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Abstract

We analyse the biases of eleven mtasures for
estimating the quality of the multivalued at-
tributes The values of information gain J-
measure, gini-index and relevance tend to lin
early increase with the number of values of
an attribute The values of gam-ratio dis
tance measure, Relief and the weight of evi-
dence decrease for informative attributes and
increase for irrelevant attributes The bias of
the statistic tests based on the chi-square dis-
tribution is similar but these functions are not
able to discriminate among The attributes of
different quality We also introduce a new func
tion based on the MDL principle whose value
slightly decreases with the increasing number
of attribute s values

1 Introduction

In top down induction of decision trees various impurity
functions are used to estimate the quality of attributes
in order to select the "best one to split on However
various heuristics tend to overestimate the multi valued
attnbules One possible approach to this problem in
top down induction of decision trees is the construction
of binary decision trees The other approach is to intro-
duce a kind of normalization into the selection criterion
such as gam-ratio [Quinlan, 1986] and distance measure
[Mantaras, 1989]

Recently White and Liu [1994] showed that, even with
normalization information based heuristics still tend to
overestimate the attributes with more values Their ex-
periments indicated that \? and G statistics are superior
estimation techniques to information gain gain ratio
and distance measure They used the Monte Carlo sim-
ulation technique to generate artificial data sets with at
tributes with various numbers of values However, their
scenario included only random attributes with the uni
form distribution over attributes' values generated in-
dependently of the class
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The purpose of our investigation is to verify the
conclusions of White and Liu in mort realistic situa
tions where attributes art informative and/or ha\< non-
uniform distribution of altnbutt s values We adopted
and extended their scenario m order to verify results
of methods tested b\ White and Liu and to lest also
some oilier well known measures gini-index [Breiman et
al 1984] J measure [Smyth and Goodman 1990] the
weight of evidence [Miclue 1989], and relevance [Baim
1988] Besides we developed and tested also one, new
selection measure based on the minimum description
length (MDL) principle and a meassure derived from the
algorithm RELIEF [Kira and Rendell 1992]

In the following we describe all selection measures
the experimental scenario and results We analyse the
(dis)advanlagfs of various- selection measures

2 Selection measures

In this section we bneflv describe all selection measures
and develop A lit w one based on the MDL principle We
\ssumt that all attributes are discrete and that the prob
lem is lo select the best attribute among the attributes
with various numbers of possible values All selection
measures are defined in a wav that the best attribute
should maximize the measure Let C A and 1 b» the
number of classes th< number of attributes and the num-
ber of values of the given attribute, respectivelv Let n

denote the number of training instances, n, the number
of training instances from class ¢, #, the number of

instances with the j-th value of the given attribute, and
nnj the number of instances from class C, and with the the
th value of the given attribute Let furthe her p,; = n”/n ,
m=n/fn p,=n,/n andp, =n,/n, denote the
approximation of the probabilities from the training set

21 Information based measures

Let Hc, HA, He A, nd Hc/A be the entropv of the
classes of the values of the given attribute, of the joint
events class - attribute value, and of the classes given
the value of the attribute, respectively

HC’:_ZPI log pr HA=_EPJ]'OSPJ

1



Hea= _ZZPLJ IOEPIJ

where all the logarithms are of the has.e two The infor-
mation gain is defined as the transmitted information by
a given attribute about the object s class

Hoia=Heoa=Ha

Gam=Hc+Hg—Hes=H  ~ H|a (n

In order to avoid the overestimalion of the multivalued
attribute*? Quinlan [1986] introduced the gam-ratio

Gain

A

GamR =

(2]

Manldras [1989] defined a distance measure D tliat
can be rewritten as [Whitf and Liu 1994]

Gmn
H( A

1-D=

(3

Smyth and Goodman [1990] introduced The J measure
for estimating the information content of (the rule which
is appropriate for selecting a single attribut* value for
rule generation

P
J, =mzpmlogp'—“

A straightforward generalization gives the attribute se-

lection measure
)=, 4)

