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Abstract 

We discuss bias-robust mean squared error estimation for estimators of finite population domain 

means that can be expressed in pseudo-linear form, i.e. as weighted sums of sample values. Our 

approach represents an extension of the ideas in Royall and Cumberland (1978) and appears to lead 

to estimators that are simpler to implement, and potentially more robust, than those suggested in the 

small area literature. We illustrate the usefulness of our approach through extensive model-based 

and design-based simulation, with the latter based on two realistic survey data sets containing small 

area information. 
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1. INTRODUCTION 

Linear models, and linear predictors based on these models, are widely used in survey-based 

inference. However, such models run the risk of misspecification, particularly with regard to second 

order and higher moments. Bias-robust methods for estimating the mean squared error (MSE) of 

linear predictors of finite population quantities, i.e. methods that remain approximately unbiased 

under failure of assumptions about second order and higher moments, have been developed. 

Valliant, Dorfman and Royall (2000, chapter 5) discuss bias-robust MSE estimation for such 

predictors when a population is assumed to follow a linear model. 

In this paper we address a subsidiary problem, which is that of bias-robust MSE estimation for 

estimators of finite population domain means that can be expressed in pseudo-linear form, i.e. as 

weighted sums, but where the weights can depend on the sample values of the variable of interest. 

An important application, and one that motivates our approach, is small area inference. 

Consequently from now on we use ‘small area’ (or just ‘area’) to refer to a domain of interest. Our 

approach represents an extension of the ideas in Royall and Cumberland (1978) and appears to lead 

to simpler to implement MSE estimators than those that have been suggested in the small area 

literature, see Prasad and Rao (1990) and Rao (2003, section 6.2.6). 

The structure of the paper is as follows. In section 2 we discuss area-specific MSE estimation 

under an area-specific linear model. We then show how our approach can be used for estimating the 

MSE of three different small area linear predictors when they are expressed in pseudo-linear form, 

(a) the empirical best linear unbiased predictor or EBLUP (Henderson, 1953); (b) the model-based 

direct estimator (MBDE) of Chandra and Chambers (2009); and (c) the M-quantile predictor 

(Chambers and Tzavidis, 2006). In section 3 we present results from a series of simulation studies 

that illustrate the model-based and the design-based properties of our approach to MSE estimation. 

Finally, in section 4 we summarize our main findings. Throughout, we use either i or h to index the 

D small areas of interest, and either j or k to index the distinct population units in these areas. 
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2. BIAS-ROBUST MSE ESTIMATION FOR PSEUDO-LINEAR ESTIMATORS 

2.1 MSE Estimation under an Area-Specific Linear Model 

When survey-based inference relates to the characteristics of a group of D areas that partition the 

surveyed population, it is usually not realistic to assume that a linear model that applies to the 

population as a whole also applies within each area. We therefore consider MSE estimation for 

estimators of area means when different linear models apply within different areas. In particular, we 

focus on estimators that can be expressed as weighted sums of the sample values, referring to them 

as ‘linear’ in what follows to indicate that they have a linear structure. 

To start, let 
 
y

j
 denote the value of Y for unit j of the population and suppose that this unit is in 

area i. We assume an area-specific linear model for 
 
y

j
 of the form 

 
 
y

j
= x

j

T

i
+ e

j
 (1) 

where 
 
x

j
 is a   p 1  vector of unit level auxiliary variables for unit j, 

 i
 is a   p 1  vector of area-

specific regression coefficients and 
 
e

j
 is a unit level random effect with mean zero and variance 

  j

2  

that is uncorrelated between different population units. We do not assume anything about 
  j

2  at this 

point. Suppose also that there is a known number 
 
N

i
 of population units in area i, with 

 
n

i
 of these 

sampled. The total number of units in the population is 
  
N = N

i
i=1

D

, with corresponding total sample 

size 
  
n = n

i
i=1

D

. In what follows, we use s to denote the collection of units in sample, with 
 
s

i
 the 

subset drawn from area i, and use expressions like 
 
j i  and 

 
j s  to refer to the units making up 

area i and sample s respectively. Note that throughout this paper we assume that the sampling 

method used is uninformative for the population values of Y given the corresponding values of the 

auxiliary variables and knowledge of the area affiliations of the population units. As a consequence, 

(1) applies at both sample and population level. 
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Let 
 
y

s
 denote the vector of sample values of the 

 
y

j
 and let 

  
w

is
= w

ij
; j s{ }  denote a set of 

‘fixed’ weights such that 
  
m̂

i
= w

is

T
y

s
= w

ij
y

jj s
 is a consistent estimator of 

  
m

i
= N

i

1
y

jj i
 under 

simple random sampling within area i. By ‘fixed’ here we mean that these weights do not depend on 

the sample values of Y. Without loss of generality, we set 
  

w
ijj s
= 1 , so that 

  
w

ij
= O(n

i

1)  for 
 
j s

i
 

and 
  
w

ij
= o(n

i

1)  for 
 
j s

i
. Here 

 
s

i
 denotes the 

 
n

i
 sample units from area i. The bias of 

  
m̂

i
 under 

(1) is then 

 

  

E(m̂
i

m
i
) =  w

ij
x

j

T

hj s
h

h=1

D

x
i

T

i
. (2) 

Here 
 
x

i
 denotes the vector of average values of the auxiliary variables in area i. Similarly, the 

prediction variance of 
  
m̂

i
 under (1) is 

 

  

Var(m̂
i

m
i
) = N

i

2
a

ij

2

j

2

j s
h

h=1

D

+
j

2

j r
i

 (3) 

where 
 
r

i
 denotes the non-sampled units in area i and 

  
a

ij
= N

i
w

ij
I ( j i) . We use   I ( A)  to denote 

the indicator function for event A, so   I ( j i)  takes the value 1 if population unit j is from area i and 

is zero otherwise. Note that since 
 
a

ij
 is 

  
O(N

i
n

i

1)  for 
 
j s

i
, the first term within the braces in (3) is 

the leading term of this prediction variance if 
 
N

i
 is large compared to 

 
n

i
. 

Let sample unit 
 
j  be from area h. We consider the important special case where 

  
μ

j
= E( y

j
| x

j
) = x

j

T

h
 is estimated by 

  
μ̂

j
=

kj
y

kk s
, where the 

 kj
 are suitable weights. Then 

 
  
y

j
μ̂

j
= (1

jj
)y

j kj
y

kk s( j )
 

and so 

 
  
Var( y

j
μ̂

j
) =

j

2 (1
jj
)2
+

kj

2 (
k

2 /
j

2 )
k s( j ){ }  (4) 

under (1). Here   s( j)  denotes the sample  s  with unit 
 
j  excluded. If in addition 

  
μ̂

j
 is unbiased for 

 
μ

j
 under (1), i.e. 
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E( y

j
μ̂

j
) = 0  (5) 

we can adopt the approach of Royall and Cumberland (1978) and estimate (3) by 

 

  

V̂ (m̂
i
) = N

i

2
a

ij

2 ˆ
j

1( y
j

μ̂
j
)2

j s
h

h=1

D

+ ˆ
j

2

j r
i

 (6) 

where 

 
  
ˆ

j
= (1

jj
)2
+ ˆ

kj kj

2

k s( j )
 

and 
  
ˆ

kj
= ˆ

k

2 / ˆ
j

2 . Usually, the estimates 
  
ˆ

j

2  of the residual variances in (6) are derived under a 

‘working model’ refinement to (1). In the situation of most concern to us, where the sample sizes 

within the different areas are too small to reliably estimate area-specific variability, a pooling 

assumption can be made, i.e. 
  j

2
=

2 , in which case we put 

 
  
ˆ

j

2
= ˆ 2

= n
1 (1

jj
)2
+

kj

2

k s( j ){ }
1

( y
j

μ̂
j
)2

j s
 (7) 

and so (6) becomes 

 
  
V̂ (m̂

i
) = N

i

2
a

ij

2
+ (N

i
n

i
)n 1{ } ˆ

j

1( y
j

μ̂
j
)2

j s
 (8) 

where now 
  
ˆ

j
= (1

jj
)2
+

kj

2

k s( j )
. Since any assumptions regarding 

  j

2  in the working model 

extension of (1) only affect second order terms in (3), the estimator (8) is bias-robust, i.e. it remains 

approximately unbiased under misspecification of the second order moments of this working model. 

