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1. Introduction. Let X be a Hilbert space and U a neighborhood of infinity; 
i.e., X\ BR C U for some R > 0, where BR is the ball of radius R centered at the 
origin in X. We consider the following operator equation with a parameter A E IR : 

Lu + G(u) =Au, (1) 

where L is a bounded linear selfadjoint operator on X and G E C(D, X), with 
G( u) = o(i[u[l) as [[u[[ --+ oo. Furthermore, we assume that G is of potential type; 
i.e., there exists g E C 1 (D, IR) such that dg =G. 

We are concerned with solutions of equation (1) which bifurcate from infinity; 
i.e., solutions (A, u) of (1) with norm [[u[[large and A close to some eigenvalue of L. 
We say that (p, oo) is a bifurcation point from infinity for (1) if, for any E > 0 and 
M > 0, there exists a solution (A, u) such that 

[A- JL[ < E and [[u[[ > M. 

There have been extensive studies on bifurcation from trivial solutions (such as 
B) (see [3-6], [9], [12-14], [16] etc). And for bifurcation from infinity, Rabinowitz 
in [14] proved that (JL, oo) is a bifurcation point of (1) from infinity provided L is 
compact and JL is an eigenvalue of L of odd multiplicity. Note that in [14] it is not 
necessary to assume that L and G are potentials. The result in [14] was obtained 
by combining a rescaling of the variable and results on bifurcation from the trivial 
solution due to Krasnosel'skii and Rabinowitz (also see [3-4], [9], [13]). Generally, 
for an eigenvalue JL of L of even multiplicity, (JL, oo) may not be a bifurcation point 
for (1). A result by Toland [16], later improved by Diaz and Hernandez in [6], shows 
that for a selfadjoint operator L and a potential operator G , (JL, oo) is always a 
bifurcation point from infinity for (1) provided JL is an isolated eigenvalue with 
finite multiplicity. Note that generally there is no connected branch bifurcating 
from (JL, oo) (see [3]). 

The goal of this paper is to prove that under some further conditions the pa
rameter values of A of solutions bifurcating from (JL, oo) cover at least a one-sided 
neighborhood of JL provided there are no solutions of (1)Jl tending towards infinity 
( ( 1) Jl is equation ( 1) for A = JL). This result is a slightly weaker analogue of the 
results in [4], [5], [13] on bifurcations from trivial solutions for potential operators. 
Precisely, our results read as follows. 
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Theorem 1.1. Let L and G be as above. Suppose that J;.. E C 2 (S1, IR), with 

dl)..(u) = Lu + G(u)- >.u. 

If J1 is an isolated eigenvalue of L of finite multiplicity, then (JL, oo) is a bifurcation 
point from infinity for (1 ). Moreover, if ]11 satisfies the Palais-Smale condition, then 
at least one of the following alternatives occurs: 

(a) There are infinitely many solutions for equation (1) with)..= JL, say (JL,un), 
with llunll ---> oo as n---> oo. 

(b) There is a one-sided neighborhood A of J1 such that for all ).. E A \ {JL}, 
equation (1) possesses at least one solution U>. with llu>-11 ---> oo as)..---> fJ· 

Remark 1.1. We may weaken the smoothness condition in Theorem 1.1 at the 
expense of placing more restrictions on the operator L. We have: 

Theorem 1.2. Let L be a bounded linear selfadjoint operator with an isolated 
eigenvalue J1 of finite multiplicity. Assume that there are only finitely many eigen
values of L larger than (or less than) J1 and that all these eigenvalues are of finite 
multiplicity. Suppose that J;.. E C 1 (S1, IR), with 

dJ;..(u) = Lu + G(u)- >.u, 

and that ] 11 satisfies the Palais-Smale condition. Then (JL, oo) is a bifurcation point 
from infinity of (1). Moreover, at least one of the two alternatives in Theorem 1.1 
occurs. 

