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On binary cubic and quartic forms

par Stanley Yao XIAO

Résumé. Dans cet article, nous décrivons le groupe d’automorphismes ra-
tionnels d’une forme binaire cubique ou quartique à coefficients entiers et à
discriminant non nul en termes de certains covariants quadratiques des formes
cubiques et quartiques. Cela nous permet d’étendre les travaux de Hooley et
de donner des formules asymptotiques précises pour le nombre d’entiers ap-
partenant à un intervalle et représentables par une forme cubique ou quartique
donnée. En outre, nous déterminons le corps de définition des droites conte-
nues dans certaines surfaces cubiques et quartiques associées à des formes
cubiques et quartiques binaires.

Abstract. In this paper we determine the group of rational automorphisms
of binary cubic and quartic forms with integer coefficients and non-zero dis-
criminant in terms of certain quadratic covariants of cubic and quartic forms.
This allows one to give precise asymptotic formulae for the number of inte-
gers in an interval representable by a binary cubic or quartic form and extends
work of Hooley. Further, we give the field of definition of lines contained in
certain cubic and quartic surfaces related to binary cubic and quartic forms.

1. Introduction

Let F be a binary form with integer coefficients, non-zero discriminant,
and degree d ≥ 3. For each positive number Z, put RF (Z) for the number
of integers of absolute value at most Z which is representable by the binary
form F . In [7], [8], and [9] C. Hooley gave explicitly the asymptotic formula
for the quantity RF (Z) when F is an irreducible binary cubic form or a
biquadratic quartic form. Various authors have dealt with the case when F
is a diagonal form; see [15] for a summary of these results.

In [15], Stewart and Xiao proved the existence of an asymptotic formula
for RF (Z) for all F with integer coefficients, non-zero discriminant, and
degree d ≥ 3. More precisely, they proved that for each such F , there exists
a positive rational number WF which depends only on F for which the
asymptotic formula

(1.1) RF (Z) ∼WFAFZ
2
d
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holds with a power-saving error term. Here AF is the area of the region
{(x, y) ∈ R2 : |F (x, y)| ≤ 1}.

The power-saving error term is obtained from the p-adic determinant
method developed by Heath–Brown in [6], and its subsequent refinement
by Salberger [13].

Stewart and Xiao showed that WF is an explicit function of the rational
automorphism group of F . To define this group, consider the substitution
action of GL2(C) on binary forms given as follows: for T =

(
t1 t2
t3 t4

)
∈

GL2(C), put
(1.2) FT (x, y) = F (t1x+ t2y, t3x+ t4y).
Then the rational automorphism group AutF of a binary form F is defined
to be:
(1.3) AutF = {T ∈ GL2(Q) : FT (x, y) = F (x, y)} .
We shall also denote by AutF F to be the maximal subgroup of GL2(F)
which fixes F via the action (1.2), for any subring F of the complex num-
bers C.

In [15], it was not shown how to obtain AutF , and therefore WF , ex-
plicitly from the coefficients of F , except for the case of diagonal forms of
the shape Axd +Byd. In general, this can be quite difficult. In this paper,
we show how to compute AutF F of F for any subring F ⊂ C when F is
a binary cubic or quartic form with complex coefficients. As one will see,
our arguments apply equally well to many other rings, for example fields
of characteristic 0. Since our primary interest is in AutF we have decided
to keep the exposition succinct at the cost of the extra generality. As an
immediate application we show how to determine WF when d = 3, 4, and
thereby completing the work of Hooley in [7], [8], and [9] for degrees 3 and
4. We thus obtain the following theorem:

Theorem 1.1. Let F be a binary form with integer coefficients, non-zero
discriminant, and degree d ∈ {3, 4}. Then for each d = 3, 4 there exists a
positive number βd < 2/d which depends only on d and a positive rational
number WF such that for all ε > 0, the asymptotic formula

(1.4) RF (Z) = WFAFZ
2
d +OF,ε

(
Zβd+ε

)
holds. Moreover, the quantity WF can be explicitly determined in terms of
the coefficients of F .

Theorem 1.1 will follow from Theorem 1.2 in [15] and Theorems 3.1
and 4.1, which give explicit methods to determine AutF from the coeffi-
cients of F when degF = 3, 4 respectively, provided that we can compute
the area AF .
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It remains to give an explicit expression for the quantity AF in terms
of the coefficients of F . In the cubic case this was done by Hooley himself
in [7] and [8], where he showed that AF is a constant times a power of the
discriminant of F , and that this constant is expressible in terms of values
of the gamma function. Bean gave an explicit formula for AF in terms of
hypergeometric functions in [1]. We further note that for all d ≥ 3 (not
necessarily d ∈ {3, 4}), AF was determined by Stewart and Xiao in [15] in
the case of diagonal forms of the shape Axd +Byd, where they gave AF in
terms of the discriminant ∆(F ) of F and the gamma function.

Our explicit characterization of automorphism groups of binary cubic
and quartic forms even over C allows us to study lines on algebraic surfaces
of the shape

(1.5) XF : F (x1, x2)− F (x3, x4) = 0.

For cubic surfaces, it is a celebrated theorem of Cayley and Salmon that
cubic surfaces contain exactly 27 lines over an algebraically closed field.
However, for a cubic surface defined over Q, these lines are typically not
defined over Q. There exists a unique smallest finite extension K/Q such
that all 27 lines are defined. In particular, for the generic cubic surface
defined over Q, this field is Galois over Q and its Galois group is isomorphic
to W (E6), the Weyl group for the E6 root system. Ekedahl [5] found an
explicit example of a cubic surface which realizes this bound. We shall prove
that when F is a cubic form the field of definition of the lines on the surface
XF given by (1.5) is very small.

