim that (A, ◦, ·) is not isomorphic to its opposite skew brace. They are
clearly not equal, as (A, ◦) is not abelian. Therefore, the only candidate for an
isomorphism is given by the inversion automorphism of (A, ·) which also induces
an automorphism of (A, ◦). If this yields an isomorphism of skew braces, then it
would be both an automorphism and antiautomorphism of (A, ◦) which implies
that (A, ◦) is abelian. As (A, ◦) is isomorphic to the infinite dihedral group, this is
a contradiction.

In the remainder of this section we prove that the two skew braces with infinite
cyclic multiplicative group above are in fact the only nontrivial ones.

Lemma 4.5. Let B be a skew brace with an abelian multiplicative group. Then for
all X,Y ⊆ B, the equality X ∗ Y = Y ∗op X holds.
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Proof. It suffices to note that for all a, b ∈ B,

a ∗ b = a−1 · (a ◦ b) · b−1 = a−1 · (b ◦ a) · b−1 = b ∗op a. �

Theorem 4.6. Let (A, ◦) = {x◦i | i ∈ Z} be an infinite cyclic group. If A = (A, ·, ◦)
is a skew brace, then the additive operation is given by one of the following equalities:

x◦i · x◦j = x◦(i+j),(4.1)

x◦i · x◦j = x◦(i+(−1)ij),(4.2)

x◦i · x◦j = x◦(j+(−1)j i).(4.3)

Proof. If (A, ·) is abelian, then · is given by (4.1) by Corollary 4.3.
From now on, we assume that (A, ·) is not abelian. As A is two-sided, it follows

from [Nas19, Lemma 4.5] that (A2, ·) is abelian. In particular, A2 6= A. Moreover,
note that A2 6= 1, otherwise A would be trivial, so (A, ·) would be abelian. We
deduce that there exists n ≥ 2 such that A2 = {x◦nk | k ∈ Z}.

As A2 is a brace with multiplicative group isomorphic to Z, it follows from
Corollary 4.3 that A2 is a trivial skew brace. Because (A/A2, ◦) ∼= Cn, we find that
A/A2 ∼= Triv(Cn).

As x generates (A, ◦), its equivalence class in A/A2 generates (A/A2, ◦), and
therefore also (A/A2, ·). If we take a ∈ A2 to be a generator of (A2, ·), then (A, ·) is
generated by a and x. Denote by ψ the inner automorphism on (A2, ·) induced by
x in (A, ·). As (A, ·) is not abelian, ψ is not trivial, so necessarily ψ is the inversion
automorphism.

Likewise, γ(x) restricts to an automorphism of (A2, ·), which is either the identity
or equals ψ.

(1) If γ(x) is the identity on A2, then using Lemma 4.5 we find A2 ∗op A =
A ∗ A2 = {1}, so Aop is a bi-skew brace. This means that (A, ◦, ·op) is a
nontrivial skew brace on (A, ◦), so necessarily · is given by (4.3).

(2) If γ(x) restricts to the inversion automorphism on (A2, ·), and therefore is
equal to ψ on A2, then γop(x) equals ψ2 = id on A2. Using Lemma 4.5 we
find A2

op ∗ A = A ∗op A
2 = {1}. So (A, ◦, ·) is a non-trivial skew brace on

(A, ◦), which implies that · is given by (4.2). �

5. Bi-skew braces and solutions of the Yang–Baxter equation

The interest in set-theoretic solutions of the Yang–Baxter equation, as a simplifi-
cation of its linear solutions, goes back to V. G. Drinfel’d [Dri92]. Compared to the
linear version, set-theoretic solutions are easier to study and classify. Nonetheless,
set-theoretic solutions can be linearised and are also omnipresent in the study of
link and knot invariants [NV06]. In this section we investigate connections between
bi-skew braces and associated set-theoretic solutions of the Yang–Baxter equation.
Before doing so, we give a short summary of all the necessary notions involved.

