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On binary polynomials in idempotent commutative groupoids

by
J. Dudek (Wroclaw)

Abstract. In this paper one esfimates the number of essentially binary polynomials in
idempatent and commutative groupoids (Theorem 3, 4 and 5).

1. Introduction. Let A —(A F) be an algebra. We denote by 4™ (%)

Do

4P (W) the set of all n-ary polynomials in ¥, where A = AP (%)
k=

=le’. ... el’}, and APl = AR (W = AP OIS, ... f): feF,
fv o fe AP (A} (see [3]). By p, (%) we denote the number of all essentially
n-ary polynomlals in W 2D -

H (G,-) is a groupoid, then, x)" stands for the expression
(...(xy)- ... -p)y where x occurs once and y occurs n times,

The class of all idempotent and commutative groupoids (G, *) is denoted
by ¥(-). For a fixed # 1 we denote by V,(-) the subvariety of V(:) of all
groupoids (G, -) which satisfy xy" = x,

A groupoid (G, ') is called medial il it satisfies the medial law, ie,
(x) () = (ow) (yv) for all x, y, u, veG.

In this paper we prove the following theorems.

TeroreM 1. If (G, -)e V(-) and cardG = 2, then xy" # y for all n.

Turorem 2. If (G,-)eV(-) and cardG 2 2 and xy* is not essentially
binary for a certain s = 1, then there exists an n such that (1} (G, Y eV, (), (2)
(G, )EV() for all 1 <k n—1 and (3) (G, ') is a quasigroup.

TurorREM 3, Suppose (G, )eV,(") for a certain nz 2 and (G, )¢ V()
Jor all k < n. Then (G, *) contains at least 2n—1 essentially binary polynomials
if nis odd and at least n—1 essmmal!y binary polynomials i »n is even.

TuroreM 4. If (G, )& V(') and xy* = yx?, then every essentiaily binary
polynomial | over (G, ) is symmetric (i.e, f(x, ¥ =1 (y, X)}, and it is of the
Jorm: f(x, y) = xy" for some n=1.

Tueorem 5. If (G, )eV(-),cardG 2 2 and (G, -) is medial, then the
rumber of all essentially binary polynomials over (G, *) is odd or infinite.

2. Leramas and proofs of theorems. The proof of Theorem 1 can be
found in an earlier published paper [1]. Here we give the same proof for the
sake of completeness.
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Proof of Theorem 1. Assume that xy" =y for all x, ye G and that »
is the smallest such number. Since xy is essentially binary, we have 1 > 1.
Then we get

Xy = o™ = (™ ) ey YT = (G ) ey
=Gy T =y 0 = (y oyt D)yt R
={y" W0y = () ey T R = (xR = L
=y =y =y =y

So, we have a contradiction xy"" ! =y.

Proof of Theorem 2. By Theorem 1 there exists a smallest n > 1 such
that xy" = x in (G, '), because xy is idempotent. Now, x)* is essentially
binary for ail 1 < k< n—1. Hence (G, )¢ V(). We prove that the groupoid
is a quasigroup. Indeed, if xya = x,4, then x; = x,a" = (x,a)a"" ! = (x,a)a""!
= X,a" = X,. It is clear that x = ba"" ! is a solution of the equation x-a = b,
This completes the proof.

Proof of Theorem 3. Let (G, -}eV,(*) for a certain n> 2 and’let'_

(G, )¢ Vi () for every k < n. Observe that if at least one of the polynomials
x(xy¥, where k=1,...,n~1, is not essentially binary, then n is even.
Indeed, let x(xy)* =x for some k. Then, putting yx"~! for y, we get
x = x(x(px"" N = x((yx""Yxf = x(px" = x)*,  which proves that
(G, -Ye Vi (-), which is impossible. Let x(xy)* =y for a certain 1<k <n.
Then  x = x(xy)f" = (x(p))(xp)"* = y(oy)™* and y = x(xp)* = x(yx)~*
= x(xy)"*. f n—k #k, then from (3) of Theorem 2 we infer that (G, *) is
cancellative, wherice x(xy)* = x for some 1 <s< n—1, which gives a con-
tradiction with the case. considered above. We have thus proved that if
x(xy)t, for a certain 1<k<n, is not essentially binary, then n is even.
Moreover k == n/2. .

Case 1. nis odd. From the above remark we see that the polynomials
x(xy) are essentially binary for all k=1, ..., n—1,

By (3) of Theorem 2, (G, -) is a quasigroup. Hence the polynomials
xy, %(xp), ¥ (v, x(x)%, y(yx)2, ..., x(x3)*"1, p{yx)""! are different, and so
p2(G,.") =2n—1. ’

. Case 2. nis even. If the polynomials x(xy)* are essentially binary for k
=1, ..., n—1, then, as in case 1, we have p,(G, -} = 2n—1 > n—1. Assume
_ now that there exists a k such that x(xy)* is not essentially binary. Then, by
the argument above, n is even, k =n/2 and x(xy)"2=y holds in (G, ).
Putting yx"~! for y, we get xy™2 = yx""1. It is clear that this identity " is
equivalent to the previous one. So, consider the polynomials
xy, x(xy), p(yx), x(y)?, p (), ..., x(ep)"*~2, y(px)">~1, From the mini-
mality of n we infer that all these polynomials are different and essentially
binary. Thus p,(G, "} = 2(n/2—1)+1 =n—1. The proof is completed,
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Proof of Theorem 4. Let (G.-) be an idempotent commutative
groupoid for which xy* = yx?. Our aim is to prove that if f(x, y) is a
nontrivial binary polynomial over (G, -), then f is symmetric and there exists
a positive integer k such that f(x, y) = xy*. To prove this assertion we use
Marczewski’s formula of [3] for a description of the set A () of a given

algebra A = (A4, F). In our case we have A¥(G, +) = D AP (G, -), where
k=0

AR = {x, y} and 4, = AL U{f, fo: /1, fre AP}

First of all let us prove that f(x, y) = xy* is commutative for every k
2z 1. For k=1,2 this follows immediately from the assumption of the
theorem. Supposing that xy* = yx* for k < n, we have