Another selertion measure re lated to informal ion theor\
is the average absolute weight of enidence [Miche 1989]
It is based on plausibility which is an alterative to an-
tropv from the information Theon Let odds = p/(l—p)
The measure is defintd for only two class problems

WE =) p,
3

and it holds Il E1 =r N E A straightforward general-
ization can be used for multi class problems

1=12

odds
log b |

odds,

\E = Ep,WE1 'S)

2 2 Gini-index and RELIEF

Breiman et al [1984] use gini-index as the
negative) attribute selection measure

Gin: = Zp_, Zp.zb - ZP? (6)
1 1 1

Kira and Rendell [1992] defined the algorithm RELIEF
for estimating the quality of attributes RELIEF effi-
ciently deals with strongly dependent attributes The
idea behind is the search for the nearest instances from
the eame class and the nearest instances from different

(non-

classes Kononenko [1994] showed that, if this "nearest"
condition is omitted, the estimates of RELIEF can be
viewed as the approximation of the following difference
of probabilities

Relief = P(diff value of an att [different class)

—P(diff value of an atl |same class)
which can be reformulated into
2w Gt
Relee f = Ef——-—q—
pi(1=p7)

where
Gmi' = Z (—L-p- 5 Zp.zb) ‘ZPf (8)
7 ZJ pJ 1 ]

is highlv correlati d with the gmi-mdev The only differ
ence to <equation(6) is tlial instead of the factor

2

2,

F; =p
Z;p.l !

In our experiments besides Gnn and Relief we e\alu
ated Gun as well in order to verify whether this differ
enee to equation (6) is significant or not

Gant uscs

2 3 Relevance

Bairn [1988] introduced a selection measure called the
relevance of an atlnbute Lt
Jj be

for a given attribute value

7
tm(y) = argmax n—”
r

Th( relevance of the attribute is defined with

1 ;
Reler =1 = P g'iz T;:'—"

1_f

24 \?2 and G statistics

The measures based on the rIn square distribution use
the following formula

Ao
P(\olp =/ plripds (10)

where p(z)o " the chi-square distribution with D de-
grees of freedom and \o is the value of the statistic for
Press et al [1988] give the algorithms
for evaluating the above formula We have two statistics
that are well approximated bv the chi-square distribu
tion with (\ — 1)(C — 1) degrees of freedom [White and
Liu, 1994], x and G

- 2
XE = EZ (Pu CI:lU]
L

and

a given attribute

€, = LA (119

n

G =2n Gamlog, 2 £ = 27182 (12)
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25 MDL

According to the minimal description length principle
[Rissanen 1983 Li and Vitanvi 1993] the problem of
selecting the best attribute can be stated as the problem
of selecting the most compressive attribute Let us have
the following transmission problem Both tin. sender
and the receiver have tht description of (he number of
attributes 4 the number of possible values for each at-
tnhutt V the number of possible classes C and the de-
scription of the training examples in terms of attribute-
values But only the sender knows the correcl classifi

cation of examples This information should be trans-
mitted bv minimizing the length (the number of bits) of
the message The sender may either explicitly code the
class for each training example or may select the best

attribute and encode, for each value of the selected at-
tribute the classes of the examples having that value
of the attribute Therefore either we have one coding
scheme for the prior distribution of classes, or we have
a separate coding scheme for each value of the attribute
with the associated posterior distribution For each cod-
ing scheme a decoder has to be transmitted as well

The number of bits, that are needed to explicitly en-
code classes of examples for a given probability distribu-
tion, can be approximated with entropy He times the
number of training examples n plus the number of bits
needed to encode the decoder For any coding rule the
sufficient information to reconstruct the decoder is the
probability distribution of events, i e classes Therefore,
if n is known, to reconstruct the decoder the receiver
needs to reconstruct only m,,t =1 ("' —1 (n¢ can be

then uniquely determined) There is n + C— 1 over
C — 1 possible distributions Therefore, the approxima-
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Figure 2 (a) Gini for uniform distribution of attribute val

ues (b) Gini [or informative attributes

tion of the total number of bits that we need to encode
the classes of n  examples is

n +C—l)

