
On Bisimulation and Model-Checking for

Concurrent Systems with Partial Order Semantics

Julian Gutierrez

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2011

Abstract

In concurrency theory—the branch of (theoretical) computer science that studies the logical

and mathematical foundations of parallel computation—there are two main formal ways of

modelling the behaviour of systems where multiple actions or events can happen independently

and at the same time: either with interleaving or with partial order semantics.

On the one hand, the interleaving semantics approach proposes to reduce concurrency to the

nondeterministic, sequential computation of the events the system can perform independently.

On the other hand, partial order semantics represent concurrency explicitly by means of an

independence relation on the set of events that the system can execute in parallel; following

this approach, the so-called ‘true concurrency’ approach, independence or concurrency is a

primitive notion rather than a derived concept as in the interleaving framework.

Using interleaving or partial order semantics is, however, more than a matter of taste. In

fact, choosing one kind of semantics over the other can have important implications—both

from theoretical and practical viewpoints—as making such a choice can raise different issues,

some of which we investigate here. More specifically, this thesis studies concurrent systems

with partial order semantics and focuses on their bisimulation and model-checking problems;

the theories and techniques herein apply, in a uniform way, to different classes of Petri nets,

event structures, and transition system with independence (TSI) models.

Some results of this work are: a number of mu-calculi (in this case, fixpoint extensions of

modal logic) that, in certain classes of systems, induce exactly the same identifications as some

of the standard bisimulation equivalences used in concurrency. Secondly, the introduction of

(infinite) higher-order logic games for bisimulation and for model-checking, where the players

of the games are given (local) monadic second-order power on the sets of elements they are

allowed to play. And, finally, the formalization of a new order-theoretic concurrent game

model that provides a uniform approach to bisimulation and model-checking and bridges some

mathematical concepts in order theory with the more operational world of games.

In particular, we show that in all cases the logic games for bisimulation and model-checking

developed in this thesis are sound and complete, and therefore, also determined—even when

considering models of infinite state systems; moreover, these logic games are decidable in the

finite case and underpin novel decision procedures for systems verification.

Since the mu-calculi and (infinite) logic games studied here generalise well-known fixpoint

modal logics as well as game-theoretic decision procedures for analysing concurrent systems

with interleaving semantics, this thesis provides some of the groundwork for the design of a

logic-based, game-theoretic framework for studying, in a uniform manner, several concurrent

systems regardless of whether they have an interleaving or a partial order semantics.

iii

Acknowledgements

Foremost, I thank my main supervisor, Julian Bradfield, for his guidance and support in the

past three years and for having introduced me to both mathematical logic and true concurrency.

I also thank my co-supervisor, Ian Stark, and Colin Stirling for their academic advice as well

as for having encouraged me to explore my own ideas. I am indebted to Colin and Julian for

providing some of the logical and mathematical tools for the development of this PhD thesis.

Indeed, most of the results herein build upon their work on logic, games, and concurrency.

I have also been benefited, and in many cases drawn inspiration, from discussions and

exchanges of ideas with various people inside and outside LFCS, in particular, with Sibylle

Fröschle, Martin Lange, Robin Milner, Luke Ong, and Glynn Winskel; I thank Luke and Glynn

also for their hospitality during my visits to, respectively, Oxford and Cambridge, where we

discussed parts of this thesis. The final version of this monograph contains a number of im-

provements suggested by my two PhD examiners, Richard Mayr and Mogens Nielsen.

I also thank the very long list of people here in Scotland and abroad who, at any point,

helped me polish and finish this manuscript. I am especially grateful to those who commented

on preliminary versions of the papers and chapters associated with this thesis or provided me

with useful feedback on different aspects of this work. I extend my gratitude to the anonymous

referees who reviewed the papers in FOSSACS, CONCUR, WoLLIC, and the Information and

Computation journal, where preliminary versions of parts of this thesis have been presented.

Special thanks also go to those who, a few years ago, supported my PhD application to the

University of Edinburgh: Andres Jaramillo, Camilo Rueda, and Eugenio Tamura. Many thanks

to the members of the Avispa research group as well, especially to Alejandro Arbelaez, Hugo

Lopez, Jorge Perez, and Frank Valencia who have openly shown a positive and enthusiastic

attitude towards my work, even long before I came to study to the United Kingdom.

Doing this thesis was a much more enjoyable experience thanks to some fellow doctoral

students of LFCS. In particular, I would like to mention Lorenzo Clemente, Willem Heijltjes,

Ben Kavanagh, Gavin Keighren, Anthony W. Lin, Matteo Mio, and Grant Passmore.

I was fortunate to have had financial support by an Overseas Research Studentship (ORS)

Award as well as a School of Informatics PhD Scholarship of the University of Edinburgh;

while finishing, I have been a part-time Research Assistant on the EPSRC Research Grant

EP/G012962/1 ‘Solving Parity Games and Mu-Calculi’.