For quartic surfaces, it is not known in general how many lines they
contain. The generic quartic surface contains no lines; see [3]. Recall that the
PGL2(C)-automorphism group of a binary form F is the maximal subgroup
of PGL2(C) which permutes the projective roots of F via action by Möbius
transformation. It is a consequence of Theorem 3.1 in [3] that the surface
XF given in (1.5) contains exactly d(d + υF ) many lines, where υF is the
number of elements in the PGL2(C)-automorphism group of F and d is the
degree of F . For the quartic case this was already known to Segre; see [14].

Put
F (x, y) = a4x

4 + a3x
3y + a2x

2y2 + a1xy
3 + a0y

4.

The ring of polynomial invariants of binary quartic forms with respect to
the action (1.2) is generated by two elements, usually denoted by I(F ) and
J(F ), given by

(1.6) I(F ) = 12a4a0 − 3a3a1 + a2
2

and

(1.7) J(F ) = 72a4a2a0 + 9a3a2a1 − 27a4a
2
1 − 27a0a

2
3 − 2a3

2.
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It is known from the work of Klein [11] and later Segre [14] that the
PGL2(C)-automorphism group of a binary quartic form F with complex
coefficients and non-zero discriminant is isomorphic to the Klein group
C2×C2 unless the invariants I(F ), J(F ) vanishes. Specifically, the PGL2(C)-
automorphism group of a quartic form F is isomorphic to the dihedral group
D4 if J(F ) = 0 and isomorphic to the alternating group A4 if I(F ) = 0;
see Proposition 2.1. We do not know how to explicitly determine the field
of definitions of the lines on XF corresponding to the extra automorphisms
when I, J = 0, but in the generic case when I(F ) · J(F ) 6= 0, we can de-
termine the field of definition of all lines on XF . We obtain the following
theorem:

Theorem 1.2. Let F be a binary cubic or quartic form with non-zero dis-
criminant and integer coefficients. Let XF be the algebraic surface defined
by (1.5). Then

(1) for degF = 3, XF contains exactly 27 distinct lines over Q, and
these lines are defined over a field of degree at most 12 over Q.

(2) for degF = 4, XF contains exactly 32 distinct lines over Q if both
I(F ) and J(F ) are non-zero, 48 lines when J(F ) = 0, and 64 lines
when I(F ) = 0. Further, when I(F ) · J(F ) 6= 0, these lines are
defined over a field of degree at most 48 over Q.

We shall denote by Cn the cyclic group of order n, Dn for the dihedral
group of order 2n, An for the alternating group on n letters, and Sn for
the symmetric group on n letters throughout this paper. Moreover, for a
binary form F , we shall denote its discriminant by ∆(F ).

Remark 1.3. Throughout the paper we work over subfields of the complex
numbers, but as will be apparent most of the arguments can be carried out
over fields of characteristic zero and for all sufficiently large characteristic.

2. Automorphism groups of binary cubic and quartic forms over
large fields

For a binary form F of degree d with complex coefficients, let BF denote
the set of roots of F in P1(C). An element T =

(
t1 t2
t3 t4

)
∈ PGL2(C) acts on

a point θ ∈ P1(C) via the Möbius action

(2.1) Tθ = t1θ + t2
t3θ + t4

.

For a finite set S ⊂ P1(C), put
TS = {Tθ : θ ∈ S}.

Define the PGL2(C)-automorphism group of F to be
(2.2) Aut∗C F = {T ∈ PGL2(C) : TBF = BF }.
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It is easily seen that

(2.3) Aut∗C F = {T ∈ PGL2(C) : FT = λF for some λ ∈ C×}.

It is well-known that Aut∗C(F ) can be embedded into the symmetric group
Sd via the action (2.1) of PGL2 on the roots of F (x, 1), viewed as elements
in P1(C). Moreover, the natural homomorphism

AutC(F )→ Aut∗C(F )

has kernel given by {µdI2×2 : µd is a d-th root of unity}.
We shall prove the following Proposition:

Proposition 2.1. Let F be a binary form with non-zero discriminant,
complex coefficients, and degF ∈ {3, 4}. Then

Aut∗C(F ) ∼=
{
S3, if d = 3
C2 × C2,D4,A4, if d = 4.

Moreover Aut∗C(F ) ∼= D4 when d = 4 if and only if J(F ) = 0 and
Aut∗C(F ) ∼= A4 if and only if I(F ) = 0.

We have the following lemma for binary cubic forms with non-zero dis-
criminant:

Lemma 2.2. Let F be a binary cubic form with complex coefficients and
non-zero discriminant. Then F is GL2(C) equivalent to xy(x+ y).

Proof. This follows from the fact that the action of PGL2(C) on P1(C) is
3-transitive. �

A similar lemma, due to Cayley (see [12] for an account), holds in the
quartic case:

Lemma 2.3. Let F be a binary quartic form with complex coefficients and
non-zero discriminant. Then there exists a complex number A such that F
is GL2(C) equivalent to x4 + Ax2y2 + y4. Moreover, every binary quartic
form F with complex coefficients and non-zero discriminant with I(F ) = 0
is GL2(C)-equivalent to

x(x3 + y3)
and equivalent to

x4 + y4

if J(F ) = 0.