A set-theoretic solution of the Yang–Baxter equation is a pair (X, r) with X a
nonempty set and r : X2 → X2 a bijective map satisfying the braid equation

r1r2r1 = r2r1r2,

where r1 = r × idX and r2 = idX ×r. On every nonempty set X , the map
(x, y) 7→ (y, x) satisfies the braid equation; this solution is said to be trivial.
We say that a solution is nondegenerate if the maps σx, τx : X → X defined by
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r(x, y) = (σx(y), τy(x)) are bijective. In the rest of this section, we will shortly
refer to a nondegenerate set-theoretic solution of the Yang–Baxter equation as a
solution. Furthermore, we say that a solution is involutive if r2 = id. Given a
solution (X, r), it is easily checked that also (X, r−1) is a solution. We define
σ̂, τ̂ : X → X by r−1(x, y) = (σ̂x(y), τ̂y(x)).

Given two solutions (X, r) and (Y, s), we say that a map f : X → Y is a homo-
morphism of solutions if (f × f)r = s(f × f). One can prove that in this case the
image of f is a subsolution of (Y, s), meaning that s restricts to f(X)× f(X). A
bijective homomorphism of solutions is called an isomorphism of solutions.

Given a skew brace A, define

rA : A2 → A2, (a, b) 7→ (γ(a)b, γ(a)b ◦ a ◦ b).

Then the pair (A, rA) is a solution [LYZ00, GV17] and (Aop, rAop) is its inverse
solution [KT20]. This construction is functorial: a skew brace homomorphism
f : A→ B induces a homomorphism of solutions f : (A, rA) → (B, rB).

Following [ESS99] we define the structure group of a solution (X, r) as

G(X, r) = 〈X | x ◦ y = σx(y) ◦ τy(x) for all x, y ∈ X〉.

For each solution (X, r), one can also define its derived structure group as

A(X, r) = 〈X | x · y = y · σyσ̂y(x)〉.

It is possible to construct a bijection between A(X, r) and G(X, r) such that,
transferring the group structure of A(X, r) to G(X, r), one obtains a skew brace
(G(X, r), ·, ◦). This is a brace if and only if (X, r) is involutive; see [Sol00, LV19].
Under this bijection, the generator of A(X, r) corresponding to some element x ∈ X
is mapped to the generator of G(X, r) corresponding to x. We define ι : X →
G(X, r) as the canonical map sending each element to its corresponding generator.
We therefore find that ι(X) ⊆ (G(X, r), ·, ◦) generates both the additive and multi-
plicative group. Moreover, the skew brace (G(X, r), ·, ◦) satisfies the property that
ι is a homomorphism of solutions ι : (X, r) → (G(X, r), rG(X,r)). In particular, this

means that for all x, y ∈ X the equality ι(σx(y)) = γ(ι(x))(ι(y)) holds in G(X, r).
Similarly, it follows that ι(σ̂x(y)) = γop(ι(x))(ι(y)) holds in G(X, r). A solution is
injective if ι is an injective map. An involutive solution is always injective. To any
solution (X, r) one can associate its injectivization Inj(X, r), which is the image of
the homomorphism ι : (X, r) → (G(X, r), rG(X,r)). It is clear that G(Inj(X, r)) and
G(X, r) are isomorphic as skew braces and therefore Inj(X, r) is indeed an injective
solution.

Following [Bac18, CJK+23], we can associate to any solution (X, r) another
group called the permutation group, defined as

G(X, r) = 〈(σx, τ
−1
x ) | x ∈ X〉 ⊆ Perm(X)× Perm(X).

There exists a unique surjective group homomorphism π : G(X, r) → G(X, r) sat-
isfying π(x) = (σx, τ

−1
x ). It can be shown that the kernel of this map π is an

ideal of (G(X, r), ·, ◦), hence there is a natural skew brace structure induced on
G(X, r) such that π is a skew brace homomorphism. If (X, r) is injective, then
ker(π) = Soc(G(X, r)). In particular, note that for any involutive (hence injective)
solution (X, r), we find that ker(π) = ker(γ). As the construction of the solu-
tion associated to a skew brace is functorial, we find a homomorphism of solutions
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πι : (X, r) → (G(X, r), rG(X,r)). The image of this homomorphism is called the re-
tract of (X, r), denoted by Ret(X, r). It can be verified that Ret(X, r) can also
be obtained as the induced solution on the equivalence classes of the equivalence
relation given by

x ∼ y ⇐⇒ σx = σy and τx = τy,

which is its original definition in literature.
We now move on to our first result.