Finally, I want to express my deepest gratitude to the three most important women in my

life: Cecilia, Paula, and Teresa, without whose love and moral support it would not have been

possible for me to produce this thesis. I thank Cecilia particularly for encouraging me, day by

day, to do my very best. Lastly, above everything and everyone, I especially thank you, Teresa,

for you have always covered “my blind side”.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except as specified.

(Julian Gutierrez)

v

Table of Contents

Abstract . iii

Acknowledgements . iv

Declaration . v

1 Introduction 1

1.1 Motivation and Context . 1

1.2 Synopsis and Contributions . 5

2 Concurrency, Logic, and Games 9

2.1 Models for Concurrency . 9

2.1.1 Petri Nets . 10

2.1.2 Transition Systems with Independence 10

2.1.3 Event Structures . 12

2.1.4 A Uniform Representation . 12

2.2 Modal Logics and Fixpoints . 14

2.2.1 Hennessy–Milner Logic . 15

2.2.2 Fixpoints and the Modal Mu-Calculus 17

2.3 Logic Games for Verification . 19

2.3.1 Bisimulation Games . 20

2.3.2 Model-Checking Games . 24

3 Mu-Calculi for True Concurrency 27

3.1 Local Dualities in Partial Order Models . 27

3.2 Fixpoint Logics with Partial Order Semantics 29

3.3 Examples and Applications . 34

3.4 Logical and Concurrent Equivalences . 38

3.4.1 The Causal-Free Cases . 39

3.4.2 From Local to Global Causality . 42

3.4.3 Concurrency Beyond Causality . 50

3.5 Summary . 52

vii

4 Higher-Order Logic Games 53

4.1 Higher-Order Games for Bisimulation . 54

4.1.1 Model Correspondence . 54

4.1.2 Determinacy and Decidability . 61

4.1.3 A Hierarchy of Logics and Games . 63

4.2 Higher-Order Games for Model-Checking . 64

4.2.1 LMSO Model-Checking Games . 65

4.2.2 Soundness and Completeness . 67

4.2.3 Local Properties and Decidability . 71

4.2.4 Model-Checking Infinite Posets . 73

4.3 Summary . 76

5 Concurrent Logic Games 77

5.1 Concurrent Games on Partial Orders . 79

5.1.1 Structure and Dynamics . 80

5.1.2 Closure Properties . 86

5.1.3 Towards Determinacy . 89

5.2 Metatheorems for Verification . 92

5.3 Expressivity . 100

5.3.1 Bisimulation . 101

5.3.2 Model-Checking . 105

5.4 Prime Concurrent Games . 111

5.5 Summary . 112

6 Conclusions and Further Work 113

6.1 Logics with Partial Order Models . 113

6.2 Logics for Local Reasoning . 115

6.3 On Bisimulation . 115

6.4 On Model-Checking . 116

6.5 Sequential & Concurrent Games . 118

6.6 Further Work . 119

6.7 Epilogue . 122

Bibliography 123

List of Notations 129

viii

Chapter 1

Introduction

1.1 Motivation and Context

In the theory of sequential computation various mathematical models have been proposed in

the last 70 years, e.g., Turing machines, the λ-calculus, etc. A hallmark of this theory is

that all these formal models of sequential computation are equivalent in the sense that the

observable behaviour given by the input-output functions they compute is exactly the same. For

concurrent computation, however, an agreement on how to formally represent the observable

behaviour of a concurrent or distributed system does not exist yet, and consequently, the model

of concurrency is still to be developed—should a unifying theory of concurrency be desired.

Nevertheless, some partial uniformity can be found across different theories of concurrency

as most concurrent systems have either an ‘interleaving’ or a ‘partial order’ semantics. This

difference, in turn, separates off the set of models for concurrency in two families. Examples

of interleaving models include Kripke structures, labelled transitions systems, infinite trees,

Hoare languages, Moore and Mealy machines, and many more. On the other hand, exam-

ples of partial order models include Petri nets, event structures, asynchronous transition sys-

tems, Mazurkiewicz trace languages, Chu spaces, transition systems with independence (TSI),

amongst others. A good introduction to various models for concurrency can be found in [72].

The difference between interleaving and partial order semantics is conceptually simple. On

the one hand, the interleaving approach proposes to represent concurrency implicitly by reduc-

ing it to the nondeterministic, sequential computation of the events that the system can perform

independently. On the other hand, partial order semantics represent concurrency explicitly by

means of an ‘independence relation’ on the set of events that the system can execute in parallel;

following this approach, the so-called ‘true concurrency’ approach, independence or concur-

rency is a primitive notion rather than a derived concept as in the interleaving framework.