We shall next require the following lemma, which follows from simple
group theory:
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Lemma 2.4. Let F be a binary form with complex coefficients. Then for
T ∈ GL2(C), we have

AutC FT = T−1(AutC F )T
and likewise

Aut∗C FT = T−1(Aut∗C F )T.

This allows us to prove the following:

Lemma 2.5. Let F be a binary quartic form with complex coefficients and
non-zero discriminant. Then Aut∗C F contains an element of order 3 if and
only if I(F ) = 0, and contains an element of order 4 if and only if J(F ) = 0.

Proof. Suppose that Aut∗C F contains an element T of order 3. By Lem-
ma 2.4, we may assume that

T =
(

1 0
0 µ3

)
,

where µ3 is a primitive third root of unity. It then follows that F is GL2(C)-
equivalent to a form of the shape

F(x, y) = Ax(x3 + y3)
for some complex number A, and from (1.6) one immediately sees that
I(F ) = 0. A similar argument shows that if Aut∗C F contains an element of
order 4, then F is equivalent to x4 + y4 and thus J(F ) = 0.

For the converse, if ∆(F ) 6= 0 then Lemma 2.3 implies that Aut∗C F
contains elements of order 3 and 4 when I(F ) = 0 and J(F ) = 0, respec-
tively. �

Now we may give a proof of Proposition 2.1.

Proof of Proposition 2.1. Let F be a binary cubic form with complex coef-
ficients and non-zero discriminant. Then, by Lemma 2.2, it follows that F
is GL2(C)-equivalent to F0 = xy(x + y). A quick calculation reveals that
Aut∗C F0 is generated by the pair of matrices(

0 1
−1 −1

)
,

(
0 1
1 0

)
,

and it is routine to check that Aut∗C F0 is isomorphic to S3. Thus Lemma 2.4
shows that Aut∗C F ∼= S3, as desired.

Now let F be a binary quartic form with non-zero discriminant. By
Lemma 2.3 it follows that F is GL2(C)-equivalent to F1 = x4 +Ax2y2 + y4

for some complex number A. It is easily checked that Aut∗C F1 contains the
set {

I2×2,

(
1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
0 1
1 0

)}
,
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which is a set of representatives of a group isomorphic to C2×C2 in PGL2(C).
Note that Aut∗C(F ) is a subgroup of the symmetric group S4. By Lem-

ma 2.5, Aut∗C(F ) contains an element of order 3 when I(F ) = 0. The only
subgroups of S4 containing both C2 × C2 and an element of order 3 are
the alternating group A4 and S4 itself. By Lemma 2.5 we see that Aut∗C F
cannot equal S4, since otherwise Aut∗C F contains an element of order 4,
which implies that J(F ) = 0; and since 27∆(F ) = 4I(F )3 − J(F )2, this
contradicts the assumption that F has non-zero discriminant. Similarly, the
only subgroups of S4 which contain C2×C2 and an element of order 4 are D4
and S4 itself, and the latter contains an element of order 3; hence cannot
be isomorphic to Aut∗C F for F with non-zero discriminant by Lemma 2.5.
This completes the proof of Proposition 2.1. �

3. Binary cubic forms

Suppose
F (x, y) = b3x

3 + b2x
2y + b1xy

2 + b0y
3

is a binary cubic form with integer coefficients and non-zero discriminant.
We shall assume, after applying a GL2(Z)-action if necessary, that b3 6= 0.
It is known that there is a single rational quadratic covariant of F , given
by the Hessian qF (x, y) = Ax2 +Bxy + Cy2, where A,B,C are as below:

(3.1) A = b2
2 − 3b3b1, B = b2b1 − 9b3b0, C = b2

1 − 3b2b0.

Put D = B2 − 4AC. It is known that D = −3∆(F ).
In his thesis, G. Julia identified three additional irrational, or algebraic,

quadratic covariants which depend on the roots θ1, θ2, θ3 of F (x, 1) in [10].
We shall write the Julia covariant with respect to a root θ of F (x, 1) as
follows:

(3.2) Jθ(x, y) = h2x
2 + h1xy + h0y

2,

where

h2 = 9b2
3θ

2 + 6b3b2θ + 6b3b1 − b2
2,

h1 = 6b3b2θ
2 + 6(b2

2 − b3b1)θ + 2b2b1,

h0 = 3b3b1θ
2 + 3(b2b1 − 3b3b0)θ + 2b2

1 − 3b2b0.

Cremona showed that h2, h1, h0 are algebraic integers in [4], in the discus-
sion immediately following equation (11). Thus, whenever θ is rational, Jθ
has rational integral coefficients.

For a binary quadratic form f(x, y) = ax2 + bxy + cy2 with complex
coefficients, define

(3.3) Mf =
(

b 2c
−2a −b

)
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and

(3.4) Nf = 1
2∆(f)

(
b
√
−3∆(f)−∆(f) 2c

√
−3∆(f)

−2a
√
−3∆(f) −b

√
−3∆(f)−∆(f)

)
.

Here the square root of a complex number is the principal square root with
non-negative real part and positive imaginary part if the real part vanishes.

Define

(3.5) Tθ = −1
6∆(F )MJθMqF .

When θ is rational, the matrix 6∆(F )Tθ has integer entries since ∆(qF ) =
−3∆(F ) and ∆(Jθ) = 12∆(F ).

We have the following theorem:
Theorem 3.1. Let F be a binary cubic form with integer coefficients and
non-zero discriminant. Then:

(1) AutF = {I2×2} if and only if F is irreducible and ∆(F ) is not a
square.