A corresponding estimator of the MSE of 
  
m̂

i
 under (1) follows directly. This is 

 
  
M̂ (m̂

i
) = V̂ (m̂

i
)+ B̂

2 (m̂
i
) . (9) 

where 

 
  
B̂(m̂

i
) = w

ij
μ̂

jj s
h

h=1

D

 N
i

1 μ̂
jj i
 (10) 

is the obvious unbiased estimator of (2). 
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Use of the square of the unbiased estimator (10) of the bias of 
  
m̂

i
 in the mean squared error 

estimator (9) can be criticised because this term is not itself unbiased for the squared bias term in the 

mean squared error. This can be corrected by replacing (9) by 

 
  
M̂ (m̂

i
) = V̂ (m̂

i
)+ B̂

2 (m̂
i
) V̂ B̂(m̂

i
){ } . (11) 

where 
  
V̂ B̂(m̂

i
){ }  is a consistent estimator of the variance of (10). However, small area sample sizes 

may lead to this estimate becoming quite unstable, and so users may still prefer (9) over (11). 

Obviously (9) is then a conservative estimator of the MSE of 
  
m̂

i
 under (1). 

2.2 MSE Estimation for Pseudo-Linear Small Area Estimators 

The approach to MSE estimation outlined in the previous sub-section assumed that the weights 

defining the linear estimator 
  
m̂

i
 do not depend on the sample values of Y. However, most small 

area estimators do not satisfy this condition, in the sense that they are pseudo-linear in structure, 

with weights that do depend on these sample values. For example, the Best Linear Unbiased 

Predictor (BLUP) of 
 
m

i
 under the linear mixed model variant of (1) where the area-specific 

regression parameters 
 i

 are independent and identically distributed realisations of a random 

variable with expected value  and covariance matrix , can be written as a weighted sum of the 

sample values of Y where the weights depend on  (see Royall, 1976). Consequently, the empirical 

version of this predictor, the widely used EBLUP, is computed by substituting an efficient sample 

estimate of  (e.g. the REML estimate) into the BLUP weights. If the linear mixed model 

assumption is true, this sample estimator of  converges to the true value and consequently the 

EBLUP weights converge to the BLUP weights. That is, for large values of the overall sample size n, 

we can treat the EBLUP weights as fixed and use the MSE estimator (9) for the EBLUP. Of course, 

the EBLUP weights are not really fixed, and so (9) is therefore an approximation to the true MSE of 

the EBLUP that ignores the contribution to this MSE arising from the variability in estimation of 

. However, this potential underestimation needs to be balanced against the bias robustness of (9) 
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under misspecification of the second order moments of Y, and may well lead to this MSE estimator 

being preferable to other MSE estimators for the EBLUP based on higher order approximations 

that depend on the linear mixed model being true, e.g. the estimator of Prasad and Rao (1990). 

An important advantage of (9) is its wide applicability. Many small area estimators developed 

under models that are variants of (1) can be written in pseudo-linear form, i.e. as weighted sums of 

the sample values of Y. To illustrate, we now focus on three such estimators: the EBLUP (Rao, 

2003, chapter 6), the Model-Based Direct Estimator (MBDE) of Chandra and Chambers (2009) and 

the M-quantile predictor of Chambers and Tzavidis (2006). Each of these estimators can be written 

in pseudo-linear form, with weights that satisfy 
  
w

ij
= O(n

i

1)  for 
 
j s

i
 and 

  
w

ij
= o(n

i

1)  for 
 
j s

i
, 

and so (9) can be used. 

2.2.1 MSE estimation for the EBLUP 

We first consider the well-known EBLUP for 
 
m

i
 based on a unit level linear mixed model extension 

of (1) of the form 

 
  
y

i
= X

i
+ Z

i
u

i
+ e

i
 (12) 

where 
 
y

i
 is the 

 
N

i
-vector of population values of 

 
y

j
 in area i, 

  
X

i
 is the corresponding 

 
N

i
p  

matrix of auxiliary variable values 
 
x

j
, 

  
Z

i
 is the 

 
N

i
q  component of 

  
X

i
 corresponding to the q 

random components of , 
 
u

i
 is the associated q-vector of area-specific random effects and 

 
e

i
 is the 

 
N

i
-vector of individual random effects. It is typically assumed that the area and individual effects 

are mutually independent, with the area effects independently and identically distributed as   N (0, )  

and the individual effects independently and identically distributed as   N (0, 2 ) . See Rao (2003, 

chapter 6) for development of the underlying theory of this predictor. We note that the EBLUP can 

be written in pseudo-linear form, 

 
  
m̂

i

EBLUP
= w

ij

EBLUP
y

jj s
= (w

is

EBLUP )T
y

s
 (13) 

where 
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w

is

EBLUP
= (w

ij

EBLUP ) = N
i

1

is
+ Ĥ

s

T
X

r

T
+ I

n
Ĥ

s

T
X

s

T( ) ˆ
ss

1 ˆ
sr{ } ir

. 

Here 
 ir

 is the vector of size  N n  that ‘picks out’ the non-sampled units in area i, 
  
X

s
 and 

  
X

r
 are 

the matrices of order 
 
n p  and   (N n) p  respectively of the sample and non-sample values of the 

auxiliary variables, 
  
I

n
 is the identity matrix of order n, 

   
Ĥ

s
= X

s

T ˆ
ss

1
X

s( )
1

X
s

T ˆ
ss

1 , 

    
ˆ

ss
= ˆ 2

I
n
+ diag Z

is
ˆ Z

is

T ; i = 1,…, D{ }  and 
    
ˆ

sr
= diag Z

is
ˆ Z

ir

T ; i = 1,…, D{ } . Here 
  
Z

is
 (

  
Z

ir
) is the 

sample (non-sample) component of 
  
Z

i
 and  ˆ 2  and  ˆ  are suitable (e.g. ML or REML) estimates of 

the variance components of (12). 

Given this setup, estimation of the area-specific MSE of the EBLUP can be carried out using (9) 

with weights defined following (13). In turn, this requires that we have access to unbiased estimators 

  
μ̂

j
 of the area specific individual expected values 

 
μ

j
. As we have already noted, such estimators 

may be unstable when area sample sizes are small. Consequently, it is tempting to replace 
  
μ̂

j
 by the 

EBLUP for 
 
y

j
, i.e. 