In this sense, partial order models provide a semantically more faithful representation of

concurrency and, therefore, allows one to study concurrency at a more fundamental semantic

1

2 Chapter 1. Introduction

level. Partial order semantics are, however, far more complex than interleaving ones. In fact,

any nondeterministic sequential process or concurrent system with an interleaving semantics

can be seen, trivially, as a partial order model with an empty independence relation. Then, one

may expect to pay a price for having such a greater amount of information, and indeed, several

decision problems that are tractable (to some degree) in the interleaving world can become

rather difficult, or even algorithmically unsolvable, in a partial order setting.

In contrast, having the additional information about independence that comes with any par-

tial order model of concurrency has also its advantages. Just to mention a few examples: with

regards to verification, partial order models can be less sensitive to the ‘state space explosion’

problem [95] when analysing concurrent and distributed systems, and are the natural input of

‘partial order reduction’ methods [36] and ‘unfolding’ techniques [25] for performing both

software and hardware verification. In fact, in practice, these features of partial order models

can help build computationally better verification tools based on these techniques.

On the other hand, although all usual ‘temporal properties’ [58] can be verified over inter-

leaving models of concurrency, more complex temporal properties involving parallelism and

causality—which are natural to concurrent and distributed systems—can no longer be verified

in the interleaving interpretations, cf., [6, 56, 78]. Besides this, regarding logic and seman-

tics issues, it has been shown that partial order models, unlike interleaving ones, can be used

to give very natural ‘denotational semantics’ to logics with concurrent features, e.g., [2, 44];

and quite interestingly, even to define ‘games semantics’ that generalize traditional, sequential

games models of sequential processes, e.g., as presented in [64].

It is therefore fair to say that the study of theories and techniques for partial order models

of concurrency continues to deserve much attention, since they can help alleviate some of the

limitations related to the use of interleaving semantics in some particular contexts. By doing

so, we expect to acquire a better understanding of the semantic foundations of concurrent

computations. Roughly, this is the main motivation of this work. In particular, this thesis

studies concurrent systems with partial order semantics and focuses on their ‘bisimulation’ and

‘model-checking’ problems. The theories and techniques developed in this thesis apply, in a

uniform way, to different classes of Petri nets, event structures, and TSI models. Let us now

give a brief informal introduction to these two decision problems.

The study of bisimulation and model-checking problems started in the late 1970’s and early

1980’s, respectively, from independent works in mathematical logic, concurrency theory, and

program verification. In the bisimulation case, it started with the work of Milner [65] and Park

[74] in concurrency, and independently of van Benthem [8] in mathematical logic. Whereas

Milner and Park wanted to study behavioural equivalences between different concurrent sys-

tems, van Benthem was interested in finding a relationship between modal logic and first-order

(FO) logic; in fact, he showed that modal logic is the ‘bisimulation invariant’ fragment of FO

1.1. Motivation and Context 3

logic. On the other hand, the study of model-checking problems started with the work of Clarke

and Emerson [16] in concurrency and verification as an alternative—fully automatic—way of

proving the correctness of programs. Nowadays, both problems are major research topics in

theoretical and applied informatics as well as in mathematical logic.

Bisimulation and model-checking problems are, technically, quite different. On the one

hand, a bisimulation problem takes two (concurrent) systems and a bisimulation equivalence

relation as input—say, two systems F and G and an equivalence relation ∼b—and asks the

question ‘is the model of F equivalent to the model of G with respect to ∼b?’, meaning, ‘are F
and G behaviourally or observationally equivalent?’; the answer of this question is not unique,

even if F and G are fixed, since it depends on the particular equivalence relation ∼b under

consideration. On the other hand, the model-checking problem takes a system and a logical

formula as input—say, a system H and a formula φ—and asks the question ‘does the model of

H satisfy the formula φ?’, meaning, ‘does H have the property specified by φ?’.

Although the bisimulation and model-checking problems have been both studied for about

thirty years (cf., [21, 84]), many issues are still unsolved, or have unsatisfactory solutions,

especially when considering partial order models of concurrency such as those studied in this

thesis. For this reason, here we investigate a number of core issues related to the use of ‘mu-

calculi’ (fixpoint extensions of modal logic [14], in this case) and infinite ‘logic games’ [9]

for bisimulation and model-checking. Our results show that generalizations to a partial order

setting of some of the theories and techniques for interleaving concurrency can be used to

address, uniformly, the analysis of concurrent systems with either kind of semantics.

The approach we follow uses fixpoint modal logics (for the mathematical specification of

system properties) and infinite logic games (as a formal verification methodology) in an order-

theoretic setting. The combination of fixpoint operators and infinite games is what gives our

approach the power to deal with systems whose behaviour is deemed to be non-terminating,

as infinitely long interactions with their environments are expected. Thus, fixpoint logics and

infinite games are our main objects of study apart from the partial order models themselves.

