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Abstract—In this paper, we would like to discuss data stream 

processing in the big data area. Our goal is to provide a quick 

introduction and survey of the technical solutions for big data 

streams processing. In this survey, we target Machine to 

Machine communications, sensors fusion in Internet of Things 

as well as time series data processing. We discuss the basic 

elements behind data streams processing, the existing technical 

solutions for their implementations as well some prospect 

system architectures. 
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I. INTRODUCTION 

This paper continues our series of papers devoted to 

Machine to Machine (M2M) [1] and Internet of Things 

processing (IoT) [2].  

A sensor network (as a typical form in IoT applications) 

consists of small computational devices that are able to 

communicate over wireless connection channels [3]. Each of 

these computational devices is equipped with sensing, 

processing and communication facilities.  Actually, the 

sensor networks will form a new world wide web that can 

read the physical world in real time. They are generating 

data streams that need to be processed in real time for a wide 

range of applications in the various areas.  

Various data streams could have own features. For 

example, the data stream from the financial market describes 

the whole data. In the same time, the data stream for sensors 

depends on sampling (e.g., we can get new data every 5 

minutes) and so, presents a sample of the entire population. 

Sometimes, data streams could be noisy.  Spatial and 

temporal attributes could play an important role in data 

streams processing. In many cases (e.g., in sensor networks) 

we have to pay attention the limited resources (e.g., space 

and energy) for data streams processing.  Real-time data 

streams processing could add own complexity too. 

We can highlight two major tasks for data stream 

processing. At the first hand, it is processing queries for data 

streams [4]. Event processing [5] for data streams falls into 

this category. And the second big category is data mining.  

We can mention here clustering [6,7],  classification  and  

prediction [8,9], time series [10] and change detection [11], 

frequent pattern [12] and  outlier  detection  [13].  Data 

mining for stream processing is, probably, the most actively 

growing direction. 

Of course, the above-mentioned tasks require 

technological (IT) support. Software tools for big data 

stream processing [14] are a subject of this paper.  
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The rest of this paper is organized as follows. In Section 

II, we discuss the basics of stream processing. In Section III, 

we present a survey of modern approaches for big data 

stream processing.  In Section IV, we discuss lambda 

architecture. 

 

II. STREAM PROCESSING 

In a formal way, a data stream is any ordered pair (S,T) 

where: 

• S is a sequence of tuples and 

• T is a sequence of positive real time intervals. 

So, it defines a data stream as a sequence of data objects. 

The sequence in a data stream is potentially unbounded. It 

means that data streams may be continuously generated at 

any rate. Indeed, many sources may produce data 

continuously. Examples include a machine to machine 

communications (M2M), Internet of Things (IoT) objects, 

sensor networks, tags (beacons), etc. It is very important 

also, that an ordered sequence of instances in data streams 

can be read only once or a small number of times. This 

reading process very often should use the limited computing 

and storage capabilities (it is especially true for the modern 

big data streams).  In the data stream, each data object can 

be described by a multidimensional attribute vector within a 

continuous, categorical, or mixed attribute space [15]. There 

are some typical characteristics of data streams: 

 

• Continuous arrival of data objects 

• Disordered arrival of data objects 

• Potentially unbounded size of a stream 

 

Data streams can be generated in various scenarios, 

including a network of sensor nodes, a stock market or a 

network monitoring system and so on.  

There are several important queries to be considered [17]: 

- Aggregate Queries. Aggregate Queries is an important 

class of queries in sensor systems, including MIN, COUNT 

and AVG operators. 

- Join Queries. An example of join queries is “Return the 

objects that were detected in both regions R1 and R2”. To 

evaluate the query, stream readings from the sensors in 

regions R1 and R2 should be joined first before we can 

determine whether an object was detected in the two 

designated regions. Join queries are useful in many 

applications, such as monitoring, where multiple devices 

(e.g., sensors) provide measurements data.  

- Continuous Queries. To monitor designated changes in 

data are typically required to answer queries in a continuous 

manner. For example, when the query constraints are 

satisfied, the designated action could be triggered. 
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Data stream mining can extract useful rules/information 

from data streams. The following lists some typical tasks for 

stream mining: 

- Clustering. Clustering is the task of grouping a set of 

objects in such a way that objects in the same group (called a 

cluster) are more similar to each other than to those in other 

groups (clusters). Clustering techniques for data streams 

typically continuously cluster objects on memory 

constrained devices with some time limitations.  

- Classification. Classification uses prior knowledge to 

guide the partitioning process to construct a set of classifiers 

to represent the possible distribution of patterns. Basically, 

compared with clustering, classification is a supervised 

learning process whereas clustering is an unsupervised 

learning process. More formally, a typical classification 

algorithm can be defined as follows [18]: given a predefined 

classifier and two sets of data, labeled data and unlabeled 

data, the labeled data is used to train the classifier and the 

unlabeled data can then be classified by the trained 

classifier. 

- Frequent Items Mining. Frequent items mining is to find 

sets of items or values that co-occur frequently, or in other 

words, to find co-occurrence relationships in a data set 

where a set of items appears together in some specified 

context.  

- Outlier and Anomaly Detection. In outlier and anomaly 

detection, the main task is to find data points that are most 

different from the remaining points in a given data set. Most 

existing outlier detection algorithms are based on the 

distance between every pair of points. The points that are 

most distant from all other points will be marked as outliers.  