(2) AutF is generated by NqF ∈ GL2(Q) and is isomorphic to C3 if and
only if F is irreducible and ∆(F ) is a square.

(3) AutF is generated by Tθ for the unique rational root θ of F (x, 1)
and is isomorphic to C2 if and only if F has exactly one rational
linear factor over Q, corresponding to the root θ.

(4) AutF = {I2×2,NqF ,N 2
qF
, Tθ1 , Tθ2 , Tθ3} ∼= D3 if and only if F splits

completely over Q.
We shall prove the following result, from which Theorem 3.1 will follow:

Proposition 3.2. Let F be a binary cubic form with complex coefficients
and non-zero discriminant. Suppose that the x3-coefficient of F is non-
zero and let θ1, θ2, θ3 be the three distinct roots of F (x, 1). Then a set of
representatives of Aut∗C(F ) in GL2(C) is given by{

I2×2, Tθ1 , Tθ2 , Tθ3 ,NqF ,N
2
qF

}
.

Proof. By Lemma 2.2 and the observation that qF and Jθi , i = 1, 2, 3 are
covariants of F , it suffices to prove Proposition 3.2 for any binary cubic form
with non-zero discriminant and non-zero leading coefficient. We choose

F (x, y) = 2x3 + 3x2y + xy2.

The roots of F (x, 1) are then θ1 = 0, θ2 = −1, θ3 = −1/2. Computing the
Julia covariants we then see that they are given by
J1(F ) = 3x2 + 6xy + 2y2, J2(F ) = 3x2 − y2, J3(F ) = −6x2 − 6xy − y2,

whence

MJ1 =
(

6 4
−6 −6

)
, MJ2 =

(
0 −2
−6 0

)
, MJ3 =

(
−6 −2
12 6

)
.
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The Hessian covariant of F is given by
qF (x, y) = 3x2 + 3xy + y2

and
MqF =

(
3 2
−6 −3

)
.

It thus follows that

T1 =
(

1 0
−3 −1

)
, T2 =

(
−2 −1
3 2

)
, T3 =

(
1 1
0 −1

)
.

A quick calculation then shows that T1, T2, T3 fix F by substitution. Simi-
larly, one can check that

NqF =
(
−2 −1
3 1

)
and its square both fix F via substitution. This completes the proof. �

We remark that the requirement for the x3-coefficient of F be non-zero
is merely in place because of how the Julia covariants are defined. Indeed
the statement holds for all binary cubic forms with non-zero discriminant,
because the Julia covariants are covariants.

We may now prove Theorem 3.1.

Proof of Theorem 3.1. Put Aut∗ F for the subset of Aut∗C F defined over
the rationals. We note that the natural map

Aut∗ F → AutF
is an isomorphism, since Q does not contain any non-trivial cube roots of
unity. Thus, the elements of AutF must come from the set

{I2×2, Tθ1 , Tθ2 , Tθ3 ,NqF ,N
2
qF
}.

Observe thatMqF ∈ GL2(Q) for all binary cubic forms with integer coef-
ficients. From here it is plain that Tθ can be in GL2(Q) only if MJθ has
rational coefficients, and from (3.2) we see that this can only occur when θ
is at most a quadratic irrational. Therefore if F is irreducible, then Tθ does
not lie in AutF .

We show that in fact Jθ has integral coefficients if and only if θ ∈ Q. Put
θ = u+ v

√
k, with u, v ∈ Q, k ∈ Z. Since h2, h1, h0 ∈ Z, it follows that

9b2
3(2uv

√
k) + 6b3b2(v

√
k) = 0,

6b3b2(2uv
√
k) + 6(b2

2 − b3b1)(v
√
k) = 0,

3b3b1(2uv
√
k) + 3(b2b1 − 3b3b0)(v

√
k) = 0.

If v = 0, then we are done. Otherwise, we see that u must satisfy
3b2

3u = −b3b2, 2b3b2u = b3b1 − b2
2, 2b3b1u = 3b3b0 − b1b2.
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If b3 = 0, then the first and second equations imply that b2 = 0, so ∆(F ) =
0. Therefore b3 6= 0 and we get that u = −b2

3b3
. This then gives b2

2 = 3b3b1
and b1b2 = 9b3b0. From (3.1) we see again that qF must be singular, which
implies that F is singular. Therefore whenever F is non-singular and Jθ ∈
Z[x, y], we must have θ ∈ Q.

By examining the explicit formula in (3.4), it follows that NqF ∈ GL2(Q)
only when −3∆(qF ) is a square, which is equivalent to ∆(F ) being a square.
Thus, when ∆(F ) is not a square and F is irreducible, AutF contains just
the identity matrix.

When F is reducible, say θ is a rational root of F (x, 1), we see that
Tθ does indeed lie in GL2(Q). An elementary calculation shows that if
F (x, 1) has a unique rational root then ∆(F ) is not a square, and thus
NqF 6∈ GL2(Q). Therefore, Tθ is the only non-trivial element of AutF .
Finally, if F (x, 1) has three rational roots, it is obvious from the definition
of the discriminant that ∆(F ) is a square and hence Tθi , i = 1, 2, 3 and
NqF ,N 2

qF
are all rational. �

4. Binary quartic forms

Suppose

F (x, y) = a4x
4 + a3x

3y + a2x
2y2 + a1xy

3 + a0y
4

is a binary quartic form with integer coefficients and non-zero discriminant.
For a binary quadratic form f(x, y) = ax2 + bxy+ cy2 with real coefficients
and non-zero discriminant, put

(4.1) Uf = 1√
|∆(f)|

Mf .