Prior MDL' = n H( +log( C -1

and the approximation of the number of bits to encode
the classes of examples in all subsets corresponding to
all values of the selected attribute is

, n,+C -1
Post MDL" = JZHJHCH-}—JZIOE; ( J(__ 2 )+Iogr'l

The last term (log .A) is needed to encode the selection
of an attribute among 4 attributes However this term
is constant for a given selection problem and can be ig-
nored The first term is equal to n HC\A Therefore, the
MDL measure that evaluates the average compression
(per instance) of the message bv an attribute is defined
with the following difference Pnor.MDL - Post-MDL
normalized with n MDL' = Gain+

+%(]°S(n ;E;])_ > ("<t -C-T))

(13)
However, entropy He can be used Lo derive MDL if
the messages are of arbitrary length If the length of
the message is known the more optimal coding uses the
logarithm of all possible combinations of class labels for
given probability distribution

}:’r':n::'r_i’ti"DJ’_,=log(ﬂ " " )+log( -1
L, e -

This gives better definition for MDL

1 n n
MDL=-—]leo - lo ’ )-I-
n ( 8 (nl y 2 RBC ) ; & (nlj': lﬂCJ

n +C'—l)
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Frgure 3 (a) Relevance for uniferm distmbution of attnbule
valuer (b} Relevance for informative attnibutes

n +C -1 +(C -1
+log( c 1 )—Zlog(’ljc,_l )) (14)

3 Experimental scenario

We adopted and extended the scenario of White and Liu
[1994] Their scenario included the following variations
of settings the number of classes was 2 and 5 the distri-
bution of classes was uniform (except in out. experiment
when they used a non-uniform distribution) and there
were three attributes with 2 5, and 10 possible values
which wtre randomly generated from the uniform distri-
bution independently of the class They performed the
Monte Carlo simulation by 1000 times randomly gener-
ating 600 training instances with the above properties
The quailtv of all attributes was <eslimated using all mea-
sures described in Section 2 and the results of each mea-
sure were averaged over 1000 trials

We extended the scenario m the following directions

1 We tried the following numbers of classes 2,5 10
and the following numbers of attribute values 2, 5, 10
20, 40

2 We used also informative attributes the attributes
with different number of values are made equally infor
mative by joining the values of the attribute into two
subsets {1  (V dnr 2)} and {(} dix 24+ 1) V}
corresponding to two values of the binary attribute The
probability that the value is from the subset depends on
the class while the selection of one particular value in
side the subset is random from the uniform distribution
The probability that the value is in one subset is defined
with

1 L tmoed 2=0

PG e, {LE“]M = { E?:+—1“_= tmod 270
(15)
We tried various values for k (L = 0 1,2} which de-
termines how informative is the attribute For example
for 2 possible classes with uniform distribution, the in-
formation gain of the two-valued attribute is 0 13 bits if
k =1 and 0 32 bits if4 = 2, and for 10 possible classes
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Figure 4 (a) Rehef for uniform distrnibution of atinbute val
we {(b) Relef {for informatine atifibutes

i( is 0 60 bits if k=1 and 0 77 bits if A = 2 However
the biases of all measures were not very sensitive to the
value of L In the next section we give the results for

=1

3 We trnd also various non uniform distributions
of attribute values for uninformalive attributes and also
various non-uniform distributions of classes for each
possible distribution of attribute values (uniform, non-
uniform, informative) The biases of all measures were
independent of the distribution of classes and for unm-
fonnative attributes also independent of the distribution
of attribute values The graphs m the next section are
for uniform distribution of classes

4 Results

We will show here two different results for irrelevant
(unmformative) and informative attributes We will
present results jointly for the measures with the simi-
lar behavior

4 1 Linear bias in favor of multivalued
attributes

The values of measures increase linearly with the number
of values of attributes, in all different scenarios and for all
different numbers of classes for the following measures
Gam (1) J (4) Gtm (6), and Gini' (8) On Figures 1
(a) and (b) the values of Gam are depicted ./-measure
has similar graphs