These choices we have made are not arbitrary as explained in the following paragraphs.

Although fixpoint logics are usually considered hard to understand, it is also well-known

that they allow for a mathematically elegant study of finite and infinite behaviours (by the use

of least and greatest fixpoint operators, respectively) and possess a high expressive power. For

instance, most temporal logics for verification—such as LTL, CTL, or CTL∗—can be translated

to the ‘modal mu-calculus’ (Lµ [54]), a rather small and simple fixpoint modal logic. More-

over, modal logics naturally characterise bisimulation equivalences, the de facto equivalence

relations for concurrent systems, and one of the two main topics of study in this thesis.

Games, on the other hand, also form a great deal of the technical work herein. Infinite two-

player games have proved to be useful in different applications [97], such as the synthesis of

4 Chapter 1. Introduction

reactive controllers, the evaluation of logical formulae, the verification of temporal logic speci-

fications, and the formal description of systems designed to exhibit non-terminating behaviour,

e.g., an operating system. These games have a long history in mathematical logic, but only in

the last two decades have been given enough algorithmic content for efficiently solving several

problems in computer science, both from practical and theoretical standpoints.

In this thesis we consider infinite games played by two players, a “Verifier” Eve (∃) and

a “Falsifier” Adam (∀), whose interaction provides a formal framework for analysing concur-

rent systems with possibly non-terminating behaviour. In these games the flow of information

between the two players is used to verify the truth or falsity of a given property; these kinds

of logic games are called ‘verification games’. In a verification game the main computational

problem is the effective and efficient construction of a ‘winning strategy’, which is a mathe-

matical representation of the solution of the particular decision problem under consideration,

e.g., bisimulation or model-checking in our context. In the games approach, solving a verifica-

tion problem—either a bisimulation or a model-checking one—reduces to answering the same

question: ‘does Eve have a strategy to win all plays in the verification game?’; i.e., checking

that a strategy for Eve is indeed a winning strategy (provided that such a strategy exists).

Verification games are also interesting because they are closely related to (and can serve as a

bridge between) other verification methods, such as the better-known ‘automata’ and ‘tableau’

techniques [38, 55]. Indeed, research in the last decade has started to show that both games and

automata techniques, in combination with temporal and fixpoint logics, can be used as a basis

of software and hardware verification methods for industrial-scale applications.

However, despite their attractive mathematical properties, both fixpoint logics and infinite

games are hard to manipulate in a partial order setting since some bisimulation and model-

checking problems are already computationally difficult, or even algorithmically unsolvable,

for various families of partial order models. For instance, some bisimulation and model-

checking problems can be undecidable in relatively simple classes of Petri nets, event struc-

tures, and TSI models, even when restricted to finite concurrent systems, e.g., [52, 56]. Another

important issue is the ‘determinacy’ of infinite games, which is a property that guarantees the

existence of winning strategies. While most bisimulation and model-checking games are de-

termined on interleaving structures, they can easily be undetermined (and hence problematic

from an algorithmic viewpoint) when considering partial order models of concurrency.

Therefore, there is a real challenge in developing mathematical theories for the analysis

of concurrent systems with partial order semantics. This thesis makes various contributions in

that direction, both for bisimulation and for model-checking (especially when traditional logics

and game-based verification techniques fall into undecidability or undeterminacy problems).

This is achieved by showing that the games developed in this thesis are sound and complete,

and therefore, determined—even when considering infinite state systems; moreover, they are

1.2. Synopsis and Contributions 5

decidable in the finite case and underpin new decision procedures for systems verification.

Since the mu-calculi and logic games studied here generalise well-known fixpoint modal

logics and game-based decision procedures for concurrent systems with interleaving semantics,

this PhD thesis gives some of the mathematical groundwork for the design of a logic-based,

game-theoretic framework for studying, in a uniform manner, several concurrent systems both

with interleaving and with partial order semantics.

1.2 Synopsis and Contributions

In summary, the main contributions of this PhD thesis are:

1. The development of various mu-calculi with partial order semantics which give a novel

logical characterisation of concurrent behaviour whereas, in some classes of systems,

induce the same identifications as some of the standard bisimilarities in concurrency.

2. The introduction of new classes of infinite higher-order logic games for bisimulation as

well as for model-checking, where the two players of the games are given local monadic

second-order (LMSO) power on the sets of elements they are allowed to play.

3. The definition of an order-theoretic concurrent logic game model which, on the one

hand, reduces reasoning on partially ordered structures and provides a uniform approach

to bisimulation and model-checking and, on the other hand, builds a bridge between

some mathematical concepts in order theory and the more operational world of games.