  
ŷ

j

EBLUP
= x

j

T ˆ EBLUE
+ z

j

T
û

i

EBLUP , where   
ˆ EBLUE  denotes the Empirical Best Linear 

Unbiased Estimator of  in the linear mixed model (12) and 
  
û

i

EBLUP  denotes the predicted area 

effect for the area i that contains observation j. Unfortunately, because of the well-known shrinkage 

effect associated with EBLUPs, this approach is not recommended. To illustrate this, we note that 

  
V̂ (m̂

i
)  in (9) uses 

  
( y

j
μ̂

j
)2  as an estimator of 

  
E( y

j
μ

j
)2 . The bias in this estimator is therefore 

 

  

E( y
j

μ̂
j
)2

E( y
j

μ
j
)2
= 2E( y

j
μ

j
)(μ̂

j
μ

j
)+ E(μ̂

j
μ

j
)2

= E (μ̂
j

μ
j
)(2y

j
μ

j
μ̂

j
){ }

 

so we anticipate that 
  
V̂ (m̂

i
)  will be negatively biased if 

  
E (μ̂

j
μ

j
)(2y

j
μ

j
μ̂

j
){ }  is positive and 

vice versa. Now let sample unit j be from area i and consider the special case of a random intercept 

model for 
 
y

j
, i.e. 

 
y

j
= x

j

T
+ u

i
+ e

j
 where 

 
u

i
 is the random effect for area i and 

 
e

j
 is a random 

individual effect uncorrelated with 
 
u

i
. Here 

 
μ

j
= x

j

T
+ u

i
. Suppose that we have a large overall 
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sample size, allowing us to replace   
ˆ EBLUE  by . The EBLUP 

  
μ̂

j
= ŷ

j

EBLUP  can then be approximated 

by 
  
μ

j
= x

j

T
+

i
u

i
, where 

 i
 is a ‘shrinkage’ factor. It follows that 

 
   
(μ

j
μ

j
)(2y

j
μ

j
μ

j
) = 2u

i
(

i
1)e

i
u

i

2 (
i

1)2  

so 
  
E( y

j
μ̂

j
)2

E( y
j

μ
j
)2 (

i
1)2

u

2 . That is, we expect 
  
V̂ (m̂

i
)  to be positively biased if we use 

the shrunken EBLUP 
  
ŷ

j

EBLUP  to define 
  
μ̂

j
. We also note that this bias disappears (approximately) if 

we ‘unshrink’ the residual component of this EBLUP. For example, in the case of the popular 

random intercepts model, we use 

 
  
μ̂

j
= x

j

T ˆ EBLUE
+ ( y

is
x

is

T ˆ EBLUE ) = y
is
+ (x

j
x

is
)T ˆ EBLUE  

where 
 
y

is
 and 

 
x

is
 denote the sample means of Y and X respectively in area i. Given (12) is the 

working model, a general expression for such an ‘unshrunken’ estimator is 

 
   
μ̂

j
= x

j

T ˆ EBLUE
+ z

j

T
u

i
 (14) 

where 
    
u

i
= Z

is

T
Z

is( )
1

Z
is

T
y

is
X

is

ˆ EBLUE( )  is the unshrunken predictor of the random effect for area i. 

It is not difficult to see that then 
  
μ̂

j
=

kj
y

kk s
 where 

  kj
= c

ijsk
+ d

ijsk
I (k i) , with 

 
   
c

ijs
= c

ijsk
;k s( ) = ˆ

ss

1
X

s
X

s

T ˆ
ss

1
X

s( )
1

x
j

X
is

T
Z

is
Z

is

T
Z

is( )
1

z
j{ }  

and 

 
   
d

ijs
= d

ijsk
;k s

i( ) = Z
is

Z
is

T
Z

is( )
1

z
j
. 

Finally, we observe that when (14) is used in (9), the estimated bias (10) becomes 

 
   
B̂(m̂

i
) = w

ij

EBLUP
z

jj s
h

( )
T

u
h

h=1

D

z
i

T
u

i
 (15) 

since the EBLUP weights (13) are ‘locally calibrated’ on X, i.e. 
 

w
ij

EBLUP
x

jj s
= x

i
. Typically, (15) is 

close to zero and so the estimated MSE of the EBLUP based on (9) is essentially the estimate (8) of 

its prediction variance. 
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2.2.2 MSE estimation for the MBDE 

The second predictor of 
 
m

i
 that we consider is the Model-Based Direct Estimator (MBDE) 

described in Chandra and Chambers (2009). This is based on the same linear mixed model (12) as 

the EBLUP, with the MBDE predictor defined as 

 
  
m̂

i

MBDE
= w

ij

MBDE
y

jj s
= (w

is

MBDE )T
y

s
 (16) 

where 

 

  

w
ij

MBDE
=

I ( j s
i
)w

j

EBLUP

I (k s
i
)w

k

EBLUP

k s

. 

Here 
  
I ( j s

i
)  is the indicator function for unit j to be in the area i sample, and 

  
w

s

EBLUP
= (w

j

EBLUP )  is 

the vector of weights that defines the EBLUP for the population total of the 
 
y

j
 under (12), i.e. 

 
   
w

s

EBLUP
= (w

j

EBLUP ) = 1
n
+ Ĥ

s

T
X

r

T
+ I

n
Ĥ

s

T
X

s

T( ) ˆ
ss

1 ˆ
sr{ }1

N n
 (17) 

where 
  
1

n
 (

  
1

N n
) denotes the unit vector of size  n  ( N n ) and 

   
Ĥ

s
 was defined in section 2.2.1. In 

this case pseudo-linearisation based estimation of the area-specific MSE of the MBDE is carried out 

using (9), with weights defined following (16). Note that the estimated expected values used in (9) 

when applied to the MBDE are the same as the unshrunken estimates (14) used with the EBLUP, 

reflecting the fact that both the MBDE and the EBLUP are based on the same linear mixed model 

(12). However, the MBDE weights used in (16) are not locally calibrated, and so the squared bias 

term in (9) cannot be ignored when estimating the MSE of this predictor. 

2.2.3 MSE estimation for the M-quantile estimator 

The third estimator that we consider is based on the M-quantile modelling approach described in 

Chambers and Tzavidis (2006). This approach does not assume an underlying linear mixed model, 

relying instead on characterising the relationship between 
 
y

j
 and 

 
x

j
 in area i in terms of the linear 

M-quantile model that best ‘fits’ the sample 
 
y

j
 values from this area. That is, this approach replaces 

(12) by a model of the form 
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y

i
= X

i
(q

i
) + e

i
 (18) 

where   (q)  denotes the coefficient vector of a linear model for the regression M-quantile of order q 

for the population values of Y and X, and 
 
q

i
 denotes the M-quantile coefficient of area i. Given an 

estimate 
  
q̂

i
 of 

 
q

i
, an iteratively reweighted least squares (IRLS) algorithm is used to calculate an 

estimate 

 
   
ˆ(q̂

i
) = X

s
W

s
(q̂

i
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of 
  

(q
i
) , and a non-sample value of 

 
y

j
 in area i is then predicted by 

  
ŷ
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= x
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i
) . Here 
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s
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)  is 

the diagonal matrix of final weights used in the IRLS algorithm. 

Tzavidis, Marchetti and Chambers (2009) note that value of the M-quantile estimator suggested 

in Chambers and Tzavidis (2006) can be interpreted as the expected value of Y in area i with respect 

to a biased estimator of the distribution function of this variable in the area. They therefore develop 

an improved M-quantile estimator, replacing this biased distribution function estimator by the 

Chambers and Dunstan (1986) distribution function estimator under the area-specific model (1). 

This corresponds to predicting 
 
m

i
 by 
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Here 
 
x

is
 and 

 
x

ir
 are the vectors of sample and non-sample means of the 

 
x

j
 in area i. It is not 

difficult to show that the weights following (20) are locally calibrated. Furthermore, if we then put 

  
μ̂

j
= x

j

T ˆ(q̂
i
)  it is easy to see that (10) is zero and so the area-specific MSE of the bias-corrected M-

quantile estimator (20) can be estimated using just the estimated prediction variance component (8). 

Since the constant 
  
ˆ

j
 in (8) is typically very close to one under M-quantile estimation, we set it equal 
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to this value whenever we compute values of (8) that relate to small area estimation under the M-

quantile modelling approach. 