Xy = (" Nyt = p ey = (p (kD) (Y
= (xp)" (xy"" 1) = (px") (px" 1) = (1% Mx) (px" Y
= (x(yxn— 1))(yxn-1) = x(yxn— 1)2 = (yx"‘ 1)3(2 o yx”“.
Let us find the elements of the set A{®. We have
AP ={x,y,xy} and AP ={x, y, xy, xy?}.

Assume that AfY ={x, y, xy, xy% ..., xy*} and consider A{¥,. Using
Marczewski’s formula, we have
AR = AP G, fo: freAP, i=1,2).

If at least one of the polynomials f,f; is trivial, then f,f,
€{X, ¥, Xy, ..., xy**'}. Indeed, if f; = xy* where 1 <r <k and f, =x (the
case f, =y is obvious), then by the commutativity of xy” for all m> 1 we
have fi fo = (xy")x = (yx)x = yx’* = xy’* 1, Let f; = xy" and f; = x)*, where
L<r, p<k. Let p=r+q. Without loss of generality we can assume that g
= 1. Then, using again the commutativity of xy™, we get

Fofa = (ey) ) = ey Ny ) = O ) (v (9)) = (v ey ) (xy)
. y(xyr)q+l - (xyr)yq+1 — xyr+q+1 — Xyp+1,
where p+1 < k+1, and thus f,f, is either trivial or of the form xy*, where
s < k+1. Hence
AR = AP O {3yt s k1) = [x, 3, 3, oy 3541),
which completes the proof.
Before proving Theorem 5 we need some lemmas.
Lemma 1. If (G, -) is medial and (G, -)eV(), then
AP(G, Y= AP, (G, ) xU A2 ((G, )y for alt k,

where AP(G, ) = {x, y} and AP (G, ) u={fu: fe AP (G, ), ue{x, y}}, j
=1,2, .., .
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Proof. We proceed by induction on k. For k=1 we have
AP = AP U S S fred®, 1=1,2) =[xy} o (o}

= {x, y, 5y} = {3 xy} o {y, xp} = {xx, yx} oy, w9}
={x, ybxuix, y)y =A@ xu 4P y.

We have A1 -x U AP -y = A7, for all j. Using Marczewski’s formula of [3]
for the description of A () and the inductive assumption, we get

AR, = AR, xUAR, yuU c 4P xuA@-yul,

where U ={f,f2: fi.f264®}. To finish the proof it is emough to
show that U c AP xUuAP-y. Let feU. Then f=/f, and 11, foed®
=A@ xudP;-y. I fi=g,x and [z =g.%, then fifs =(g12)(9:%)
={g19,) (%) = (g1g2)x = g%, Where g =162 edP since ged?, (=1,2).
Therefore, fe A -x. The case where f;, f,ed® -y is proved analogously.
Now let f; = gyx and f, = gpy, where g;, g;€ A2 ,. Then using the medial
law, we have f=f,f, = (g:0)(g2}) = (4:92)(xy) =g (x)), where g =gig,€4.
If g=hx and hed?,, then

I =) (xy) = () (xx) = (hy)x (42 3)-x = AP x.
The case where g = hy is proved analogously.

Lemma 2. If (G, -} is medial and (G, )& V(-), then for every fe A®(G, ')
there exist nonnegative integers o, B; (i,j=1,2,..., 1) such that f(x,y)
=Xy y#7_ (In this lemma we adopt the convention up® = 1),

Proof. The assertion easily follows from Lemma 1 and Marczewski's

[>)

formula for A® = () A{® (see the proof of the preceding lemma).
k=0

Proof of Theorem 5. Let (G, ) be medial, (G, -)eV("), and cardG

> 2, and let f(x,y) be an essentially binary polynomial over (G, ). By

Lemma 2, we have f(x, y)=x1)"1 ... xy". Observe that f(x, y)f(y, %)

=xy, which easily follows from the identity (g(x, ¥)y)(g(y, x)x)
=(g(x, ¥g(», x))(xy) and inductive arguments with respect to the length of
f(x, y) = g{(x, y)y. Hence f(x, y) =f(y, x) implies f(x, y) = xp,

Suppose p, = p;(G, *) is finite. Since cardG > 2, we infer that p; > 1.
We have to prove that p, is odd. Indeed, from the above consideration we
conclude that the only commutative essentially binary pelynomial over (G, *)
is xy, whence p, is odd since p,—1 must be even as the number of all
different essentially binary noncommutative polynomials over (G, *). Further,
observe that there exists a medial groupoid from V() for which p, is infinite,
for instance (R, (x+)/2), where R is the set of all reals and x+y the usual
addition of real numbers. The proof is completed.
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