We say that a binary quadratic form f with complex coefficients is ratio-
nally good if it is proportional over C to a quadratic form g with integer
coefficients and |∆(g)| is the square of an integer. Otherwise, we say that
f is rationally bad.

Binary quartic forms have a degree 6 covariant given by

(4.2) F6(x, y) = (a3
3 + 8a2

4a1 − 4a4a3a2)x6

+ 2(16a2
4a0 + 2a4a3a1 − 4a4a

2
2 + a2

3a2)x5y

+ 5(8a4a3a0 + a2
3a1 − 4a4a2a1)x4y2

+ 20(a2
3a0 − a4a

2
1)x3y3

− 5(8a4a1a0 + a3a
2
1 − 4a3a2a0)x2y4

− 2(16a4a
2
0 + 2a3a1a0 − 4a2

2a0 + a2a
2
1)xy5

− (a3
1 + 8a3a

2
0 − 4a2a1a0)y6.
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We call a quadratic form divisor f of F6 significant if the quartic form
G = F6/f satisfies J(G) = 0.

It turns out that the covariant F6 and its significant factors controls the
behaviour of AutF . We have the following theorem:

Theorem 4.1. Let F be a binary quartic form with integer coefficients and
non-zero discriminant.

(1) AutF = {±I2×2} if and only if F6 does not have any real rationally
good significant quadratic factors.

(2) AutF is generated by Uf ∈ GL2(Q) and −I2×2 if and only if F6
has a unique real rationally good significant factor f . In this case
AutF is isomorphic to C2 × C2 or C4.

(3) AutF = {±I2×2,±Uf1 ,±Uf2 ,±Uf3} ∼= D4 if and only if F6 can be
written as F6 = f1f2f3 where fi is a real rationally good significant
factor of F6 for i = 1, 2, 3.

We remark that the sextic covariant F6 of a binary quartic form F is
always a Klein form; see Lemma 4.2. This fact does not appear to be well-
known. Given the significance of Klein forms in problems involving the
super-elliptic equation (see [2]), this phenomenon may be of independent
interest.

4.1. Binary sextic Klein forms and significant quadratic factors.
There is a simple characterization of the elements in AutF in terms of
significant quadratic factors of the sextic covariant F6 given in (4.2).

A degree six binary form
G(x, y) = g6x

6 + g5x
5y + g4x

4y2 + g3x
3y3 + g2x

2y4 + g1xy
5 + g0y

6

is said to be a Klein form if its coefficients satisfy the following quadratic
equations (see [2]):

(4.3)
10g6g2 − 5g5g3 + 2g2

4 = 0
25g6g1 − 5g5g2 + g3g4 = 0
50g6g0 − 2g2g4 + g2

3 = 0.
Moreover it is known that all binary sextic Klein forms with complex coef-
ficients and non-zero discriminant are GL2(C)-equivalent to each other, a
fact already known to Klein [11].

We have the following fact, which appears to be new:

Lemma 4.2. Let F be a binary quartic form with complex coefficients and
non-zero discriminant. Then its sextic covariant F6, given in (4.2), is a
Klein form with non-zero discriminant.

Proof. Since all binary quartic forms with non-zero discriminant are equiv-
alent to a form of the shape x4 +Ax2y2 + y4 for some complex number A,
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it suffices to verify that the sextic covariant of F (x, y) = x4 +Ax2y2 + y4 is
a Klein form. A quick calculation shows that F6 is proportional over C to

G(x, y) = xy(x4 − y4),

which is independent of A. We then see that ∆(G) 6= 0 and that the coef-
ficients of G satisfy the quadratic equations in (4.3). �

By Lemma 4.2, the deduction of Theorem 4.1 from Proposition 4.6 will
follow from the following lemmas.

Lemma 4.3. Let G be a sextic Klein form with non-zero discriminant.
Then G can be written as G = G1G2G3, where each Gi is a significant
quadratic factor of G, in only one way up to permutation of the factors and
up to homothety over C.

Proof. Since all binary sextic Klein forms with non-zero discriminant lie
in a single GL2(C)-orbit, it suffices to prove Lemma 4.3 for just the Klein
form G(x, y) = xy(x4− y4). We see that factoring G as G = G1G2G3, with

G1 = xy,G2 = x2 − y2, G3 = x2 + y2

that each Gi is a significant factor of G; that is, the quartic form G1 =
G/G1 = x4 − y4 satisfies J(G1) = 0, and similarly for Gi = G/Gi for
i = 2, 3.

Now pick another quadratic factor of G, say V (x, y) = x(x + y). Then
V = G/V = y(x− y)(x2 + y2) has

J(V) = 72(0)(−1)(−1)+9(1)(−1)(1)−27(0)(1)2−27(−1)(1)2−2(−1)3 = 20.

A similar calculation shows that for any other quadratic factor V distinct
from G1, G2, G3, that J(G/V ) 6= 0, whence V is not a significant factor
of G. �

4.2. Aut∗
C F for binary quartic forms. In this section we aim to show

that Aut∗C(F ) is determined explicitly by certain quadratic covariants of a
binary quartic form F , called the Cremona covariants, which are significant
divisors of F6. Let

F (x, y) = a4x
4 + a3x

3y + a2x
2y2 + a1xy

3 + a0y
4

be a binary quartic form. We shall assume, by applying a GL2(Z)-action if
necessary, that a4 6= 0. Unlike the cubic case, there are no rational quadratic
covariants for binary quartic forms. However, there are three irrational
quadratic covariants discovered by Cremona [4]. These covariants can be
given explicitly in terms of the roots of F (x, 1). Define χ(F ) to be the
number of real roots of F (x, 1). We will then label the roots θi, i = 1, 2, 3, 4
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of F (x, 1) as in [1]:

(4.4)


θ1 > θ2 > θ3 > θ4, if χ(F ) = 4,
θ1 > θ2, θ3 = θ4,=(θ3) > 0, if χ(F ) = 2,
θ1 = θ2, θ3 = θ4,=(θ1) > 0,=(θ3) < 0, if χ(F ) = 0.