This paper is further organized in three sections. In §2 we give the proofs of the 
above theorems and in §3, besides presenting a few further remarks, we shall give 
an application to Landesman-Lazer type problems. By combining some a priori 
estimates and our bifurcation results we obtain extensions of some known results 
in [11], due to Mawhin and the first author, where only eigenvalues of L of odd 
multiplicity were considered. Precisely, we shall consider 

{ ->.~u = u + h(u), 

u = 0, 

in B 

on oB, 
(2) 

where B C IRn is a bounded domain with regular boundary. Let J1 be an eigenvalue 
of-~. Under some assumptions on h, we can prove that there exists a neighborhood 
of fJ, [JL- T}, J1 + T}], such that for any ).. E [JL- T}, J1 + TJ] equation (2) has a solution ui 
and for ).. E (JL, J1 + TJ] at least two solutions ui and u~, with ui uniformly bounded 
for).. E [t-t- T}, J1 + TJ] and llu~ll ---> oo as)..---> f.l· Similar results were obtained in 
tll1 for the case of 1-1 being of odd multiplicity. 

Acknowledgement. This work was done while the second author was visiting the 
University of Utah from the Institute of Mathematics, Academia Sinica. 

2. Proofs of the main theorems. Bifurcation from infinity was studied in [6] 
and [16] for potential operators. For completeness we include a short proof here. 
And from the proof we shall see that generally we can not get the alternatives in 
our theorems simply by rescaling the results on bifurcation from zero in [4] and [13]. 
First, we need the following well known result (see [9], (13]). 
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Lemma 2.1. Let L be a bounded linear selfadjoint operator and 0 be a a neigh
borhood of the origin () . Assume that H E C1 ( 0, X) is a potential operator; i.e., 
3h E C2 (0, IR) such that dh = H. If f..l is an isolated eigenvalue of L of finite 
multiplicity, then (f..l, ()) is a bifurcation point of the equation 

Lu + H(u) =Au; 

i.e., there exist solutions (An,un) such that Un -=f:. (), llunll--t 0 and An--t f..l· 

Proof of Theorem 1.1 (part 1): Consider the functional 

4 w 
h(w) = llwll g(llwll2) 

in a neighbourhood 0 of e. 
By using the properties of G, his well defined on 0\ {e}. Define h(()) = 0. Then 

it is easy to check that hE C2 (0,1R) and 

H(w) ~f dh(w) = o(llw II), as llwll --t 0. 

By Lemma 1.1, there exists (An, wn) solving 

with An --t f..l and Wn -=f:. (), llwnll --t 0. Calculating directly, we find that for any 
vEX, 

(H(w),v) = (dh(w),v) 

= (llwii2G( ll~l 2 ) + 4llwll 2g( ll~l 2 )w- 2(G( ll~l 2 ), w)w, v), 

where(·,·) is the inner product in X. By using this and the substitution Un = 11 ;n'il 2 , 

one has 

Eliminating llun 112, we get 

Writing 

then, by the assumption on G, Pn --t 0 as n --t oo. Define Xn = An - Pn. Then 

(3) 

with Xn --t f..l and llun II --t oo. 
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In order to prove the second part of Theorem 1.1, we need some preparation of 
results in critical point theory, especially Morse theory for isolated critical sets as 
developed by Chang in [4]. Let f E C 1 (X, IR) satisfy the Palais-Smale condition, 
and let 

K(f) = {u EX: f'(u) = B}, 

fa= {u EX: f(u) :Sa}, 

f- 1 (a,f3) = {u EX: a< f(u) < ;3}. 

A subset S C J( is called an isolated critical set of f if there exist an open set 0 
and an interval (a, ;3) C IR such that 

S=Knj-1(a,f])n6, and Kn(f- 1 (a)uj-1 (;3))n6=0, 

where 
6 = U ry(t,O) 

tEll\! 

and TJ is the negative gradient flow (or negative pseudo gradient flow). 

Definition 2.1. (See [5]) Let S be an isolated critical set of f; the critical groups 
of f at S are defined as 

q = 0, 1, 2, ... ' 

where (a,f]) C IR and 0 satisfy the properties above. H.(-,·) is the singular relative 
homology group and :F is the coefficient group. 

By the excision property, the critical groups are independent of the special choice 
of the pseudo gradient vector field. In [5], Chang studied properties of critical 
groups for isolated critical points and isolated critical sets. Among these properties 
the most important one we are going to use is the homotopy invariance. To state 
it clearly we have to expand the theory further. 