Note that the scale of the graph for Gun is not com-
parable to the scale for Gam Gum and Gum have prac
tically identical graphs The difference to Gam is that
Gini Lends to decrease with the increasing number of
classes which seems to be undesired feature for selection
measures This is shown on Figure 2 (b) where the values
of Gini for higher number of classes, where attributes are
even more informative (see eq (15)), are lower than the
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Figure 5 (a) GamR for uniform distribution of attribute
values (b) GauinR for informative attributes
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Figure 6 (a) MDL for uniform distribution of attribute val
ues (b) MDL for informative attributes

values, for lower number of classes This becomes even
more obvious for more informative attributes (e g for
L — 2in eq (15)), where the graph becomes similar to
that on Figure 3 (b) except that for Gim all curves are
straight lines with higher slope

Relrv (9) has similar behavior like gmi index, except
that the estimates uicrea.se less, than linearly with the
number of values of attributes Figure 3 shows this
Note that relevance tends to decrease with the increasing
number of classes even though the attributes Tor prob-
lems with more classes are more informative

4 2 Exponential bias against the
informative multivalued attributes

The estimates of informative and highly informative at-

tributes decrease exponentiallv with 1 he number of val-

ues of attributes for GainR (2) 1 - D (3) and Relief

(1) However for irrelevant attributes all three mea-
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Figwe 7 (a) MDL for umilorm distribution of atinhuate val
ues (b) MPDL for informative atinbules

sures exhibit (he bias in favor of the multivalued at-
tributes Th]e estimates of Relief increase logarithm]
callv. with the number of values while for 1 — D and
GainR the estimates increase hnearlv Figure 4 shows
both biases for Relef and Figure 5 shows both biases
for GamR Tht performance of 1 — D is ver\ similar to
that of GaiuR Note the different scales for irrelevant
and informative attributes This shows that tht bias in
favor of the irrelevant multivalued attributes is not very
strong and is the lowest for Relief

4 3 Slight bias against the multivalued
attributes

MDL (1) exhibits the bias against the multivalued at
tributes MDL almost hnearlv decreases with the num
her of values of attributes in all scenarios as is shown on
Figures b (a) and (b) As expected from the definition in
eq (13) the. bias (the slope of the curve) is higher for the
problems witli the higher number of classes Namelv the
number of classes influences the number of bits needed
to encode the decoders

MDL is always negative for irrelevant attributes and
therefore the irrelevant attributes are alwavs consid-
ered as non-compressive For informative attributes the
compression decreases with the number of values of at-
tributes

MDL (j4) has similar behaviour as MDL for irrele
vant attributes, however the slope of the curves is lower
and all informative attributes are considered compres-
sive This is shown on Figure 7

The behavior of \\ E (5) is not stable The reason may
be in the use of the non-differentiable function (absolute
\alues) The behavior seems to be somewhere between
Relev (for irrelevant attributes) and MDL (for informa
live attributes) This is shown on Figure 8 Like MDL
WE decreases faster for the problems with more classes

44 Almost unbiased but also
non-discriminating measures

Figure 9 (a) shows that P(\?) defined with eq (10) and

(11) is unbiased le its valuer do not show an) tendenc\
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Figure 4 (a) Tlu weight of evidence for uniform distribution
of at tribute values (b) The weight of evidence for informative
attributes

Willi inereasing nurnber of values of attributes However,
this measure is not able to distinguish between more and
less informative attributes  All informative attributes
(for k = 1 and I/ m eq (15)) have PA%) - 1 00000
regardless of the number of values In faat when using
floating point in (the cast when { = 2 and 1 > 5 we
dittcted that P(x') differs from 1 (I m sometime*, ex
otic decimal places (like J7lh decimal plact) Of course
(Ins is the problem of computer precision and numerical
evaluation ofeq (10) But. the fact is that on most com
pulers without special algorithms this measure will not
be ahle to distinguish between attributes with different
quahty which makes the measure impractical Someone
may argue that in the cases when P{3 i= 11 the value
of \3 could be used This can be done onlv when com-
paring (lit attributes with tl\actly the same number of
values (the same digre of freedom) which is not verv
useful