The structure of the rest of this document and a brief description of some of the particular

results of this work, which expands the summary just given, is outlined next:

Chapter 2. This chapter gives an introduction to the theoretical background that is used

throughout the thesis. We discuss specific topics related to models of concurrency, fixpoint

modal logics, and infinite logic games for bisimulation and model-checking. The chapter starts

with a formal description of the three partial order models of concurrency we consider here:

Petri nets, event structures, and TSI models. Then, a uniform presentation of the three mod-

els is given by using the TSI model. Next, we discuss the Hennessy–Milner logic (HML),

a simple logical language for interleaving concurrency, as well as its extension with fixpoint

operators—which is known as the modal mu-calculus (Lµ). After that, we give an introduc-

tion to different logic games for bisimulation and model-checking. Firstly, we present some

games for bisimulation and, through them, the three bisimulation equivalences we consider

here: strong bisimilarity (sb), history-preserving bisimilarity (hpb), and hereditary history-

preserving bisimilarity (hhpb). Then, we discuss the (local) model-checking game for Lµ as

defined by Stirling on interleaving systems. The chapter finishes with some remarks on the

decidability and determinacy of both of these logic games for verification.

6 Chapter 1. Introduction

Chapter 3. This chapter starts by studying a mathematical axiomatization for true concur-

rency and discusses how the concurrent, partial order behaviour of Petri nets, event structures,

and TSI models can be captured in a uniform way by two simple and general dualities of local

behaviour. Then, we study a logical characterization of those dualities of concurrent behaviour

and show that natural fixpoint modal logics can be extracted from it. Also, with the aid of a few

examples, some applications to concurrency of these new fixpoint logics are presented.

Then, the chapter is devoted to the study of the logical equivalences induced by such modal

logics. As a result, it is shown that—when restricted to certain classes of systems—some of

these logics induce the same identifications as some of the standard bisimulation equivalences

used in interleaving and in true concurrency. In this part of the chapter we pay particular

attention to the interplay between concurrency, causality, and conflict/choice. We do so by

restricting these three kinds of behaviour syntactically (through the logics) and semantically

(by considering special classes of systems). In particular, this study reveals that the global

notion of causality induced by hpb can be captured by a simpler local notion given by the

logical equivalence induced by a causal mu-calculus (which is defined in this chapter along with

other mu-calculi). This result holds when restricted to a class of systems, named Ξ systems,

for which a phenomenon called confusion (roughly, a situation where both concurrency and

conflict happen simultaneously on a set of events) appears only in a deterministic form.

Chapter 4. This chapter introduces a new form of infinite logic games where the players are

given (local) monadic second-order power on the sets of elements they are allowed to play.

These higher-order logic games are defined, independently, for bisimulation and for model-

checking. In both cases it is shown that when restricted to interleaving models of concurrency,

such games provide, essentially, first-order power. In fact, it is shown that in an interleaving

context they are equivalent to well-known logic games for interleaving concurrency, namely to

the game for Milner and Park’s strong bisimilarity (in the bisimulation case) and to the game

for local Lµ model-checking of Stirling (in the model-checking case). Moreover, we show that

these higher-order games can be solved using so-called memoryless or history-free winning

strategies (strategies that tell a player how to make a move—i.e., how to play—depending only

on his/her current position in the game board), despite their higher-order power.

Moreover, with respect to the bisimulation case, we also show that, for the class of Ξ

systems, the logical equivalences induced by the most expressive modal logics introduced in

Chapter 3 are decidable as well as strictly stronger than hpb and strictly weaker than hhpb.

Then, based on the study of the expressivity of the modal logics considered in this thesis, a

hierarchy of logics and games for concurrency is defined. Next, we study the model-checking

case and show that the higher-order games for model-checking defined in this chapter underpin

a new game-based decision procedure for temporal verification. The game is then used to

1.2. Synopsis and Contributions 7

model-check a class of regular, infinite event structures which has an undecidable monadic

second-order (MSO) theory. As a result, we improve previous work in the literature in terms

of temporal expressive power. On the logical side, this is obtained by allowing a free interplay

of fixpoint operators and local monadic second-order power on the sets of elements that can

be described within the logics studied in the previous chapter.

Chapter 5. This chapter studies an order-theoretic concurrent game model and some of its

mathematical properties and algorithmic applications. The model provides a game-theoretic

approach to system and property verification which applies uniformly to different decision

problems (which include bisimulation and Lµ model-checking) and models of concurrency, in

particular to various classes of Petri nets, event structures, and TSI models.

This new games framework uses partially ordered sets (posets) to give a uniform mathe-

matical representation of concurrent systems, logical specifications, and problem descriptions.

Moreover, the games model comes with generic metatheorems for soundness, completeness,

and determinacy, and reduces reasoning on partially ordered structures by focusing on sim-

ple local correctness conditions—which make considerably easier the formulation or design of

concrete game-based decision procedures for bisimulation and for model-checking.