Proposition 5.1. Let A be a skew brace. Then A is a bi-skew brace if and only if
for all a, b ∈ A,

(5.1) γ(γop(a)b) = γ(b).

Proof. If A is a bi-skew brace, then the assertion follows from Theorem 2.6.
For the other implication, suppose that (5.1) holds. For all a, b ∈ A, we have

γ(a · b) = γ(γop(b)γop(b)a · b)

= γ(b ◦ γop(b)a)

= γ(b)γ(γop(b)a)

= γ(b)γ(a).

Hence, again, by Theorem 2.6, A is a bi-skew brace. �

The following is a straightforward corollary.

Proposition 5.2. Let A be a skew brace. Then A is a bi-skew brace if and only if
its associated solution (A, rA) satisfies, for all x, y ∈ A,

σσ̂x(y) = σy.

As a result, the information whether A is a bi-skew brace is not lost when one
only considers its associated solution. Next, it is natural to ask whether, if we
know that A is a bi-skew brace, it is possible to recover the associated solution of
A↔ from the associated solution of A. The following example shows that this is in
general not possible, as we construct nonisomorphic bi-skew braces A and B such
that the associated solutions are isomorphic, but the solutions associated to A↔

and B↔ are not isomorphic.

Example 5.3. Let (G, ·) = C2 × C8, with C2 = 〈x〉, and let ψ1 : C2 → Aut(G) be
the group homomorphism mapping x to the inversion automorphism of G. By the
semidirect product construction (see section 3), we find a bi-skew brace A on the
set C2 ×G, whose associated solutions can easily be computed as follows:

rA((x
i, g), (xj , h)) = ((xj , ψ1(x)

i

h), (xi, ψ1(x)
j

g)),

rA↔
((xi, g), (xj , h)) = ((xj , ψ1(x)

i

h), (xi, g · h · ψ1(x)
i

(h−1))).

In particular, τ↔,(xj,h)(1, g) = (1, g) and τ↔,(xj ,h)(x, g) = (x, g ·h2). Here τ↔ is the
usual map associated with the solution (A, rA↔

). Note that if h ∈ G is an element
of order 8, then τ↔,(xj,h) has order 4.

Now take (H, ·) = C4
2 , and let ψ2 : C2 → Aut(H), where still C2 = 〈x〉, be the

map which sends x to the automorphism interchanging the first two and the last
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two coordinates of H . In the same way as before we can then obtain a bi-skew
brace B, and two associated solutions:

rB((x
i, g), (xj , h)) = ((xj , ψ2(x)

i

h), (xi, ψ2(x)
j

g)),

rB↔
((xi, g), (xj , h)) = ((xj , ψ2(x)

i

h), (xi, g · h · ψ2(x)
i

h)).

In this case once again, we find that τ↔,(xj ,h)(1, g) = (1, g) and τ↔,(xj ,h)(x, g) =

(x, g · h · ψ2(x)
i

h). One easily checks that all τ -maps associated to rB↔
have either

order one or two. Therefore, rA↔
can not be isomorphic to rB↔

.
The cycle structures of ψ1(x) and ψ2(x) are the same; they are both of order

two and fix four points. Therefore, there exists a bijection θ : G → H such that
θψ1(x) = ψ2(x)θ, and in particular the bijection

C2 ×G→ C2 ×H, (xi, g) 7→ (xi, θ(g))

gives an isomorphism between the solutions rA and rB .

We now deal with the opposite situation, where we start with a given solution
and ask whether the skew brace on the structure group is a bi-skew brace.

Theorem 5.4. Let (X, r) be an injective solution. Then G(X, r) is a bi-skew brace
if and only if σσ̂x(y) = σy for all x, y ∈ X.

Proof. The implication from left to right is a consequence of Proposition 5.2 and
the fact that (X, r) is injective.