A stream processing solution has to solve different 

challenges [19]: 

• Processing massive amounts of streaming events 

(filter, aggregate, rule, automate, predict, act, 

monitor, alert) 

• Real-time responsiveness to changing market 

conditions 

• Performance and scalability as data volumes 

increase in size and complexity 

• Rapid integration with existing infrastructure and 

data sources: Input (e.g. market data, user inputs, 

files, history data from a DWH) and output (e.g. 

trades, email alerts, dashboards, automated 

reactions) 

• Fast time-to-market for application development 

and deployment due to quickly changing 

landscape and requirements 

• Developer productivity throughout all stages of 

the application development lifecycle by offering 

good tool support and agile development 

• Analytics: Live data discovery and monitoring, 

continuous query processing, automated alerts 

and reactions 

• Community (component / connector exchange, 

education / discussion, training / certification) 

• End-user ad-hoc continuous query access 

• Alerting 

• Push-based visualization 

III. BIG DATA STREAMS 

In this section, we discuss some technological solutions for 

data streams processing. 

Apache Storm is a distributed real-time computation system 

for processing large volumes of high-velocity data [20]. Is a 

distributed real-time computation system for processing fast, 

large streams of data. Storm is an architecture based on 

master-workers paradigm. So a Storm cluster mainly 

consists of a master and worker nodes, with coordination 

done by Zookeeper.   

Spark Streaming [21] is an extension of the core Spark API 

[22] that enables scalable, high-throughput, fault-tolerant 

stream processing of live data streams. Data can be ingested 

from many sources like Kafka, Flume, Twitter, ZeroMQ, 

Kinesis, or TCP sockets, and can be processed using 

complex algorithms expressed with high-level functions like 

map, reduce, join and window (Figure 1).  

 
Fig. 1 Spark Streaming 

 

Finally, processed data can be pushed out to files systems, 

databases, and live dashboards. In fact, you can apply 

Spark’s machine learning and graph processing algorithms 

on data streams (Figure 2).  

 
Fig. 2 Spark processing  

 

Apache Samza  [23] is a distributed stream processing 

framework. It uses Apache Kafka for messaging, and 

Apache Hadoop YARN to provide fault tolerance, processor 

isolation, security, and resource management (Figure 3). 

 
Fig. 3. Apache Samza 
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Apache Flume [24] is a distributed, reliable, and available 

service for efficiently collecting, aggregating, and moving 

large amounts of log data. It has a simple and flexible 

architecture based on streaming data flows. It is robust and 

fault tolerant with tunable reliability mechanisms and many 

failovers and recovery mechanisms. It uses a simple 

extensible data model that supports online analytic 

applications (Figure 4). 

 
Fig. 4. Apache Flume 

 

Apache Kafka itself is often used as a kernel for data stream 

architecture. Originally, Apache Kafka is publish-subscribe 

messaging rethought as a distributed commit log [25]. 

Apache Kafka is a distributed system designed for streams. 

It is built to be fault-tolerant, high-throughput, horizontally 

scalable, and allows geographically distributing data streams 

and processing. Figure 5 illustrates stream-centric 

architecture in Linkedin [26] 

 
Fig. 5 Stream-centric architecture on Apache Kafka [26] 

 

Amazon Kinesis [27] is a fully managed, cloud-based 

service for real-time data processing over large, distributed 

data streams. Amazon Kinesis can continuously capture and 

store terabytes of data per hour from hundreds of thousands 

of sources such as website clickstreams, financial 

transactions, social media feeds, IT logs, and location-

tracking events. 

IBM InfoSphere Streams [28] is an advanced analytic 

platform that allows user-developed applications to quickly 

ingest, analyze and correlate information as it arrives from 

thousands of real-time sources. The solution can handle very 

high data throughput rates, up to millions of events or 

messages per second (Figure 6). 

 
Fig. 6 IBM InfoSphere Streams 

 

As per IBM’s benchmark, this solution outperforms Apache 

Storm [29]. 

The TIBCO StreamBase® Complex Event Processing 

(CEP) platform is a high-performance system for rapidly 

building applications that analyze and act on real-time 

streaming data [30].  

 

IV. LAMBDA ARCHITECTURE 

The Lambda Architecture is an approach to building stream 

processing applications on top of MapReduce and Storm or 

similar systems (Figure 7).  

The way this works is that an immutable sequence of records 

is captured and fed into a batch system and a stream 

processing system in parallel. Developers implement 

business transformation logic twice, once in the batch system 

and once in the stream processing system. It is possible to 

combine the results from both systems at query time to 

produce a complete answer [31]. 

 
Fig. 7. Lambda architecture [32] 

 

The Lambda Architecture is aimed at applications built 

around complex asynchronous transformations that need to 

run with low latency.  The problem with batch processing is 

the time it takes. In the meantime, data has been arriving and 

subsequent processes or services continue to work with old 

information. The dedicated real time layer solves this by 

taking its copy of the data, processing it quickly and stores it 

in a fast store. This store is more complex since it has to be 

constantly updated. 

But there are disadvantages too. One of the obvious 
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remarks is the need for duplicating business rules. 

Practically, the developers need to write the same code twice 

– for real-time and batch layers.  One proposed approach to 

fixing this is to have a language or framework that abstracts 

over both the real-time and batch framework [33]. The 

proposed solution is Summingbird framework [34]. It is a 

library that lets you write MapReduce programs that look 

like native Scala or Java collection transformations and 

execute them on a number of well-known distributed 

MapReduce platforms. In other words, the same code could 

be executed on both layers in lambda architecture. 

 

V. CONCLUSION 

In this short paper, we provide an introduction for stream 

processing in a big data area. We are planning to provide a 

more deep analysis for the above-mentioned systems in the 

upcoming papers. By our opinion, real time data processing 

is a key area for IoT and M2M applications.  
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