Here =(z) refers to the imaginary part of the complex number z. Put

(4.5)

A1 = a4(θ1 + θ2 − θ3 − θ4), B1 = 2a4(θ3θ4 − θ1θ2),
C1 = a4(θ1θ2(θ3 + θ4)− θ3θ4(θ1 + θ2)),

A2 = a4(θ1 + θ3 − θ2 − θ4), B2 = 2a4(θ2θ4 − θ1θ3),
C2 = a4(θ1θ3(θ2 + θ4)− θ2θ4(θ1 + θ3)),

A3 = a4(θ1 + θ4 − θ2 − θ3), B3 = 2a4(θ2θ3 − θ1θ4),
C3 = a4(θ1θ4(θ2 + θ3)− θ2θ3(θ1 + θ4))

and define the i-th Cremona covariant to be

(4.6) Ci(x, y) = Aix
2 +Bixy + Ciy

2, i = 1, 2, 3.

Put

(4.7) Di = ∆(Ci) for i = 1, 2, 3.

One checks that the Di’s satisfy

(4.8)
D1 = 4a2

4(θ1 − θ3)(θ1 − θ4)(θ2 − θ3)(θ2 − θ4),
D2 = 4a2

4(θ1 − θ2)(θ1 − θ4)(θ3 − θ2)(θ3 − θ4),
D3 = 4a2

4(θ1 − θ2)(θ1 − θ3)(θ4 − θ2)(θ4 − θ3).

We note that (4.8) implies that Di 6= 0 for i = 1, 2, 3 whenever ∆(F ) 6= 0.
In [4], Cremona showed that the Cremona covariants Ci satisfies

(4.9) F6(x, y) = C1(x, y)C2(x, y)C3(x, y).

Put
Ui = 1√

Di
MCi , i = 1, 2, 3.

We have the following proposition:

Proposition 4.4. Let F be a binary quartic form with complex coefficients
and non-zero discriminant. Suppose that the x4-coefficient of F is non-
zero and that I(F )J(F ) 6= 0. Then a set of representatives of Aut∗C(F ) in
GL2(C) is given by

{I2×2,U1,U2,U3}.
Moreover, for each i = 1, 2, 3 we have FUi = F with respect to the ac-
tion (1.2).
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Proof. By Proposition 2.1 and its proof, it follows that Aut∗C(F ) ∼= C2×C2.
Therefore, it suffices to check thatMCi ∈ Aut∗C(F ) for each i = 1, 2, 3. Let
us consider the action ofMC1 on θ1, via the action in (2.1). We have

U1 : θ1 7→
B1θ1 + 2C1
−2A1θ1 −B1

.

Expanding using (4.5), we obtain
B1θ1 + 2C1
−2A1θ1 −B1

= −2θ2(θ1 − θ3)(θ1 − θ4)
−2(θ1 − θ3)(θ1 − θ4) = θ2.

Next we see that
B1θ3 + 2C1
−2A1θ3 −B1

= 2θ4(θ3 − θ1)(θ3 − θ2)
2(θ3 − θ1)(θ3 − θ2) = θ4.

A similar calculation shows that U1 sends θ2 to θ1 and θ4 to θ3. This
shows thatMC1 permutes the roots of F . A similar calculation shows that
MC2 ,MC3 similarly permute the roots of F (x, 1).

To confirm that FU1 = F say, we further need to check that U1 fixes the
leading coefficient of F . This is equivalent to checking that a4 is equal to

(4.10) 1
D2

1

(
a4B

4
1 + a3B

3
1(−2A1) + a2B

2
1(−2A1)2

+ a1B1(−2A1)3 + a0(−2A1)4
)
.

Using the fact that a4 6= 0 and the Vieta relations
a3
a4

= −(θ1 + θ2 + θ3 + θ4),
a2
a4

= θ1θ2 + θ1θ3 + θ1θ4 + θ2θ3 + θ2θ4 + θ3θ4,

a1
a4

= −(θ1θ2θ3 + θ1θ2θ4 + θ1θ3θ4 + θ2θ3θ4),

and
a0
a4

= θ1θ2θ3θ4,

we see that (4.10) is equivalent to checking that

(θ3θ4 − θ1θ2)4 + (θ1 + θ2 + θ3 + θ4)(θ3θ4 − θ1θ2)3(θ1 + θ2 − θ3 − θ4)
+ (θ1θ2 + θ1θ3 + θ1θ4 + θ2θ3 + θ2θ4 + θ3θ4)

× (θ3θ4 − θ1θ2)2(θ1 + θ2 − θ3 − θ4)2

+ (θ1θ2θ3 + θ1θ2θ4 + θ1θ3θ4 + θ2θ3θ4)(θ3θ4 − θ1θ2)(θ1 + θ2 − θ3 − θ4)3

+ θ1θ2θ3θ4(θ1 + θ2 − θ3 − θ4)4

is equal to
(θ1 − θ3)2(θ1 − θ4)2(θ2 − θ3)2(θ2 − θ4)2.
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This can be done using any standard computer algebra package (in par-
ticular, we used Sage). Thus U1 ∈ AutC F . The verification that U2,U3 ∈
AutC F follows similarly. �

Again we remark that the requirement for the x4-coefficient to be non-
zero is not essential, since the Ci’s are covariants. There is a more intrinsic
way to define the Cremona covariants in terms of the cubic resolvent of F
and the Hessian covariant; see [4].