Now assume that for all x, y ∈ X , we have that σσ̂x(y) = σy . This means

that γ(γop(x)y) = γ(y) where x, y are now considered as the generators of G(X, r)
and γ, respectively γop, is the gamma function associated to G(X, r), respectively
G(X, r)op. In particular, as X generates the multiplicative group (G(X, r), ◦), it

follows that γ(γop(g)y) = γ(y) for all g ∈ G(X, r).
For a word w = xǫ11 · . . . · xǫnn with xi ∈ X and ǫi ∈ {−1, 1}, we will prove that

γ(w) = γ(xn)
ǫn . . . γ(x1)

ǫ1 .

As (G(X, r), ·) is generated by X , this then proves that

γ : (G(X, r), ·) → Aut(G(X, r), ·)

is a group antihomomorphism, and therefore G(X, r) is a bi-skew brace. We will
prove this claim by induction on n. For n = 1 and ǫ1 = 1 the statement is
trivial. To also cover the case where n = 1 and ǫ1 = −1, we have to prove that
γ(x−1) = γ(x)−1 for all x ∈ X . For this, we note that there is the equality
γop(a)(a) = (a ◦ a) · a−1 = a−1, or equivalently, γop(a)

−1
(a−1) = a, so substituting a

by x−1 we find γop(x−1)−1
(x) = x−1, thus

γ(x−1) = γ
(

γop(x−1)−1
(x)
)

= γ
(

γop(x
−1)−1

(x)
)−1

= γ(x)−1.

Now assume that the statement holds for words of length n − 1, and let w =
xǫ11 · . . . · xǫnn be a word of length n. If we write v = xǫ22 · . . . · xǫnn , then

γ(w) = γ(v ◦ γop(v)(xǫ11 ))

= γ(v)γ(γop(v)(xǫ11 ))

= γ(xn)
ǫn . . . γ(x2)

ǫ2γ(γop(v)(x1))
ǫ1

= γ(xn)
ǫn . . . γ(x2)

ǫ2γ(x1)
ǫ1 . �
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Corollary 5.5. Let (X, r) be a solution such that for all x, y ∈ X,

σσ̂x(y) = σy.

Then G(X, r) is a bi-skew brace.

Proof. As Inj(X, r) is a homomorphic image of (X, r), it follows that Inj(X, r)
still has the property that σσ̂x(y) = σy for all x, y ∈ Inj(X, r). Because G(X, r) and
G(Inj(X, r)) are isomorphic skew braces, the result follows from Proposition 5.4. �

As an application, we find a nice description for involutive solutions such that
the skew brace on the structure group is a bi-skew brace.

Proposition 5.6. Let (X, r) be an involutive solution. Then the following state-
ments are equivalent:

(1) G(X, r) is a bi-skew brace.
(2) G(X, r) is a trivial brace.
(3) Ret(X, r) is a trivial solution.

Proof. As (X, r) is involutive, G(X, r) ∼= G(X, r)/ ker(γ), where γ is the gamma
function of G(X, r). It follows that G(X, r)(3) = {1} if and only if G(X, r)(2) = {1}.
This proves the equivalence of the first two properties.

Assume that G(X, r) is a trivial brace, so its associated solution is a trivial
solution. Because Ret(X, r) is equal to the image of the canonical map πι : (X, r) →
(G(X, r), rG(X,r)), we find that Ret(X, r) is also trivial.

At last, assume that Ret(X, r) is a trivial solution. Once again using the fact
that Ret(X, r) embeds into (G(X, r), rG(X,r)), we know that γ(x)y = y in G(X, r)
for all x, y ∈ Ret(X, r) ⊆ G(X, r). As Ret(X, r) generates both the additive and
multiplicative group of G(X, r), it follows that γ(g)h = h for all g, h ∈ G(X, r). This
means that G(X, r) is a trivial skew brace. �

Remark 5.7. If (X, r) is an involutive solution such that Ret(X, r) is trivial, then
clearly Ret(Ret(X, r)) is the trivial solution on a singleton. Solutions with this
property are said to be of multipermutation level 2. Involutive multipermutation
solutions of level 2 were classified in [JPZD20] and in particular, [JPZD20, Theorem
7.8] gives an explicit construction of all involutive solutions with a trivial retract.