In this new logic game the players are allowed to make asynchronous and independent local

moves in the board where they play. Moreover, each player follows a set of (locally defined)

strategies, which are globally scheduled at the beginning of the game. Such strategies are given

in the form of closure operators on a possibly infinite poset; other elements of the game are

also formalised in order-theoretic terms, e.g., as order ideals or order filters of a poset. As a

result, this new model builds a bridge between various mathematical concepts in order theory

and other (still mathematical but more operationally intuitive) notions in game theory.

Chapter 6. This chapter finishes the thesis by presenting some concluding remarks as well

as most relevant related work. Also, some of the present author’s personal views on different

topics related to concurrency, logic, and games, are put forward for discussion. A number of

directions and ideas for further work are also given at the end of the chapter.

Main publications

Preliminary versions of parts of this thesis have been already published by Springer as part of

the proceedings of FOSSACS [39], CONCUR [42], and WoLLIC [41]. An extended version

of [42] appears in a special issue of the Information and Computation journal [43].

8 Chapter 1. Introduction

About this Ph.D. Thesis

This Ph.D. dissertation builds all of its theory upon the following thesis: that the logical and

mathematical study of concurrent systems with partial order semantics provides a very natural

formal framework where different concurrency models and decision problems (which include

bisimulation and model-checking) can be studied both at a more fundamental semantic level

as well as in a uniform manner. This is, mainly, because the information about independent

and local partial order behaviour, which is inherent to concurrent and distributed systems, is

mathematically explicit in concurrency models with such a kind of semantics.

Chapter 2

Concurrency, Logic, and Games

In this chapter we study the models for concurrency of interest in this dissertation, together with

background material on the modal logics and games for verification that are relevant to the work

presented in subsequent chapters. We also discuss some relationships between the models for

concurrency that are studied throughout this document as well as between the bisimulation

equivalences induced by the modal logics presented in this chapter and the equivalences for

concurrency considered in this and forthcoming chapters.

2.1 Models for Concurrency

In concurrency theory there are two main semantic approaches to modelling concurrent or

parallel behaviour, either using interleaving or using partial order models for concurrency. On

the one hand, interleaving models represent concurrency as the nondeterministic combination

of all possible sequential behaviours in the system. On the other hand, partial order models

represent concurrency explicitly by means of an independence relation on the set of actions,

transitions, or events in the system that can be executed concurrently.

We are interested in partial order models of concurrency for various reasons. In particular,

because they can be seen as a generalisation of interleaving models as explained later on in this

section. This feature allows us to define the (fixpoint modal) logics and (infinite logic) games

developed in further chapters in a uniform way for several different models for concurrency,

regardless of whether they are used to provide interleaving or partial order semantics.

We now present the models of concurrency that are considered in this PhD thesis, namely

Petri nets, transition systems with independence (TSI), and event structures. We also present

some basic relationships between them and how they generalise some models for interleaving

concurrency. For further information on this topic the reader is referred to [72, 85].

9

10 Chapter 2. Concurrency, Logic, and Games

2.1.1 Petri Nets

A ‘net’ N is a 5-tuple (P,C,R,θ,Σ), where P is a set of ‘places’, C is a set of ‘actions’,

R⊆ (P×C)∪ (C×P) is a relation between places and actions, and θ is a labelling function

θ : C→ Σ from actions to a set Σ of action labels. Places and actions are called ‘nodes’; given a

node n ∈ P∪C, the set •n = {x | (x,n) ∈ R} is the ‘preset’ of n and the set n• = {y | (n,y) ∈ R}
is its ‘postset’. These elements define the static structure of a net.1 The notion of computation

state in a net (its dynamic part) is that of a ‘marking’, which is a set or a multiset of places; in

the former case such nets are called ‘safe’. Hereafter we only consider safe nets; Figure 2.1

shows a safe net together with a particular marking.

'&%$!"#• // a //'&%$!"#
'&%$!"#• // b //'&%$!"#

Figure 2.1: Places are depicted as circles and actions as boxes, with the corresponding label inside

them. The black dots inside places are called ‘tokens’, and represent the current marking.

Definition 2.1. A Petri net N is a tuple (N ,M0), where N = (P,C,R,θ,Σ) is a net and M0 ⊆ P

is its initial marking. /

As mentioned before, markings define the dynamics of nets. We say that a marking M

enables an action t iff •t ⊆M. If t is enabled at M, then t can occur and its occurrence leads to

a successor marking M′, where M′ = (M \ •t)∪ t•, written as M t−→M′. Let t−→ be the relation

between successor markings and −→∗ its transitive closure. Given a Petri net N = (N ,M0),

the relation −→∗ defines the set of reachable markings in the system N; such a set of reach-

able markings is fixed for any M0, and can be constructed with the occurrence net unfolding

construction defined by Nielsen, Plotkin, and Winskel [71]. Finally, let par be the symmetric

independence relation on actions such that t1 par t2 iff •t•1 ∩ •t•2 = /0, where •t• stands for the set
•t ∪ t•, and there exists a reachable marking M such that both •t1 ⊆M and •t2 ⊆M. Then, if

two actions t1 and t2 can occur concurrently they must be independent, i.e., (t1, t2) ∈ par.