As we have already done with the EBLUP, we note that use of (8) implicitly treats the weights 

defining (20) as fixed, which is actually not the case since the matrix 
   
W

s
(q̂

i
)  is a function of the 

sample values of Y. An immediate consequence is that pseudo-linearisation based estimation of the 

MSE of the M-quantile predictor via (8) is a first order approximation to the true MSE of this 

estimator. Nevertheless, since accounting for weight variability in the definition of the M-quantile 

estimator considerably complicates estimation of its MSE - see Street, Carroll and Ruppert (1988) 

for an examination of this issue in the context of ‘standard’ M-estimation of regression coefficients - 

it is of interest to see how the relatively simple estimator (8) performs when used to estimate this 

MSE. 

2.3 MSE Estimation for the Pseudo-Linear Synthetic EBLUP 

In many small area applications there are areas that contain no sample, and hence synthetic 

estimation is used. Without loss of generality, we assume that these areas are numbered last, i.e. if 

 D
+  areas have non-zero sample then 

  
n

h
> 0  for  h D

+  and 
  
n

h
= 0  for  h > D

+ . For  i > D
+  the 
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where 
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Clearly (21) is a pseudo-linear estimator, and so we can use (8) to estimate its prediction variance, 

observing that since 
  
n

i
= 0 , 
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Unfortunately, since there is no sample in area i, we cannot use (10) to estimate the area-specific bias 

(2) of 
  
m̂

i

SYN EBLUP . However, under the linear mixed model (12), this bias has expected value 
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The conditional expectation of the square of this expected bias, given the area effects 
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which immediately suggests that for a non-sampled area i we estimate the squared bias of the 

synthetic estimator 
  
m̂

i

SYN EBLUP  by 
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Here 
  
u

h
 is the ‘unshrunken’ estimated effect for sampled area h – see (14). Our proposed MSE 

estimator for 
  
m̂

i

SYN EBLUP  is then the sum of (22) and (23). Note that, unlike (9), this MSE estimator 

includes no information from area i, and so is not an estimator of the area-specific MSE of (21). In 

particular, its validity depends completely on the mixed model (12) holding, and so it is not robust to 

misspecification of this model. 

3. SIMULATION STUDIES OF THE PROPOSED MSE ESTIMATOR 

In this section we describe results from five simulation studies that aim at assessing the performance 

of the approach to robust MSE estimation described in the previous section. Three of these studies 

are model-based simulations, with population data generated from the linear mixed model (12). The 

remaining two are design-based simulations, with population data derived from two real survey 

datasets where linear small area estimation is of interest. 

Given our focus on bias-robustness, the main performance indicator for an MSE estimator in all 

five studies is its median relative bias, defined by 
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Here the subscript i indexes the small areas and the subscript k indexes the K Monte Carlo 

simulations, with 
  
M̂

ik
 denoting the simulation k value of the MSE estimator in area i, and 

 
M

i
 

denotes the actual (i.e. Monte Carlo) MSE in area i. Since we would naturally prefer to use the more 

stable of two unbiased MSE estimators, we also measured the stability of an MSE estimator by its 

median percent relative root mean squared error, 
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Although the purpose of this paper is not to compare different methods of small area estimation, it 

is useful to relate MSE estimation performance for a particular method of small area estimation to 

the actual estimation performance of this method. We therefore provide two measures of the 

relative performance of the three small area estimation methods (EBLUP, MBDE and M-quantile) 

that were used in our simulations. These are the median percent relative bias 
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and the median percent relative root mean squared error 
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of the estimates 
  
m̂

ik
 generated by an estimation method. Note that 

  
m

i
= K

1
m

ik
k=1

K

 here. 

3.1 Model-Based Simulations 

The first model-based simulation study was based on population data generated under the mixed 

model (12) with Gaussian random effects. It used a population size of N = 15,000, with D = 30 

small areas. Population sizes in the small areas were uniformly distributed over the interval [443, 

542] and kept fixed over simulations. At each simulation, population values for Y were generated 
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under the random intercepts model 
   
 y

j
= 500 +1.5x

j
+ u

i
+ e

j
, with 

 
x

j
 drawn from a chi squared 

distribution with 20 degrees of freedom. The area effects 
 
u

i
 and individual effects 

 
e

j
 were 

independently drawn from 
  
N (0,

u

2 )  and 
  
N (0,

e

2 )  distributions respectively, with the values of 
 u

 

and 
 e

 shown in rows SIM1-A and SIM1-B of Table 2. A sample of size   n = 600  was selected from 

each simulated population, with area sample sizes proportional to the fixed area populations, 

resulting in an average area sample size of 
  
n

i
= 20 . Sampling was via stratified random sampling, 

with the strata defined by the small areas. A total of K = 1000 simulations were carried out. 

Conditions for the second model-based simulation study were the same as in the first, with the 

exception that the area level random effects and the individual level random effects were 

independently drawn from mean corrected chi-square distributions respectively. The corresponding 

values of the area level and individual level variances are shown in rows SIM2-A and SIM2-B in 

Table 2. Finally, in the third model-based simulation study conditions were kept the same as in the 

first for areas 1 – 25, but in areas 26 – 30 area effects were independently drawn from a normal 

distribution with a larger variance. We refer to this as a Mixture in Table 2, with variances for the 

two sets of areas shown in rows SIM3-A and SIM3-B. None of the three small area estimation 

methods that we consider here claim to be robust to the area-wide outlier behaviour simulated in 

our third study, and so it is important that their corresponding MSE estimators react to it by 

tracking the resulting increase in variability in the ‘outlier areas’. We therefore only show values 

relating to areas 26 – 30 in the results for this simulation reported in Tables 3 and 4. We also 

replicated all three scenarios above using reduced overall sample sizes of   n = 300  (with average area 

sample size 
  
n

i
= 10 ) and   n = 150  (with average area sample size 

  
n

i
= 5 ). These additional simulations 

allowed us to investigate the effect of reduced sample sizes on the performance of the MSE 

estimators. 

Table 3 shows the median bias RB(m) and median relative root mean squared error RRMSE(m) of 

the small area estimation methods investigated in our simulations for the three sample sizes ( n =600, 
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300 and 150). These are the direct estimator (i.e. the small area mean), the EBLUP with weights 

defined by (13), the MBDE with weights defined by (16) and the M-quantile estimator defined by 

the weights (20). In Table 4 we show the corresponding performances of MSE estimators for these 

small area estimators. Note that we provide results for four MSE estimators for the EBLUP, with 

PR0 denoting the estimator suggested by Prasad and Rao (1990), see Rao (2003, section 6.2.6). It is 

noteworthy that PR0 is not an estimator of the area-specific MSE of the EBLUP, but of its MSE 

under the mixed linear model (12), i.e. averaged over possible realisations of the area effect. In 

contrast, the MSE estimators PR1 and PR2 in Table 4 are the area specific versions of PR0 

suggested in Rao (2003, section 6.3.2 expressions 6.3.15 and 6.3.16 respectively), while the Robust 

estimator is the estimator of the area-specific MSE of the EBLUP defined in Table 1. Similarly, the 

Robust estimators of the MSE of the MBDE and the M-quantile estimator are defined by their 

corresponding area-specific entries in Table 1. The MSE estimator of the Direct estimator is its 

usual variance estimator under simple random sampling without replacement, which we denote by 

SRS. 

The differences between the various estimators in Table 3 are essentially as one would expect. 