6. A characterisation of brace blocks, an explicit construction, and

some examples

Recall the definition of a brace block.

Definition 6.1. Let A be a set. A brace block, denoted by ((A, ◦i) | i ∈ I), consists
of a family of group operations (◦i | i ∈ I) on A such that (A, ◦i, ◦j) is a bi-skew
brace for all i, j ∈ I.

In order to give a characterisation of brace blocks, we begin with a result on
transitivity of bi-skew braces.

Theorem 6.2. Let (A, ·, ◦1) and (A, ·, ◦2) be bi-skew braces with gamma functions
γ1 and γ2, respectively. Then (A, ◦1, ◦2) is a bi-skew brace if and only if the following
conditions hold: for all a, b ∈ A and i, j ∈ {1, 2} with i 6= j,

γi(a)γj(b)γi(a)
−1 = γj(

γi(a)b).
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Proof. By symmetry, we can just look at when (A, ◦1, ◦2) is a skew brace. As

a ◦2 b = a · γ2(a)b = a ◦1
γ1(a)

−1γ2(a)b,

we need to find under which conditions γ(a) = γ1(a)
−1γ2(a) is a gamma function

on (A, ◦1).
The first condition to check is whether for all a ∈ A, we have γ(a) ∈ Aut(A, ◦1),

or equivalently, γ2(a) ∈ Aut(A, ◦1). Here we have

γ2(a)(b ◦1 c) =
γ2(a)(b · γ1(b)c) = γ2(a)b · γ2(a)γ1(b)c

and

γ2(a)b ◦1
γ2(a)c = γ2(a)b · γ1(

γ2(a)b)γ2(a)c.

We find that γ(a) ∈ Aut(A, ◦1) if and only if for all a, b ∈ A,

(6.1) γ2(a)γ1(b)γ2(a)
−1 = γ1(

γ2(a)b).

Now suppose that (6.1) holds. We claim that it is already enough to deduce that
γ : (A, ◦2) → Aut(A, ◦1) is a group homomorphism. For all a, b ∈ A,

γ(a ◦2 b) = γ1(a ·
γ2(a)b)−1γ2(a ◦2 b)

= γ1(a)
−1γ1(

γ2(a)b)−1γ2(a)γ2(b)

= γ1(a)
−1γ2(a)γ1(b)

−1γ2(a)
−1γ2(a)γ2(b)

= γ1(a)
−1γ2(a)γ1(b)

−1γ2(b) = γ(a)γ(b). �

Definition 6.3. Let (A, ·) be a group. A brace block on (A, ·) is a brace block
((A, ◦i) | i ∈ I) such that (A, ◦k) = (A, ·) for some k ∈ I.

We deduce the following characterisation for brace blocks on a given group.

Theorem 6.4. Let (A, ·) be a group. Then the following data are equivalent:

(1) A brace block on (A, ·).
(2) A family of maps (γi | i ∈ I) such that the following conditions hold:

• γi : (A, ·) → Aut(A, ·) is a group antihomomorphism for all i ∈ I.
• There exists k ∈ I such that γk(a) = id for all a ∈ A.
• For all i, j ∈ I and a, b ∈ A,

γi(a)γj(b)γi(a)
−1 = γj(

γi(a)b).

Proof. For all i ∈ I, we find that (A, ·, ◦i) is a bi-skew brace because γi is a group
antihomomorphism and the last condition for i = j implies that

γi(a ·
γi(a)b) = γi(a)γi(b).

Now apply Theorem 6.2. �

Remark 6.5. A similar condition was found in a particular case in [Spa22, Theo-
rem 4.30], where the problem of finding mutually normalising regular subgroups in
the holomorph of a cyclic group of prime order was dealt with. This problem is
equivalent to looking for brace blocks; see [CS22, section 7] for more details.