Definition 2.2. (See [5]) Let S be an isolated critical set of f. A pair of topological 
spaces (W, W _) is called a Gromoll-Meyer pair (or G-M pair, for short) with respect 
to a pesudo gradient vector field V of f, if: 

(1) W is a closed neighborhood of S possessing the mean value property, i.e., if 
for t1 < t2, ry(tr), ry(t2) E W, then Vt E [t1, t2], ry(t) E W; and 

Wnfa=W+nf- 1(a)nK=0, WnK=S, 

where 
w+ = U r1(t, W). 

t>O 

(2) W_ = {x E W: ry(t,x) tJ. W, Vt > 0} is closed in W. 
(3) W _ is a piecewise submanifold and the flow "7 is transversal to W _. 

It is easy to check that we may simply take 

w = 6 n f- 1[a',;J'J, w_ = w n f- 1 (a') 

as a G-M pair of S, where a', ;3' satisfy 

a< a'< inf f(x), f3 > ;3' >sup f(x). 
xES xES 

(4) 

(5) 

And we have that W is bounded if 0 is bounded. The following theorem was given 
in [5]. 
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Theorem 2.1. Suppose that (W, W _) is a G-M pair of S, then 

C.(f,S) = H.(W, W_). 

Now, let f and g be C 1 - functions satisfying the Palais-Smale condition. Suppose 
that there is an open set 0 in X such that Sf = K(f) n Odf n f- 1 (a, /3), S9 = 
J( (g) n Odg n g- 1 (a', /3') are isolated critical sets of f and g respectively, where 

6dg = U 111 (t, 0), 6df = u T/2(t, 0), 
tER tER 

and ry1 and ry2 are negative gradient flows of dg and df respectively. Then we have 
the following theorem from [5] on the homotopy invariance of critical groups. 

Theorem 2.2 (See [5]). Let (W, W _) be a G-M pair of Sf such that 0 C W. Then 
there exists E > 0 such that (W, W _) is also a G-M pair of S 9 with respect to a 
certain pseudo gradient vector field of g, provided llg- Jllc'(W) < E. 

Proof of Theorem 1.1 (Continuation): Because we are only interested in so
lutions of (1.1) bifurcating from infinity, i.e., solutions with large norms, we may 
assume, without loss of generality, that G is defined on the whole space X and 
satisfies 

IIG(u)ll . 
llull < dJst(l1,u(L) \ {11}). (6) 

Since 11 is an isolated eigenvalue of L, dist(11, u(L) \ {11}) > 0. Denote the projection 
of H onto Ker( L - 11I) by P; then ( 1) is equivalent to 

{ 
11x + PG(x + x.L) = >.x 

Lx.L +(I- P)G(x + x.L) = >.x.L, 
(7) 

where u = (x, x.L) E Ker(L - 11I) EB [Ker(L - 11I)].L. By using the Lyapunov
Schmidt reduction method and (6) we know that for each x E Ker(L- 11I) and >. 

in a neighborhood of 11, there exists a unique x .L ~f ¢( >.., x) such that 

L¢(>., x) +(I- P)G(x + ¢(>., x)) = >..¢(>.., x), (8) 

where¢ is a C 1 -map with respect to x and satisfies ¢(.\,x) = o(llxll) as llxll--+ oo 
uniformly for >.. in a neighborhood of 11· Substituting ¢( >.., x) into the first equation 
in (7), we have 

11x + PG(x + ¢(>., x)) = >.x. (9) 

And this is still an operator equation in potential form. The Euler functional 
corresponding to (9) is 

>. 
f>..(x) = ~(11- >..)llxll 2 + ~(L¢(>.., x), ¢(>.., x))- 211¢(>.., x)ll 2 + g(x + ¢(>., x)), 

for x E Ker(L- 11I). If xis a critical point of f>..(x), (x, ¢(>..,x)) is a solution of (1). 
By our assumption, J" satisfies the Palais-Smale condition, and so does f". For 
>.. =J. 11 in a neighborhood of fL, f>.. also satisfies the Palais-Smale condition. 
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Now, if the alternative (a) in Theorem 1.1 is not true, there exists R > 0 such 
that 

T.-" def F(f ) B-
1\.1-' = 1\. 1-' C R· (10) 

If the alternative (b) is also not true, we shall deduce a contradition as follows. 
First, there are ,\; with ,\~ < 11 < ,\~ and ,\; ----t 11 as n ----+ oo such that 

(11) 

where, without loss of generality, we have used the same R as above. Take 0 =En; 
then 3a < (3 such that 

and 

where 

OA~ = U 77A~(t,O) 
tER 

and 77A± is the negative gradient vector field of dfA±. Now the critical groups of f 1" 

at SJ-L, Cq(JJ-L, SJ-L), are well defined. Set n 

with 
a < a' < inf inf fA± ( x) 