Bias is not really an issue (to be expected given the population data follow a linear model in all 

cases), while the indirect estimators (EBLUP and M-quantile) are more efficient than the direct 

estimators (Direct and MBDE), with the M-quantile estimator the best performer in the two 

mixture-based simulations (SIM3-A and SIM3-B). Note that in this case the M-quantile weights (20) 

are based on an outlier-robust estimate of the M-quantile coefficient 
  
q̂

i
 for area i, defined by the 

median (rather than the mean) of the M-quantile coefficients of sampled units in this area. Further, 

as the sample sizes decrease, the RRMSEs of both the direct and the indirect estimators increase, 

but their relative performances remain the same. Under normality the EBLUP is better than the M-

quantile estimator but the differences between these two estimators become smaller as we move 

away from normality, with the M-quantile estimator more efficient in the mixture model scenarios. 
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The results set out in Table 4 focus on the biases of the various MSE estimators that we 

considered. To start, we note that the relative performances of these MSE estimators with respect to 

bias do not change with decreasing sample size. Not surprisingly, given that all its underlying 

assumptions are met, the PR0 estimator and its area-specific alternatives, PR1 and PR2, perform 

very well in both normal scenarios (SIM1-A and SIM1-B) and both chi-squared scenarios (SIM2-A 

and SIM2-B), with virtually no bias except when within area sample sizes are very small. The same 

applies to the SRS estimator. When applied to the EBLUP, the Robust MSE estimator on the other 

hand shows positive bias under both the normal and chi-squared scenarios, particularly for moderate 

intra-cluster correlation (SIM1A and SIM2A), which increases with decreasing sample size. 

However, things change when we examine the results for the mixture model scenarios (SIM3-A and 

SIM3B). Here we see a substantial negative bias for all three versions of PR. In comparison, the 

Robust MSE estimator for the EBLUP now shows a much smaller negative bias while the same 

MSE estimator applied to the M-quantile estimator shows an upward bias. The Robust MSE 

estimators for the direct estimators (MBDE and Direct) are essentially unbiased. Given that as far as 

MSE estimation is concerned, positive bias is preferable to negative bias, it seems clear that the 

Robust MSE estimator is better able to handle this outlier situation. Figure 1 graphically illustrates 

this point. Here we show the area-specific RMSEs and the average (over the simulations) of the 

estimated RMSEs in each of the 30 areas for the mixture simulation SIM3-A, with the vertical line 

delineating the last five ‘outlier’ areas. In the top panel of this plot we can see that the PR0 estimator 

is unable to detect the step increase in the MSE of the EBLUP for these ‘outlier’ areas, being biased 

slightly high in the ‘well-behaved’ areas and then biased rather low in the ‘outlier’ areas. In contrast, 

the Robust MSE estimator for the EBLUP and the MBDE tracks the area specific RMSEs rather 

well, while the same MSE estimator based on M-quantile weights tends to be biased low in the ‘well-

behaved’ areas, and biased high in the ‘outlier’ areas, which can be argued as being perhaps a rather 

better outcome than that recorded by the PR0 estimator in this simulation. 
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Finally, Table 5 shows the relative RMSEs of the different MSE estimators across the three types 

of model-based simulation, allowing one to compare these MSE estimators on the basis of their 

relative stability. Here we see that bias-robust MSE estimation comes at a price. In particular, all 

three versions of the PR estimator of the MSE of the EBLUP are more stable than the Robust MSE 

estimator of the EBLUP. The same is true of the Robust MSE estimators for the MBDE and the M-

quantile estimator. Essentially, given that the population data follow a mixed linear model, the PR 

estimator of MSE is very stable, while the Robust MSE estimator is more variable. 

Although all methods of MSE estimation that we evaluated (with the exception of SRS) exhibited 

some bias for very small area sample sizes, our model-based simulation results provide evidence that 

the robust MSE estimation method (9) is bias robust when applied to the three pseudo-linear small 

area estimators EBLUP, MBDE and M-quantile. In contrast, and as one might expect, the model 

dependent ‘area-averaged’ MSE estimator PR0 for the EBLUP exhibits bias under model failure. 

The fact that we observed rather similar behaviour for the area-specific versions PR1 and PR2 of 

this MSE estimator indicates that ‘area specific’ does not necessarily mean ‘bias robust’. Our results 

also show that the bias robust MSE estimator (9) can be much more variable than the model 

dependent PR estimators that we investigated, so there is a clear efficiency price for this robustness. 

3.2 Design-Based Simulations 

What happens when, as in real life, we cannot be confident that our data follow a linear mixed 

model? In order to investigate this situation, we report results from two design-based simulation 

studies, both based on realistic populations, where a linear model assumption is essentially an 

approximation. The first involved a sample of 3591 households spread across D = 36 districts of 

Albania that participated in the 2002 Albanian Living Standards Measurement Study. This sample 

was bootstrapped to create a realistic population of   N = 724,782  households by re-sampling with 

replacement with probability proportional to a household’s sample weight. A total of   K = 1000  

independent stratified random samples were then drawn from this bootstrap population, with total 

sample size equal to that of the original sample and with districts defining the strata. Sample sizes 
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within districts were the same as in the original sample, and varied between 8 and 688 (with median 

district sample size equal to 56). The Y variable of interest was household per capita consumption 

expenditure (HCE) and X was defined by three zero-one variables (ownership of television, 

parabolic antenna and land). The aim was to estimate the average value of HCE for each district. In 

the original 2002 survey, the linear relationship between HCE and the three variables making up X 

was rather weak, with very low predictive power. In particular, only ownership of land was 

significantly related to HCE at the five percent level. This fit was considerably improved by 

extending the linear model to include random intercepts, defined by independent district effects. 

These explained approximately 10 per cent of the residual variation in this model. 

The second design-based simulation study was based on the same population of Australian 

broadacre farms as that used in the simulation studies reported in Chambers and Tzavidis (2006) 

and Chandra and Chambers (2009). This population was defined by bootstrapping a sample of 1652 

farms that participated in the Australian Agricultural and Grazing Industries Survey (AAGIS) to 

create a population of   N = 81,982  farms by re-sampling from the original AAGIS sample with 

probability proportional to a farm’s sample weight. The small areas of interest in this case were the 

D = 29 broadacre farming regions represented in this sample. The design-based simulation was 

carried out by selecting   K = 1000  independent stratified random samples from this bootstrap 

population, with strata defined by the regions and with stratum sample sizes defined by those in the 

original AAGIS sample. These sample sizes vary from 6 to 117, with a median region sample size of 

55. Here Y is Total Cash Costs (TCC) associated with operation of the farm, and X is a vector that 

includes farm area (Area), effects for six post-strata defined by three climatic zones and two farm 

size bands as well as the interactions of these variables. In the original AAGIS sample the 

relationship between TCC and Area varies significantly between the six post-strata, with an overall 

Rsquared value of approximately 0.48 after the deletion of two outliers. The fixed effects in the 

prediction model were therefore specified as corresponding to a separate linear fit of TCC in terms 

of Area in each post-stratum. Random effects (necessary for computation of the EBLUP and the 
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MBDE, but not the M-quantile predictor) were defined as independent regional effects (i.e. a 

random intercepts specification) on the basis that in the original AAGIS sample the between region 

variance component is highly significant, explaining just over 10 per cent of the total residual 

variability with the two outliers removed. A slightly more efficient random effects specification, 

involving a random slope on the Area term in the model, can be used when modelling TCC in terms 

of Area in the AAGIS data, but was felt to be too sensitive in terms of inducing instability in the 

EBLUP. The aim was to estimate the regional averages of TCC. 

Tables 6 and 8 show the median relative biases and the median relative RMSEs of different 

estimators based on the K = 1000 independent stratified samples taken from the Albanian and 

AAGIS populations respectively. Similarly, Tables 7 and 9 show the median relative biases and 

median relative RMSEs of corresponding estimators of the MSEs of these estimators calculated 

from the same samples. It is noteworthy that in spite of the fact that the mixed linear models fitted 

to both the Albanian and AAGIS data appear reasonable, the gains from adoption of small area 

estimation methods based on them do not lead to substantial improvements in efficiency given the 

original small area sample sizes for these surveys. In particular, the M-quantile estimator, which is 

not based on a random effects specification, works best overall in terms of both bias and MSE, 

while the EBLUP, although the best performer in terms of MSE for the Albanian population, is also 

the worst for the AAGIS population and records the highest biases in both. 