We use this characterisation to propose an intermediate construction of brace
blocks, which already can provide several examples.
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Theorem 6.6. Let (A, ·) be a group, let M be an abelian subgroup of Aut(A, ·),
and let S be the set of group homomorphisms γ : A→M such that γ(ψ(a)) = γ(a)
for all a ∈ A and ψ ∈M . Then ((A, ◦γ) | γ ∈ S) is a brace block, where

a ◦γ b = a · γ(a)b.

Moreover, (A, ◦γ1 , ◦γ2) is γ-homomorphic for all γ1, γ2 ∈ S.

Proof. The first part is immediate from Theorem 6.4. To conclude the second
part, recall that the gamma function γ1,2 of (A, ◦γ1 , ◦γ2) is given by γ1,2(a) =
γ1(a)

−1γ2(a). As γ1,2(A) ⊆M , so in particular it is abelian, we find that (A, ◦γ1 , ◦γ2)
is γ-homomorphic by Lemma 2.9. �

Example 6.7. Let R be a ring with unity (not necessarily commutative), and for
all x ∈ R, define the following map:

γx : R
2 → Aut(R2,+),

(

r
s

)

7→

(

1 0
xr 1

)

.

We note the following facts:

• For all x ∈ R,

γx(R
2) ⊆M =

{(

1 0
y 1

)

| y ∈ R

}

,

and M is clearly abelian.
• For all x ∈ R, we have that γx is a group homomorphism.
• For all x ∈ R, a ∈ R2, and ψ ∈M , we have γx(ψ(a)) = γx(a).

We conclude that ((R2, ◦x) | x ∈ R2) is a brace block, where
(

r
s

)

◦x

(

r′

s′

)

=

(

r + r′

s+ s′ + xrr′

)

.

Moreover, all the operations are distinct, because for all x ∈ R,

γx

(

1
0

)

=

(

1 0
x 1

)

.

Assume that R is commutative and that for all r ∈ R there exists a unique r′ ∈ R

such that 2r′ = r2−r (by abuse of notation, we say r′ = r2−r
2 ), which is for example

the case if R is Z or an algebra over a field of characteristic different from 2. It is
straightforward to verify that we have a group isomorphism

θ : (R2,+) → (R2, ◦γx),

(

r
s

)

7→

(

r

s+ x(r2−r)
2

)

.

Example 6.8. If in the previous example we take R = Z, we find that if x 6= ±y
then (Z2,+, ◦γx) 6

∼= (Z2,+, ◦γy). Indeed,
(

r
s

)

∗

(

r′

s′

)

=

(

0
xrr′

)

and therefore (Z2,+, ◦γx)/(Z
2,+, ◦γx)

2 ∼= Triv(Z×C|x|). This nicely contrasts the
case of additive group Z, where only 2 distinct group operations ◦ giving a skew
brace (Z,+, ◦) are possible, as we have recalled in section 4.

One can show that the skew braces (Z2,+, ◦γx) are isomorphic to the λ-cyclic
skew braces with infinite cyclic image constructed in [BNY22a, Section 4].
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Example 6.9. Let us reconsider Example 6.7 with R a field of characteristic not 2.
As explained above, we obtain a brace block ((R2, ◦γx) | x ∈ R), where (R2,+) ∼=
(R2, ◦γx) for all x ∈ R. We claim that in this case all bi-skew brace of the form
(R2, ◦x, ◦y), where x, y ∈ R and x 6= y, are isomorphic. For this, it suffices to check
that an isomorphism of skew braces is given by

θ : (R2,+, ◦γ1) → (R2, ◦γx , ◦γy),

(

r
s

)

7→

(

r

(y − x)s+ x(r2−r)
2

)

.

Let now G and H be groups. We have seen in section 3 that semidirect products
of the form Triv(G)⋉Triv(H), respectively opTriv(G)⋉Triv(H), are an easy way to
construct γ-homomorphic skew braces, respectively bi-skew braces. It is therefore
natural to try to generalise this construction in order to obtain brace blocks.

For a group homomorphism α : G→ Aut(H), we write ◦α for the group operation
on G×H given by the semidirect product of G and H .

Proposition 6.10. Let G and H be groups, let M be an abelian subgroup of
Aut(H), and let S be the set of group homomorphisms α : G → M . Then ((G ×
H, ◦α) | α ∈ S) is a brace block.