The following lemma shows that the Cremona covariants Ci are precisely
the significant factors of F6.

Lemma 4.5. Let F be a binary quartic form with complex coefficients and
non-zero discriminant. Then for each i = 1, 2, 3, the Cremona covariant Ci
of F is a significant factor of the sextic covariant F6.

Proof. Recall that each binary quartic form F with complex coefficients
and non-zero discriminant is equivalent to FA = x4 +Ax2y2 + y4 for some
complex number A, and that the Cremona covariants of FA are proportional
to xy, x2 − y2, x2 + y2. Lemma 4.5 then follows from Lemma 4.3. �

4.3. AutR F for real binary quartic forms. Even though we are pri-
marily interested in AutF , which is defined to be the set of T ∈ GL2(Q)
which fixes F via the action (1.2), it will be convenient to first consider
the larger group AutR F . It is clear that AutF ⊂ AutR F . Proposition 4.4
shows that the matrices Ui, i = 1, 2, 3 are in AutC F , it thus remains to
check whether it is possible that Ui ∈ GL2(R), possibly up to multiplying
by a 4-th root of unity. We have the following proposition:

Proposition 4.6. Let F be a binary quartic form with real coefficients and
non-zero discriminant. Then AutR F is given by:

{±I2×2,±UC1 ,±UC2 ,±UC3} if χ(F ) = 4,
{±I2×2,±UC1} if χ(F ) = 2,
{±I2×2,±UC1 ,±µ4UC2 ,±µ4UC3} if χ(F ) = 0.

Proof. When χ(F ) = 4, it is obvious that each Ci is real and thus Ui is real
as long as ∆(Ci) is positive. This holds for i = 1, 3 but D2 < 0, whence√
D2 = µ4

√
|D2|. Therefore µ4U2 = UC2 ∈ AutR F , as desired.

When χ(F ) = 2, from (4.4) and (4.5) we see that C1 is real with positive
discriminant, while C2,C3 are neither real nor purely imaginary. Moreover,
neither can be proportional over C to a real form. To see this, observe that
from an examination of (4.4) we see that C2,C3 have coefficients which are
conjugate in C. Thus, C2 is proportional to a real form if and only if C3
is proportional to a real form; and moreover, they must be proportional
to each other. This implies that F6 = C1C2C3 is a singular form, which
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by Lemma 2.3 and the proof of Lemma 4.2 shows that F itself must have
vanishing discriminant.

When χ(F ) = 0, we see that C1 is real with positive discriminant while
C2,C3 have coefficients which are purely imaginary, and thus multiplying
by i = µ4 turns them into real quadratic forms. It thus follows that in each
case, AutR F contains the sets given in the proposition.

It remains to check that AutR F cannot be any larger in the cases when
I(F ) or J(F ) vanishes. When I(F ) = 0 this easily follows since AutR F ,
being a finite subgroup of GL2(R), cannot contain a copy of A4. When
J(F ) = 0 we see that the preimage of an order 4 element in Aut∗C(F ) is
necessarily an element T of order 8 in GL2(R). Since all elements of order
8 in GL2(R) are conjugate, we may then assume T ∈ SO2(R). But then
by letting T permute the roots of a binary quartic form we see that T
necessarily sends F to −F , hence T 6∈ AutR F . �

We may now give a proof of Theorem 4.1.

Proof of Theorem 4.1. By Proposition 4.6, the potential non-trivial ele-
ments of AutF are given explicitly in terms of the Cremona covariants.
For each εUCi ∈ AutR F , where ε ∈ {1, µ4}, we have that εUCi ∈ AutF
only if Ci is proportional over C to an integral binary quadratic form
fi(x, y) = fi,2x

2 + fi,1xy + fi,0y
2. In this case we have

εUCi = 1√
|∆(fi)|

(
fi,1 2fi,0
−2fi,2 −fi,1

)
.

Then we see that εUCi ∈ AutF only if |∆(fi)| is a square; that is, Ci is
rationally good. We then see that these conditions are also sufficient for
εUCi ∈ GL2(Q).

Therefore, when F6 has no real quadratic rationally good significant fac-
tors, AutR F = {±I2×2}. When F6 has exactly one real quadratic rationally
good significant factor g, it can have positive or negative discriminant,
which will determine the order of Uf in GL2(R). If ∆(f) < 0 then Uf will
have order 4 and AutR F ∼= C4, and if ∆(f) > 0 then Uf has order 2 and
AutR F ∼= C2 × C2. Finally, if F6 has three real quadratic rationally good
significant factors fi, i = 1, 2, 3 then fi is proportional over R to εUCi for
i = 1, 2, 3 and so AutF is as given by Proposition 4.6. �

5. Cubic and quartic surfaces defined by binary forms and
Theorem 1.2

In this section we apply our theorems characterizing the automorphism
groups of binary cubic and quartic forms F to study lines on the surface
XF given in (1.5), and to prove Theorem 1.2.
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For a binary form F , denote by BF the set of projective roots of F in
P1(C). Let F1, F2 be two binary forms with complex coefficients and non-
zero discriminant. Put G(F1, F2) for the set of elements in PGL2(C) which
map BF1 to BF2 . When degF1 6= degF2, it is obvious that G(F1, F2) is
empty. When degF1 = degF2 = 3, the set G(F1, F2) always consists of six
elements since PGL2(C) is 3-transitive on P1(C). When degF1 = degF2 =
4, the cardinality of G(F1, F2) can be 0, 4, 8, 12. Put

(5.1) υF1,F2 = #G(F1, F2)

and
υF = υF,F .