2.1.2 Transition Systems with Independence

A ‘labelled transition system’ (LTS) is an edge-labelled graph structure. Formally, an LTS is a

tuple (S,T,Σ), where S is a set of vertices called ‘states’, Σ is a set of labels, and T ⊆ S×Σ×S

is a set of Σ-labelled edges, which are called ‘transitions’. A ‘rooted LTS’ is an LTS with a

designated initial state s0 ∈ S. A ‘transition system with independence’ (TSI) is a rooted LTS

where independent transitions can be explicitly recognised. Formally:
1The reader acquainted with net theory may have noticed that we use the word ‘action’ instead of ‘transition’,

more common in the Petri net literature. We made this choice of notation to avoid confusion later in the document.

2.1. Models for Concurrency 11

Definition 2.2. A transition system with independence (TSI) T is a tuple (S,s0,T, I,Σ), where

S is a set of states with initial state s0, T ⊆ S×Σ×S is a transition relation, Σ is a set of labels,

and I ⊆ T ×T is an irreflexive and symmetric relation of independent transitions. The binary

relation ≺ on transitions defined by

(s,a,s1)≺ (s2,a,q)⇔∃b.(s,a,s1)I(s,b,s2)∧ (s,a,s1)I(s1,b,q)∧ (s,b,s2)I(s2,a,q)

expresses that two transitions are instances of the same action, but in two different interleavings.

We let ∼ be the least equivalence relation that includes ≺, i.e., the reflexive, symmetric, and

transitive closure of ≺. The equivalence relation ∼ is used to group all transitions that are

instances of the same action in all its possible interleavings. Additionally, I is subject to the

following axioms:

• A1. (s,a,s1)∼ (s,a,s2)⇒ s1 = s2

• A2. (s,a,s1) I (s,b,s2)⇒∃q.(s,a,s1) I (s1,b,q)∧ (s,b,s2) I (s2,a,q)

• A3. (s,a,s1) I (s1,b,q)⇒∃s2.(s,a,s1) I (s,b,s2)∧ (s,b,s2) I (s2,a,q)

• A4. (s,a,s1)(≺ ∪�)(s2,a,q) I (w,b,w′)⇒ (s,a,s1) I (w,b,w′) /

Axiom A1 states that from any state, the execution of a transition leads to a unique state.

This is a determinacy condition. Axioms A2 and A3 ensure that independent transitions can

be executed in either order. Finally, A4 ensures that the relation I is well defined. More

precisely, A4 says that if two transitions t and t ′ are independent, then all other transitions in

the equivalence class [t]∼ (i.e., all other transitions that are instances of the same action but in

different interleavings) are independent of t ′ as well, and vice versa. An alternative definition

for A4 can be given. Let I(t) be the set {t ′ | t I t ′}. Then, axiom A4 is equivalent to this

expression: A4’. t ∼ t2⇒ I(t) = I(t2).

This axiomatization of concurrent behaviour was defined by Nielsen and Winskel [72],

but has its roots in the theory of traces [62], notably developed by Mazurkiewicz for trace

languages, one of the simplest partial order models for concurrency. As shown in Figure 2.2,

this axiomatization can be used to generate a so-called ‘concurrency diamond’ for any two

independent transitions t and t ′, say, for t = (s,a,s1) and t ′ = (s,b,s2).

s1• b
��>

>>

s◦

a @@���

b ��
>>

> I q
•

s2•
a
@@���

Figure 2.2: The ‘concurrency diamond’ defined by t I t ′, where t = (s,a,s1) and t ′ = (s,b,s2). Concur-

rency is recognised by the I symbol inside the square. The initial state is marked by ◦.

12 Chapter 2. Concurrency, Logic, and Games

2.1.3 Event Structures

Definition 2.3. A labelled event structure E is a tuple (E,4,],η,Σ), where E is a set of

‘events’ partially ordered by 4, the ‘causal’ dependency relation; events in an event structure

are occurrences of actions in a system. Moreover, η : E→ Σ is a labelling function from events

to a set of labels Σ, and]⊆ E×E is an irreflexive and symmetric ‘conflict’ relation such that:

if e1,e2,e3 ∈ E and e1]e2 4 e3, then e1]e3; and, ∀e ∈ E the set {e′ ∈ E | e′ 4 e} is finite. /