Proof. For all α ∈ S, let γα be the gamma function associated with (G×H, ·, ◦α):

γα : G×H → Aut(G)×Aut(H) ⊆ Aut(G×H), (g, h) 7→ (id, αg).

These images are all contained in the abelian subgroup {id} ×M of Aut(G ×H).
In order to apply Theorem 6.6, it suffices to check that γα(ψ(g, h)) = γα(g, h) for
all α ∈ S, ψ = (id, ψ′) ∈ {id} ×M , and (g, h) ∈ G×H . We find

γα(ψ(g, h)) = γα(g, ψ
′(h)) = (id, αg) = γα(g, h). �

Example 6.11. For all n ∈ N, define

αn : Z → GL2(Z), x 7→

(

1 0
nx 1

)

,

which is a well-defined group homomorphism. As

B =

{(

1 0
x 1

)

| x ∈ Z

}

is clearly an abelian subgroup of GL2(Z), from Proposition 6.10 we obtain a brace
block ((Z× Z2, ◦n) | n ∈ N). More precisely,





x
y
z



 ◦n





x′

y′

z′



 =





x+ x′

y + y′

z + z′ + nxy′





In particular, if n 6= m, then (Z×Z2, ◦αn
) and (Z×Z2, ◦αm

) are nonisomorphic, as
the abelianisation of (Z×Z2, ◦αn

) is isomorphic to Z2×Cn. We have thus obtained
a brace block with countably many nonisomorphic groups.

Example 6.12. Let (A, ·) be a group, and let B be a subgroup of A. Assume
that the group of inner automorphisms of (A, ·) induced by B, which we denote by
H(B), is abelian. It is easy to check that this is equivalent to [B,B] ⊆ Z(A).

A straightforward verification shows that γ(ψ(a)) = γ(a) for all group homo-
morphisms γ : A → H(B), ψ ∈ H(B), and a ∈ A. This means that if we denote
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by S the set of group homomorphisms from A to H(B), we obtain a brace block
((A, ◦γ) | γ ∈ S) with

a ◦γ b = a · γ(a)b.

Note that the groups homomorphisms A → H(B) correspond precisely to the
group homomorphisms A → B/(B ∩ Z(A)), because H(B) ∼= B/(B ∩ Z(A)). For
example, every group homomorphism ψ : A → B yields a group homomorphism
A → B/(B ∩ Z(A)), which we can use for our construction. Moreover, we have
ψ[A,A] ⊆ [B,B] ⊆ Z(A), so we find precisely the condition described in [CS21,
Theorem 1.2]. In particular, when B is abelian, we recover [Koc21, Koc22]. In-
deed, all the bi-skew braces found in these works are associated with gamma func-
tions which act by conjugation and have a common abelian codomain; see also
Remark 6.15. For a concrete application of this construction in Hopf–Galois the-
ory, see [ST22, Theorem 4.9].

Example 6.13. We show now how the main construction of [CS22] follows from
Theorem 6.6. Let (A, ·) be a group, let B be a subgroup of (A, ·) such that [B,B]
is contained in Z(A) (so that H(B), defined as before, is abelian), and let K be
a subgroup of B contained in Z(A). (Note that we do not require that B/K is
abelian.) Define

A = {ψ : A/K → B/K group homomorphism},

B = {α : A×A→ K | α is bilinear and α(A,K) = α(K,A) = {1}}.

For all ψ ∈ A and α ∈ B, define

a ◦ψ,α b = a · ψ(a) · b · ψ(a)−1 · α(a, b),

where with a little abuse of notation we write ψ(a) for any element in the coset
ψ(aK). In [CS22] it is shown that this construction is well-defined, and that more-
over ((A, ◦ψ,α) | (ψ, α) ∈ A× B) is a brace block. We can write

a ◦ψ,α b = a · γ1(a)γ2(a)b,

where γ1(a) denotes conjugation by ψ(a) and γ2(a) : b 7→ b · α(a, b). Consider now
the following subgroup of the central automorphisms of (A, ·):

L = {δ ∈ Aut(A, ·) | δ(b) · b−1 ∈ K and δ(k) = k for all b ∈ A and k ∈ K}.