A~ xES~~ n 

(3 > (3' >sup sup fA±(x). 
A± xES ± n 

n -"n 

Then (WI-', WI-'-) is a G-M pair of SJ-L for fw By Theorem 2.1, 

(12) 

Suppose 
a< inf f~-'(x) :S sup f~-'(x) < (3 

xEBn xEBn 

(we may choose a< (3 satisfying this), so En C Ww By Theorem 2.2, 3E > 0 such 
that (WI-', WI-'-) is also a G-M pair of SA~ with respect to a certain pseudo gradient 

vector field of fA~ provided llfA~ - f,"llc'(W,,) < E. Since WI-' is bounded, for this 
E > 0, 3n0 > 0 such that 

for n 2:: no. 

Hence (WI-', WI-'-) is also a G-M pair of SA± with respect to a certain pseudo gradient 
vector field of fA~ for n 2:: n 0 . By Theore"m 2.1, 

(13) 

Now let us calculate Cq(JA~,SA::;) for n 2:: n 0 . 
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Lemma 2.2. 

Proof: Let us consider .A~ only: 

By using the fact that ¢(~;"t) -----+ 0 as llxll -----+ oo, the conclusion follows. 

Now it is easy to check that 

and 

q=O 

q -1= 0, 

q = m =dim Ker(L- p,I) 

q-/= m. 

In fact, say for .A~, we have, by definition, 

939 

(14) 

(15) 

(16) 

(17) 

Because there are no critical values outside the interval (a:, (3), then by using the 
deformation property, (17) also holds when we replace a: and (3 by a:', (3' satisfying 
a:' ~ a: and (3' ::=: (3. Take a:' < 0 and la:'llarge enough, then it follows from Lemma 
2.2 that 

(!>.-;:)a' = {x: f>.-;: (x) ~a:'}= 0. 

So 

Since (! >.-;:) {3 n 6 >.-;: is contractible, ( 15) follows immediately. Similarly, we may get 

(16). 
Now (15) and (16) contradict with (13). So the proof of Theorem 1.1 is complete. 

The proof of Theorem 1. 2 is essentially the same as the proof of Theorem 1.1 
except that we do not need to use the Lyapnov-Schmidt reduction. We work in the 
whole space X with the functional 

.A 
h(u) = ~(Lu, u) + g(u)- 2llxll 2 -

If we assume that neither alternative (a) nor (b) in Theorem 1.2 is true, we may 
finally obtain 

(18) 
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Lemma 2.3. Assume that there are only a finite number of eigenvalues of L less 
than /-l, say, A1 ::; A2 ::; · · · ::; Ak, and that every A; (i = 1, 2, · · · , k) is of finite 
multiplicity, then 

q = 2:7=1 d(A;) 
otherwise 

and 
q = 2:7=1 d(A;) + d(!-l) 
otherwise, 

where d(A;) equals the algebraic multiplicity of A;. 

Proof: See [18]. 

Now (19) and (20) contradict with (18). 

(19) 

(20) 

3. Bounded perturbations of elliptic problems. In this section, we shall 
apply the results established above to extend results obtained by Mawhin and the 
first author [11] for Dirichlet boundary value problems for semilinear elliptic prob
lems on a bounded domain. In fact, we shall show that the results obtained there 
are valid for any eigenvalue of the linear problem, not only those of odd algebraic 
multiplicity. Specifically, we shall be interested in the following boundary value 
problem on the bounded domain B, having a smooth boundary 8B : 

{ -~ll71 = 71 + h(11), 
71-0, on 8B, 

in B, 
(21) 

where 
h : IR --+ IR, 

is a smooth and bounded function. 
By choosing X= HJ(B), it is well known that this equation may be rewritten as 

an equivalent equation in X of the form ( 1), where in fact L is a compact selfadjoint 
operator. 

Let us now assume that 1-l is an eigenvalue of L; that is, in this context, 

{ -~ll71 = u, in B, 

71-0, on 8B. 
(22) 

We shall now give conditions on h, which are motivated by those in [11], which will 
imply that the associated functional ];, satisfies the Palais-Smale condition for the 
eigenvalue /-l; for values of >.. which are not eigenvalues the Palais-Smale condition 
is easiliy verified. This then will allow for an application of Theorem 1.1. 