Design-based simulations based on the Albanian and AAGIS populations were also carried out 

using smaller regional sample sizes than in the original surveys. In particular, the overall sample size 

was reduced for the Albanian population to   n = 436  (with a median district sample size of 11) and 

then to   n = 291  (with a median district sample size of 9).  Similarly, the overall sample size was 

reduced for the AAGIS population to   n = 327  (with a median regional sample size of 12) and then 

to   n = 243  (with a median regional sample size of 8). As expected the RMSE of the point estimators 

increases as the area sample sizes decrease. Overall, the EBLUP improves its RMSE performance 

relative to all other estimators for the Albanian population, and performs similarly to the M-quantile 
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estimator for the AAGIS population, with smaller sample sizes. However, since the realism of these 

reduced sample size designs is somewhat questionable, we do not place too much emphasis on 

results derived from them, noting only that they are useful for assessing the performance of MSE 

estimators with realistic data and with very small sample sizes. 

Reflecting their model-dependent basis, all three PR-based MSE estimators for the EBLUP 

display a substantial upward bias in both sets of design-based simulations as well as the largest 

instability under the original sample design. It is noteworthy that for the Albanian population at least 

the relative performances of these MSE estimators improves with smaller samples, but only because 

the Robust MSE estimators then become more unstable. For the AAGIS population the PR-based 

MSE estimators perform badly at all sample sizes. This corroborates comments by other authors 

(e.g. Longford, 2007) about the poor design-based properties of this estimator. In contrast, for the 

Albanian population all three versions of the Robust MSE estimator are essentially unbiased, while 

for the AAGIS population the Robust MSE estimator is unbiased for the MBDE and the M-

quantile estimator and biased upwards for the EBLUP, though not to the same extent as the PR 

estimator of the MSE of the EBLUP. 

An insight into the reasons for this difference in behaviour can be obtained by examining the 

area specific RMSE values displayed in Figure 2 for the Albanian population and in Figure 3 for the 

AAGIS population. Note that in both cases the sample sizes are those from the original surveys. 

Thus, in Figure 2 we see that all three Robust RMSE estimators track the district-specific design-

based RMSEs of their respective estimators exceptionally well while the PR0 estimator does not 

seem to be able to capture between district differences in the design-based RMSE of the EBLUP. In 

contrast, in Figure 3 we see that the Robust estimator of the RMSE of the M-quantile predictor 

performs extremely well in all regions, with the corresponding estimator of the RMSE of the MBDE 

also performing well in all regions except one (region 6) where it substantially overestimates the 

design-based RMSE of this predictor. This region is noteworthy because samples that are 

unbalanced with respect to Area within the region lead to negative weights under the assumed linear 



 22 

mixed model. The picture becomes more complex when one considers the region-specific RMSE 

estimation performance of the EBLUP in Figure 3. Here we see that the Robust estimator of the 

RMSE of the EBLUP clearly tracks the region-specific design-based RMSE of this predictor better 

than the PR0 estimator, with the noteworthy exception of region 21, where it shows significant 

overestimation. This region contains a number of massive outliers (all replicated from a single outlier 

in the original AAGIS sample) and these lead to a ‘blow out’ in the value of Robust when they 

appear in sample (this can also be seen in the results for the MBDE and the M-quantile predictors 

for this region). In contrast, with the exception of region 6 (where sample balance is a problem), 

there seems to be little regional variation in the value of the PR0 estimator of the RMSE of the 

EBLUP, indicating a serious bias problem. 

As noted earlier, it is not uncommon to want to produce an estimate for a small area where there 

is no sample. In such cases, one has to rely completely on the correctness of the model specification. 

In Tables 10 and 11 we illustrate the importance of this assumption by contrasting the estimation 

and MSE estimation performances of the EBLUP for sampled areas with that of the Synthetic 

EBLUP for areas where no sample data are available. Two situations are shown. The first is a 

modification of the model-based SIM1-A simulation with a small average sample size and with five 

zero-sample areas. The second is a similar small sample modification of the design-based simulation 

based on the AAGIS population, with four zero-sample areas. It is clear that when the model 

underpinning the EBLUP actually holds (i.e. SIM1-A), estimation and MSE estimation (either based 

on PR0, or on the Robust alternative) works well. The problem is that when there is some doubt 

about how well this model holds (as in the AAGIS population), then the EBLUP can fail, and our 

estimator of its MSE can also fail to identify this problem. This is nicely illustrated by the results for 

the AAGIS population in Tables 10 and 11 where we see that both the PR0 and Robust MSE 

estimators for the Synthetic EBLUP fail to identify the large positive bias of the Synthetic EBLUP 

and so end up with a large downward bias. 
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Finally, we provide information that allows one to assess the usefulness of the simulation-based 

comparisons shown in this paper, noting that the aim of these simulations is not to provide precise 

estimates of the properties of different estimators but to distinguish their relative performance. In 

particular, we investigated the stability of these comparisons by checking to see how much they 

changed between three different stages of the simulations i.e. after 250, 500 and 1000 simulations. 

Tables 12 and 13 display these results for the design-based simulations using the AAGIS population 

with a reduced sample size (median regional sample size of 12). Similar results, not provided here 

but available from the authors on request, were observed for the model-based simulations SIM1-A 

and SIM1-B with an average sample size of 5. Overall, we conclude that the number of simulations 

that we carried out is sufficient to distinguish the relative performances of the different small area 

estimators and MSE estimators that we focus on in this paper. 

4. CONCLUSIONS AND DISCUSSION 

In this paper we propose a bias-robust and easily implemented method of estimating the mean 

squared error of pseudo-linear estimators of small area means (and totals). The empirical results 

described in section 3 are evidence that this method has promise as a general-purpose approach. In 

particular, it performed reasonably well overall in terms of estimating both model-based and design-

based MSE for the three rather different pseudo-linear estimators that we investigated in our 

simulations. This was in contrast to the more complex model-dependent approach underpinning the 

estimator of the MSE of the EBLUP suggested by Prasad and Rao (1990), which worked very well 

in terms of bias and overall stability when its model assumptions were valid (SIM1-A to SIM2-B in 

our model-based simulations) but then ran into bias problems in the presence of outlier area effects 

(SIM3-A and SIM3-B) and for both our fairly realistic design-based simulations where model fit 

could only be considered as approximately valid. 

The Robust MSE estimator proposed in this paper can be easily applied to other pseudo-linear 

small area estimators where current approaches to MSE estimation are not straightforward. Two 

prominent examples are MSE estimation for the Pseudo-EBLUP (Prasad and Rao, 1999; You and 
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Rao, 2002) and for the model-assisted empirical best predictor described by Jiang and Lahiri (2006). 

Similarly, since the nonparametric EBLUP described by Opsomer et al. (2008) can be written as a 

pseudo-linear estimator, there is scope for an investigation of the performance of the Robust MSE 

estimator in this situation as well, and in particular a comparison with the computationally intensive 

bootstrap MSE estimator proposed by these authors. 

The extension of the robust MSE approach to non-linear small area estimation situations remains 

to be done. However, since this approach is closely linked to robust population level MSE 

estimation based on Taylor series linearisation (as well as jackknife estimation of MSE, see Valliant, 

Dorfman and Royall, 2000, section 5.4.2), it should be possible to develop appropriate extensions 

for corresponding small area non-linear estimation methods. Although the relevant results are not 

provided here, some evidence for this is that the robust MSE estimation method described in 

section 2.1 has already been used to estimate the MSE of the MBDE when it is applied to variables 

that do not lend themselves to linear mixed modelling, e.g. those with a high proportion of zero 

values. See Chandra and Chambers (2009). More recently, the approach has also been successfully 

used to estimate the MSE of geographically weighted M-quantile small area estimators in situations 

where the small area values are spatially correlated (Salvati et al., 2007). As noted earlier, it is of also 

of interest to examine whether this approach to MSE estimation can be used with predictors based 

on non-parametric small area models (Opsomer et al., 2008) or with estimators based on outlier 

robust mixed effects models where the development of Prasad-Rao type MSE estimators is more 

difficult. This work will be reported elsewhere. 