The group L is abelian and it centralises the subgroup of inner automorphisms
of Aut(A, ·), so that M = H(B)L is abelian. Now define S as in Theorem 6.6,
with respect to M . It is just a matter of computation to show that the group
homomorphism a 7→ γ1(a)γ2(a) is an element of S, so we apply Theorem 6.6 to
derive our claim.

Note that in fact there is no need for the codomain of the maps in A to be
B/K. We could just consider group homomorphisms from A/K to B/(B ∩ Z(A))
and find that the construction still works. This means that we do not require
any relation between K and B; in this way we find a further generalisation of the
original construction.

We now use Theorem 6.6 to obtain an iterative construction of brace blocks.

Corollary 6.14. Let (A, ·, ◦) be a γ-homomorphic bi-skew brace, and for all n ∈ Z

and a ∈ A, let γn(a) = γ(an) = γ(a)n. Then ((A, ◦n) | n ∈ Z) is a brace block,
where

a ◦n b = a · γn(a)b.
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Proof. Apply Theorem 6.6 with M = γ(A), which is abelian by Lemma 2.9. �

Remark 6.15. This construction presents some similarities with Koch’s construc-
tion [Koc22] (or more precisely, the variation presented in [CS22, Example 5.2]),
but the operations we find are different. Indeed, let (A, ·) be a group, and let ψ be
an abelian endomorphism. Then (A, ·, ◦) is a γ-homomorphic bi-skew brace, where
γ(a) is conjugation by ψ(a). Both constructions yield a brace block ((A, ◦n) | n ∈
Z), where

a ◦n b = a · ψn(a) · b · ψn(a)
−1.

In Koch’s case, ψn(a) =
∏n
i=1 ψ

i
(

a(
n

i)
)

, while in our case, ψn(a) = ψ(an).

Remark 6.16. Corollary 6.14, which is a natural application of Theorem 6.6, also
recently appeared in [BNY22b, Theorem 4.12], where the approach followed is
significantly different.

Example 6.17. Let

γ : Z2 → GL2(Z),

(

a
b

)

7→

(

1 0
a 1

)

.

This clearly is a gamma function which provides a γ-homomorphic bi-skew brace,
and applying Corollary 6.14 to γ, we find precisely the γn, n ∈ N, as in Example 6.8.
In particular, our iterative construction yields a brace block containing countably
many nonisomorphic skew braces.

It is natural to ask whether a similar construction as Corollary 6.14 is still
possible when we are not necessarily starting from a γ-homomorphic bi-skew brace.
The following proposition shows that this is indeed the case.

Proposition 6.18. Let A be a skew brace, and let ψ a group endomorphism of
(A, ·) such that for all a, b ∈ A, the equation

ψ(γ(ψ(a))b) = γ(ψ(a))(ψ(b))

holds. Then (A, ·, ◦ψ) is skew brace, where

a ◦ψ b = a · γ(ψ(a))b.

Proof. It suffices to prove that the map A 7→ Aut(A, ·) given by a 7→ γ(ψ(a)) is a
gamma function on (A, ·). For all a, b ∈ A, we find that

γ(ψ(a · γ(ψ(a))b)) = γ(ψ(a) · γ(ψ(a))ψ(b)) = γ(ψ(a) ◦ ψ(b)) = γ(ψ(a))γ(ψ(b)). �

The relation with Corollary 6.14 is especially clear when we look at the following
straightforward corollary, which in particular applies to Jacobson radical rings.

Corollary 6.19. Let (A, ·, ◦) be a (two-sided) brace. Then (A, ·, ◦n) is a (two-sided)
brace for all n ∈ Z, where

a ◦n b = a · γ(a
n)b.

Proof. The fact that (A, ·, ◦n) is a brace follows by applying Proposition 6.18, with
ψ : a → an. A straightforward calculation shows that if (A, ·, ◦) is two-sided, then
also (A, ·, ◦n) is two-sided. �
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