Figure 10 (a) shows that P((*) defiiud with equations
(10) and (12) overestimates the multivalued attributes
which is not m agreement with the conclusions by White
and Liu [1994] Their conclusions seem valid if the fig-
ure is limited to C = 2 and 5 and ¥ =2, 5 and 10
which was their original scenario Besides, P(G) has the
same problems as P{\z) with informative attributes Its
values for informative attributes are all equal to 1 0

We verified this for P{\¥) and P(G) by varying the
parameter in eq 25 0 50
as & = D all attributes are too informative and both
statistics get the value 1 0 The results in Figures 9 (b)
and 10 (b) for k = 0 show the biases for P(1") and P{G)
against the multivalued attributes for slight!} informa
ti\e attributes

As soon
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Frgure 9 {a) P{1?) for umfarm distnbolion of attribule val
ues (b) P(1*) for shghtly wformative atinbules & = 01
eq {15)

5 Conclusions

While our results with the original scenario by W'hile
and Liu are the same, an increase of the numher of at-
tribute values shows a slightly different picture and fur-
ther variations of the scenario reveal that their conclu-
sions should be considered with caution FP{G) shows
clear bias in favor of irrelevant multivalued attributes
P(1*) and P({(:) measures seem to be biasc d against the
informative mullivaluid attributes However the prob
lem of evaluating the correct value with the given com-
puter precision makes this functions impractical as they
are not able to discriminate between the attributes of
different quality

From our results we can conclude that the worst mea
sures are those whose values in all different scenarios
tend to increase with the number of values of an at-
tribute information gam /-measure gini-mdex and
Some of the measures (gnu index and rel
evanct) exhibit an undesired behavior their values de-
creet with tin increasing number of classes even though

relevance

tht attributes for problems with more classes are more
informative However the weight of evidence and MDL
(13) show similar tendency but only with the increasing
number of attributes values For MDL this behavior
can be explained in terms of the number of bits required
lo encode the decoders For uninformative attributes,
the bias of WE is similar to the bias of relevance, how-
ever its bias is not stable

The performance of gain-ratio, distance measure and
fie he/, which all use a kind of normalization, is simi-
lar The values exponentjallv decrease for informative
attributes and increase for irrelevant attributes For ir
relevant attributes the performance of Relief seems to be
better, as the bias in favor of multivalued attributes is

not linear but rather logarithmic However the exponen-
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tial bias against the multivalued attributes can hardl) be
justified and more conservative bias mav be more accept-
able

The purpose of this investigation was to analvse the
performance of various measures on multivalued at
tributes independent to other attributes We used the
name Relief for the function (7) wihch is derived from
the original function of RELIEF bv omiting the search
for the nearest instances Among all the measures only
RELIEF (together with the search for the nearest in-
stances) is non-myopic in the sense that it is able to
appropriately deal with strongly dependent attributes
Besides RELIEF can also efficiently, estimate continuous
attributes [Kira and Rendell, 1992] The extensions in-
troduced in the algorithm RELIEFF [kononenko, 1994]
enable it to efficiently deal with noisy data missing val-
ues, and multi-class problems All these important fea-
tures together with the relatively acceptable bias de
scribed in this paper, make RELIEFF a promising mea-
sure

The values of two new selection measures based on the
MDL principle slightly decrease with the increasing num-
ber of attribute's values This bias is stable and seems
to be better than the bias of other selection measures
The selection measures have natural interpretation and
also show when the attribute is not useful at all if it
is not compressive i e when the value of MDL (13)
or MDL (14) is less than or equal to zero MDL seems
more appropriate than MDL' it uses optimal coding and
its graphs have lower (negative) slopes which indicates
lower bias against the multivalued attributes
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