As is clear from the development in this paper, our preferred approach to MSE estimation 

assumes that the MSE of real interest is that defined by the area-specific model (1). This is in 

contrast to the usual approach to defining MSE in small area estimation, which adopts an area-

averaged MSE concept as the appropriate measure of the accuracy of a small area estimator. As 

pointed out by Longford (2007), the ultimate aim in small area estimation is to make inferences 

about small area characteristics conditional on the realised (but unknown) values of small area 
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effects, i.e. with respect to (1). One can consider this to be a design-based objective (as in Longford, 

2007), or, as we prefer, a model-based objective that does not quite fit into the usual random effects 

framework for small area estimation. In either case we are interested in variability that is with respect 

to fixed area-specific expected values. This is consistent with the concept of variability that is 

typically applied in population level inference. As our simulations demonstrate this allows our MSE 

estimator to perform well from both a model-based (area effects vary between simulations) as well 

as a design-based (area effects fixed between simulations) perspective. 
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Table 1 Definitions of robust MSE estimators for different weighting methods. 
 

Weighting Method Definition of 
  
μ̂

j
, j i  MSE Estimator 

EBLUP (13) (14) (9) 
MBDE (16) (14) (9) 

M-quantile (20) 
  
x

j

T ˆ(q̂
i
)  (8) with 

  
ˆ

j
= 1  

Synthetic EBLUP (21) (14) (22) + (23) 

 

Table 2 Parameter values used in model-based simulations. 
 

Simulation Type 
  u

2  
  e

2  
  
=

u

2 (
u

2
+

e

2 ) 1  

SIM1-A Gaussian 10.40 94.09 0.1 
SIM1-B Gaussian 40.32 94.09 0.3 

SIM2-A Chi-square 2.0 10.0 0.1667 
SIM2-B Chi-square 4.0 10.0 0.2857 

SIM3-A Mixture 10.40, 225.0 94.09 0.1, 0.7051 
SIM3-B Mixture 40.32, 225.0 94.09 0.3, 0.7051 
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Table 3 Median relative biases RB(m) and median relative root mean squared errors RRMSE(m) of 
estimators of small area means in model-based simulations. Note that results for SIM3-A and SIM3-
B only refer to the 5 ‘outlier’ areas. 
 

Simulation Weighting Method 

SIM1-A SIM1-B SIM2-A SIM2-B SIM3-A SIM3-B 

                                Average 
  
n

i
= 20  

 RB(m) 

Direct 0.004 0.004 0.005 -0.024 0.001 0.001 
EBLUP, (13) 0.005 0.006 0.004 -0.002 0.006 0.005 
MBDE, (16) 0.006 0.006 0.005 -0.008 0.001 0.001 
M-quantile, (20) 0.009 0.008 -0.002 0.002 -0.013 -0.013 

 RRMSE(m) 

Direct 0.56 0.56 0.41  0.42 0.55 0.55 
EBLUP, (13) 0.35 0.38 0.12 0.13 0.45 0.42 
MBDE, (16) 0.55 0.55 0.41 0.43 0.55 0.55 
M-quantile, (20) 0.41 0.41 0.13 0.13 0.36 0.36 

                              Average 
  
n

i
= 10  

 RB(m) 

Direct 0.004 0.004 -0.001 0.003 -0.003 -0.003 
EBLUP, (13) -0.001 -0.002 0.000 0.000 0.000 0.003 
MBDE, (16) 0.000 0.000 -0.002 0.000 -0.006 -0.006 
M-quantile, (20) -0.004 -0.004 0.0009 0.0004 -0.0036 -0.0045 

 RRMSE(m) 

Direct 0.80 0.80 0.59 0.59 0.79 0.79 
EBLUP, (13) 0.44 0.52 0.15 0.17 0.67 0.60 
MBDE, (16) 0.80 0.80 0.59 0.58 0.78 0.78 
M-quantile, (20) 0.57 0.57 0.18 0.18 0.58 0.57 

                                 Average 
  
n

i
= 5  

 RB(m) 

Direct 0.007 0.007 -0.005 -0.003 0.005 0.005 
EBLUP, (13) 0.001 0.005 -0.002 0.003 0.008 0.011 
MBDE, (16) -0.002 -0.002 -0.005 0.004 -0.002 -0.002 
M-quantile, (20) -0.001 -0.001 -0.001 0.001 0.014 0.014 

 RRMSE(m) 

Direct 1.13 1.13 0.84 0.84 1.13 1.13 
EBLUP, (13) 0.53 0.69 0.19 0.22 1.00 0.87 
MBDE, (16) 1.13 1.13 0.83 0.83 1.13 1.13 
M-quantile, (20) 0.81 0.81 0.26 0.26 0.80 0.80 
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Table 4 Median relative biases RB(M) for MSE estimators in model-based simulations. Note that 
results for SIM3-A and SIM3-B only refer to the 5 ‘outlier’ areas. 
 

Simulation Weighting 
Method 

MSE 
Estimator SIM1-A SIM1-B SIM2-A SIM2-B SIM3-A SIM3-B 

                                             Average 
  
n

i
= 20  

Direct SRS 0.11 0.11 -0.22 0.12 1.16 1.16 
EBLUP, (13) PR0 -0.83 -0.72 0.56 1.16 -15.65 -6.51 
 PR1 -0.97 -0.72 0.64 1.08 -13.70 -5.81 
 PR2 -0.92 -0.72 0.64 1.16 -14.65 -6.19 
 Robust 3.89 -0.89 3.06 0.93 -2.56 -1.59 
MBDE, (16) Robust -0.81 -0.80 -0.06 -0.42 -0.98 -0.98 
M-quantile, (20) Robust -3.10 -1.66 -0.09 -1.90 11.26 11.04 

                                               Average 
  
n

i
= 10  

Direct SRS -0.09 -0.09 -0.38 -0.34 1.88 1.88 
EBLUP, (13) PR0 0.65 0.56 0.25 0.17 -21.99 -10.22 
 PR1 0.47 0.56 0.00 0.17 -18.79 -8.91 
 PR2 0.56 0.56 0.12 0.17 -20.39 -9.56 
 Robust 15.36 1.72 8.94 2.36 -1.35 -1.16 
MBDE, (16) Robust -0.73 -0.75 -0.38 -0.22 -0.92 -0.94 
M-quantile, (20) Robust -2.65 -0.99 -1.73 2.00 6.50 4.50 

                                             Average 
  
n

i
= 5  

Direct SRS 0.27 0.27 0.00 -0.90 -0.28 -0.28 
EBLUP, (13) PR0 3.51 -0.20 2.42 1.19 -30.64 -15.92 
 PR1 3.04 -0.50 2.13 1.00 -25.77 -13.62 
 PR2 3.16 -0.31 2.31 1.11 -28.16 -14.77 
 Robust 37.52 4.38 24.11 8.93 -0.66 -0.68 
MBDE, (16) Robust -0.24 -0.21 0.02 -0.09 1.29 1.24 
M-quantile, (20) Robust -7.60 -6.17 5.70 5.00 5.89 3.60 
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Table 5 Median relative root mean squared errors RRMSE(M) for MSE estimators in model-based 
simulations. Note that results for SIM3-A and SIM3-B only refer to the 5 ‘outlier’ areas. 
 