Consider the surface XF1,F2 defined by

F1(x1, x2)− F2(x3, x4) = 0.

We then have the following, which is Theorem 3.1 in [3]:

Proposition 5.1. Let F1, F2 be two binary forms with non-zero discrimi-
nant and equal degree d. Then the number of lines on the surface XF1,F2 is
equal to d(d+ υF1,F2).

By Proposition 5.1, the number of lines on a surface XF with F a bi-
nary form with non-zero discriminant is completely determined by Aut∗C F .
To prove Theorem 1.2, however, we shall need the following refinement of
Proposition 5.1, which is contained in the proof of Theorem 3.1 in [3].

We shall denote a projective point in P3 by [x1 : x2 : x3 : x4]. Let
F be a binary form of degree d with complex coefficients and non-zero
discriminant. By applying a GL2(C) transformation, we may assume that
the leading coefficient of F is non-zero.

Lemma 5.2. Let ψ1, · · · , ψd denote the roots of F (x, 1). Then all lines on
the surface XF are in exactly one of the following two categories:

(1) (Root lines) L = {[sψj : s : tψk : t] ∈ P3 : s, t ∈ C} for some
1 ≤ j, k ≤ d, or

(2) (Automorphism lines) There exists an automorphism

T =
(
t1 t2
t3 t4

)
∈ AutC F

such that

L = {[u : v : t1u+ t2v : t3u+ t4v] ∈ P3 : u, v ∈ C}.

Proof. The proof of Lemma 5.2 follows from the proof of Theorem 3.1 in [3].
The second part of Lemma 5.2 was done by Heath–Brown in [6]. �
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5.1. Cubic surfaces. We shall state a more precise version of part (1) of
Theorem 1.2. For a given binary form F with integer coefficients and non-
zero discriminant, write K for the field of smallest degree for which all lines
contained in the surface XF defined by (1.5) are defined over K. We put F
for the splitting field of F , and we shall denote by µ3 for a primitive third
root of unity. We will prove the following for cubic surfaces XF defined (1.5)
and a binary cubic form F (x, y):

Proposition 5.3. Let F be a binary cubic form with integer coefficients
and non-zero discriminant. Then K = F(µ3).

Proof. From Proposition 5.1 we see that the root lines of XF are defined
over F. For the automorphism lines, we see thatMqF andMJθ are defined
over F. Hence, Tθ is defined over F. Note that the definition NqF and N 2

qF

involves the term
√
−3∆(F ), which may not lie in F. We note however

that
√
−3 ∈ Q(µ3) and

√
∆(F ) ∈ F, since it is the product of the dif-

ferences of the roots of F (x, 1). Therefore, all of the automorphisms of F
are defined over F(µ3) and hence all of the automorphism lines are defined
over F(µ3). �

Finally, it is clear that Proposition 5.3 implies the cubic case of Theo-
rem 1.2, since [F(µ3) : Q] ≤ 12.

5.2. Quartic surfaces. Let F be a binary quartic form with integer coef-
ficients and non-zero discriminant. By Propositions 2.1 and 5.1, the surface
XF contains either 32, 48, or 64 lines depending on whether I, J vanish.
Put σF for the number of lines contained in the surface XF given in (1.5).
We then have the following proposition:

Proposition 5.4. Let F be a binary quartic form with integer coefficients
and non-zero discriminant.

(1) If I(F ), J(F ) are both non-zero, then σF = 32. Moreover, [K : Q] ≤
48 with equality holding whenever GalF ∼= S4 and ∆(F ) is not the
negative of a square integer.

(2) If I(F ) = 0, then σF = 64.
(3) If J(F ) = 0, then σF = 48.

Proof. By Propositions 2.1, the size of Aut∗C F is 4, 8, 12 respectively when
I(F ), J(F ) are both non-zero, when J(F ) = 0 and I(F ) 6= 0, and I(F ) = 0
with J(F ) 6= 0. Thus, by Proposition 5.1, we have

σF =


4(4 + 4) = 32 if I(F )J(F ) 6= 0,
4(4 + 8) = 48 if J(F ) = 0, I(F ) 6= 0,
4(4 + 12) = 64 if I(F ) = 0, J(F ) 6= 0.
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We now prove part (1) of the proposition. The treatment of the root lines is
the same as the cubic case, and it is clear that the root lines are defined over
F. For the automorphism lines, the lines corresponding toMC1 ,MC2 ,MC3
are defined over F by (4.5). The remaining automorphism lines are defined
after adjoining µ4 to F, whence K = F(µ4). Moreover F is at most a de-
gree 24 extension over Q, thus [K : Q] ≤ 48. Observe that equality holds
only when [F : Q] = 24, which implies that GalF ∼= S4, and that F(µ4) 6= F.
This condition is equivalent to µ4 6∈ F, and an elementary exercise in Galois
theory yields that this happens if and only if ∆(F ) is not the negative of a
square integer. �
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