Thus let A be fixed and let { 71n} C X be a sequence such that {];, ( 71n)} is bounded 
and {dJ;,(71n)}--+ 0. Then there exists a sequence {En} C X which converges toe 
in that space and such that 

(23) 

where L is compact and G is completely continuous. If now A # /-l, then the 
boundedness of h immediately implies that the sequence { 71n} C X is bounded, and 
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hence because of the complete continuity of Land G, a convergent subsequence will 
exist. 

We next impose a condition on h to obtain uniform bounds for solutions as well as 
for the Palais-Smale sequences of our nonlinear problem for values of A in intervals 
of the form [b, p,], which besides J.L contain no other eigenvalues. 

To this end let us write 
Un = Vn +wn, 

where 
Vn E J( er(L- J.LI), 

and 

and Un satisfies the equation 

{ 
-AnilUn = tLn + h(un) + Dn, 

Un = O,on 8B, 

with bn--+ e in L 2 (B). 

m B, 
(24) 

Substituting the expression tLn = Vn +wn into the above equation, we immediately 
obtain, because of the boundedness of h, a uniform bound (on compact A intervals) 
for the sequence { Wn}. Thus, to obtain a uniform bound on the sequence { tLn}, we 
must obtain a bound on the sequence { Vn }. Using arguments similar to the above, 
we then obtain a convergent subsequence of { un}· 

If { un} is unbounded, we may write 

where {tn} C ~is an unbounded sequence of positive numbers and {Yn} C Ker(L
J.LI) is a sequence, with llYn II = 1. Since Ker(L- p,I) is finite dimensional, we may 
assume that Yn --+ y E Ker(L- p,I). 

We now obtain the following equation: 

{ 
-AnflinYn + Wn = inYn + Wn + h(inYn + Wn) + bn, 

inYn + Wn = 0, 

which may be rewritten as 

{ 
-AnflWn = (1- Apn )inYn + Wn + h(inYn + tVn) + bn, 

inYn + Wn = 0, 

in B, 

on 8B, 

in B, 

on 8B. 

(25) 

(26) 

Multiplying the above equation by y and integrating the result over the domain B, 
we obtain 

{ (1 - An )inYnY dx + { h( inYn + Wn)Y dx + { bny dx = 0. (27) 
jB J.L jB jB 

Since Yn --+ y and bn --+ e, it follows that the first term in the above sum will be 
nonnegative and that the third term tends to zero; hence, we obtain a contradiction 
to the assumption of unboundedness, once we stipulate the following: 
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Assumption: For all convergent sequences {Yn} C Ker(L-pi), Yn-+ y, IIYnll = 1, 
all bounded sequences { Wn} C Ker( L - pi) l., all unbounded sequences of positive 
numbers { tn} C IR the following holds: 

liminf { h(tnYn + wn)ydx > 0. 
n-+-CXJ } B 

Hence using arguments as in [11] we obtain a continuum of solutions of equation 
(21) for ..\ E [8, p + 17] as long as this interval only contains p as an eigenvalue 
and 17 > 0 is small. This gives one solution u~ which is uniformly bounded for 
..\ E [8, p + 17]. Furthermore, Theorem 1.2 also lets us conclude a bifurcation from 
(p, oo ), say u~, and the parameter values ..\ of bifurcating solutions cover at least a 
one-sided neighborhood A of p. By the a priori estimates above, A must be a right 
hand neighborhood of p. Since llu~ II -+ oo as >. -+ fl, we may find a 171 > 0 such 
that for>. E (p, p + 171] equation (21) has at least two solutions. We summarize this 
m: 

Theorem 3.1. Under the assumption on h, there exists a 171 > 0 such that for any 
>. E (p, p + 171] equation (21) has at least two solutions and for ). E [p - 171 , p] at 
least one. 

Remark 3.1. We have a "dual" version of the above Theorem 3.1. Assume that 
in the assumption on h, we instead require 

lim sup { h(tnYn + wn)ydx < 0; 
n-HXJ } B 

then there is a 171 > 0 such that for any). E [11 -171 ,p) equation (21) has at least 
two solutions and at least one for any ). E [11, p + r71]. 

Remark 3.2. We may also allow sublinear perturbations in equation (21); i.e., we 
may assume that that lh(u)l::::; clul<>, for lui large, where 0 <a< 1 is a constant. 
Details on the a priori bounds in this case can be found in [11]. 
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