Simulation Weighting 
Method 

MSE 
Estimator SIM1-A SIM1-B SIM2-A SIM2-B SIM3-A SIM3-B 

                                             Average 
  
n

i
= 20  

Direct SRS 34 34 36 36 35 35 
EBLUP, (13) PR0 12 7 15 10 29 14 
 PR1 14 7 17 11 27 13 
 PR2 12 7 16 10 28 13 
 Robust 62 31 70 49 42 32 
MBDE, (16) Robust 70 70 126 128 67 67 
M-quantile, (20) Robust 32 34 49 48 48 48 

                                               Average 
  
n

i
= 10  

Direct SRS 49 49 52 52 50 50 
EBLUP, (13) PR0 19 10 23 15 40 21 
 PR1 26 11 27 17 36 19 
 PR2 21 10 24 15 38 20 
 Robust 123 50 115 74 65 48 
MBDE, (16) Robust 74 74 128 129 75 75 
M-quantile, (20) Robust 44 46 68 68 62 59 

                                             Average 
  
n

i
= 5  

Direct SRS 72 72 78 77 72 72 
EBLUP, (23) PR0 31 14 33 22 53 31 
 PR1 48 18 44 28 48 29 
 PR2 36 15 36 24 50 29 
 Robust 234 81 193 121 86 70 
MBDE, (24) Robust 79 79 133 129 83 83 
M-quantile, (28) Robust 62 63 90 97 122 102 
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Table 6 Performances of estimators of regional means – Albanian household population 
 

     Median 
 
n

i
 = 56       Median 

 
n

i
 = 11     Median 

 
n

i
 = 9 Weighting 

Method RB(m) RRMSE(m) RB(m) RRMSE(m) RB(m) RRMSE(m) 
Direct 0.03 6.15 -0.07 13.27 -0.09 16.64 
EBLUP, (13) 0.42 5.90 1.41 11.61 1.62 12.42 
MBDE, (16) 0.03 6.14 0.33 14.26 0.04 16.92 
M-quantile, (20) 0.04 6.07 -0.09 13.44 -0.05 16.60 
 
Table 7 Performances of MSE estimators – Albanian household population 
 

     Median 
 
n

i
 = 56      Median 

 
n

i
 = 11    Median 

 
n

i
 = 9 Weighting 

Method/MSE 
Estimator 

RB(M) RRMSE(M) RB(M) RRMSE(M) RB(M) RRMSE(M) 

Direct/SRS 0.9 25 -0.3 57 -0.3 72 
EBLUP/PR0 14.6 44 14.0 43 10.5 50 
EBLUP/PR1 14.4 43 12.8 42 8.8 48 
EBLUP/PR2 14.5 43 13.4 43 9.7 48 
EBLUP/Robust 0.1 24 4.0 64 7.7 99 
MBDE/Robust -0.8 25 -3.6 54 -5.5 64 
M-quantile/Robust 2.9 27 0.2 60 -2.0 75 

 
Table 8 Performances of estimators of regional means – AAGIS farm population 
 

     Median 
 
n

i
 = 55       Median 

 
n

i
 = 12     Median 

 
n

i
 = 8 Weighting 

Method RB(m) RRMSE(m) RB(m) RRMSE(m) RB(m) RRMSE(m) 
Direct 0.00 14.18 0.17 32.16 0.10 37.04 
EBLUP, (13) 1.60 15.90 1.05 25.00 1.12 31.76 
MBDE, (16) -0.82 14.45 -1.76 31.06 -1.16 37.86 
M-quantile, (20) -0.03 11.76 -0.04 25.14 -0.23 32.63 
 
Table 9 Performances of MSE estimators – AAGIS farm population 
 

     Median 
 
n

i
 = 55      Median 

 
n

i
 = 12    Median 

 
n

i
 = 8 Weighting 

Method/MSE 
Estimator 

RB(M) RRMSE(M) RB(M) RRMSE(M) RB(M) RRMSE(M) 

Direct/SRS 0.3 64 0.4 126 0.7 169 
EBLUP/PR0 23.7 209 22.6 555 17.7 701 
EBLUP/PR1 24.9 190 16.6 406 19.0 597 
EBLUP/PR2 22.3 221 23.3 483 31.1 782 
EBLUP/Robust 11.5 157 14.5 253 17.8 261 
MBDE/Robust -0.8 190 1.4 178 1.3 364 
M-quantile/Robust -1.6 70 -1.0 154 -2.2 213 
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Table 10 Performance of EBLUP when there are zero-sample areas 
 

SIM1-A, average 
 
n

i
 = 10 AAGIS, median 

 
n

i
 = 8 Weighting Method 

RB(m) RRMSE(m) RB(m) RRMSE(m) 

Areas with 
 
n

i
 > 0: (13) 0.00 0.52 1.40 25.03 

Areas with 
 
n

i  = 0: (21) -0.05 1.25 87.48 96.48 

 
Table 11 Performances of MSE estimators for EBLUP when there are zero-sample areas 
 

SIM1-A, average 
 
n

i
 = 10 AAGIS, median 

 
n

i
 = 8 Weighting Method/MSE 

Estimator RB(m) RRMSE(m) RB(m) RRMSE(m) 

 Areas with 
 
n

i
 > 0 

(13)/PR0 0.5 11 33.5 939 
(13)/Robust 0.7 50 28.1 318 

 Areas with 
 
n

i  = 0 

(21)/PR0 -1.8 35 -25.8 594 
(21)/Robust -3.6 34 -31.3 101 

 
Table 12 Performances of estimators of regional means as number of simulations increases – 

AAGIS farm population (median 
 
n

i
=12) 

 

Number of simulations Weighting Method 

250 500 1000 250 500 1000 

 RB(m) RRMSE(m) 

Direct -0.16 -0.11 0.17 31.75 31.06 32.16 

EBLUP, (13) 0.64 1.50 1.05 26.32 25.12 25.00 

MBDE, (16) -2.17 -2.72 -1.76 30.98 31.27 31.06 

M-quantile, (20) 0.91 0.04 -0.04 25.42 24.53 25.14 

 
Table 13 Performances of MSE estimators as number of simulations increases – AAGIS farm 

population (median 
 
n

i
=12) 

 

Number of simulations Weighting Method/MSE 
Estimator 250 500 1000 250 500 1000 

 RB(M) RRMSE(M) 

Direct/SRS 0.8 0.1 0.4 125 125 126 

EBLUP/PR0 27.3 28.1 22.6 578 578 555 

EBLUP/PR1 21.1 22.3 16.6 405 405 406 

EBLUP/PR2 25.8 25.6 23.3 504 504 483 

EBLUP/Robust 15.4 15.6 14.5 283 283 253 

MBDE/Robust 1.9 4.6 1.4 251 251 178 

M-quantile/Robust -0.7 -0.8 -1.0 139 139 154 
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Figure 1 Area specific values of true RMSE (solid line) and average estimated RMSE (dashed line) 

obtained in the mixture-based simulations SIM3-A. Values for the PR0 estimator are indicated by  

while those for the Robust estimator are indicated by . Plots show results for the EBLUP (top), 

MBDE (centre) and M-quantile (bottom) estimators. Vertical line separates areas 26-30 with ‘outlier’ 
effects from ‘well-behaved’ areas 1-25. 
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Figure 2 District level values of true design-based RMSE (solid line) and average estimated RMSE 
(dashed line) obtained in the design-based simulations using the Albanian household population. 
Districts are ordered in terms of increasing population size. Values for the PR0 estimator are 

indicated by  while those for the Robust estimator are indicated by . Plots show results for the 

EBLUP (top), MBDE (centre) and M-quantile (bottom) estimators. 
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Figure 3 Regional values of true design-based RMSE (solid line) and average estimated RMSE 
(dashed line) obtained in the design-based simulations using the AAGIS farm population. Regions 

are ordered in terms of increasing population size. Values for the PR0 estimator are indicated by  

while those for the Robust estimator are indicated by . Plots show results for the EBLUP (top), 

MBDE (centre) and M-quantile (bottom) estimators. 
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