The independence relation co on events is defined with respect to the causality 4 and

conflict] relations. Two events e1 and e2 are said to be concurrent with each other, denoted by

e1 co e2, if, and only if, e1 64 e2 and e2 64 e1 and ¬(e1]e2). The notion of computation state for

event structures is that of a ‘configuration’. A configuration C is a conflict-free set of events,

i.e., ∀e1,e2 ∈C. (e1,e2) 6∈], such that if e ∈C and e′ 4 e, then e′ ∈C. The initial configuration

(or state) is by definition the empty configuration {}. Finally, a successor configuration C′ of a

configuration C is given by C′ = C∪{e} such that e 6∈C. Write C e−→C′ for this relation, and let

−→∗ be defined similar to the nets case. Figure 2.3 shows a representation of event structures.

e3

e1 e2

<
<

<

{e1,e3} {e1,e2}

{e1}
OOO ooo

{e2}
OOO

{}
OOOOO

ooooo

Figure 2.3: Graphical representation of an event structure where e1 co e2, e1 4 e3, and e2]e3 (on the

left), together with the corresponding partial order of its configurations (on the right). The causal order

relation 4 is read upwards through the straight lines. The dashed lines represent the conflict relation].

In the partial order on the right, configurations are ordered by set inclusion.

2.1.4 A Uniform Representation

Despite being different mathematical structures, the three models just presented have a num-

ber of fundamental relationships between them, as well as with some models for interleaving

concurrency. More precisely, TSI are noninterleaving transition-based representations of Petri

nets, whereas event structures are unfoldings of TSI. This is analogous to the fact that LTS are

interleaving transition-based representations of Petri nets while trees are unfoldings of LTS.

There are also relationships between TSI and LTS and between event structures and trees:

LTS are those TSI with an empty independence relation I on transitions, and trees are those

event structures with and empty relation co on events. In this way, partial order models can

generalise the most important interleaving models in concurrency (and in verification), namely

LTS, trees, and Kripke structures (which are the vertex-labelled counterparts of LTS models).

2.1. Models for Concurrency 13

Since the results presented in further chapters are valid across all the models of concurrency

previously mentioned, it is convenient to fix some notations to refer unambiguously to any of

them. To this end, we use the notation coming from the TSI model and present the maps that

determine a TSI model based on the primitives of Petri nets and event structures. Also, with

no further distinctions we use the word ‘system’ when referring to any of these (partial order)

models or to submodels therefrom, e.g., to LTS, infinite trees, or Kripke structures.

The main reason for this choice of notation is that the basic components of the TSI model

can be easily and uniformly recognised in all the other models of concurrency studied here.

Thus, the translations are simple and direct. Also, this generic setting allows one to see more

clearly that the simple axiomatization of (true) concurrency presented for the TSI model also

holds for the other partial order models of concurrency when analysing their local behaviour.

Petri Nets and Event Structures as TSI Models. A Petri net N =(N ,M0), where the 5-tuple

N = (P,C,R,θ,Σ) is a net as defined before and M0 is its initial marking, can be represented

as a TSI T = (S,s0,T, I,Σ) in the following way:

S = {M ⊆ P |M0 −→∗ M}
T = {(M,a,M′) | ∃t ∈C. a = θ(t),M t−→M′}
I = {((M1,a,M′1),(M2,b,M′2)) | ∃(t1, t2) ∈ par.

a = θ(t1),b = θ(t2),M1
t1−→M′1,M2

t2−→M′2}

where the set of states S of the TSI T represents the set of reachable markings of N, the initial

state s0 is the initial marking M0, the set of labels Σ remains the same, and T and I have the

expected derived interpretations. Similarly, an event structure E = (E,4,],η,Σ) determines a

TSI T = (S,s0,T, I,Σ) by means of the following mapping:

S = {C ⊆ E | {} −→∗ C}
T = {(C,a,C′) | ∃e ∈ E. a = η(e),C e−→C′}
I = {((C1,a,C′1),(C2,b,C′2)) | ∃(e1,e2) ∈ co.

a = η(e1),b = η(e2),C1
e1−→C′1,C2

e2−→C′2}

where the set of states S is the set of configurations of E, the initial state s0 is the initial

configuration {}, and, as before, the set of labels Σ remains the same in both models, and T

and I have the expected derived TSI interpretations.

Notice that actions in a Petri net, transitions in a TSI and events in an event structure are

all different. As said before, transitions are instances of actions, i.e., are actions relative to

a particular interleaving. For instance, a Petri net composed of only two independent actions

(a ‖ b in CCS notation [66]) is represented by a TSI with four different transitions, since there

are two possible interleavings in such a system, namely a1.b2 and b1.a2. Therefore each action

in the Petri net for a ‖ b becomes two different transitions in the corresponding TSI.

14 Chapter 2. Concurrency, Logic, and Games

On the other hand, events are occurrences of actions, i.e., are actions relative to the causality

relation. For instance, the Petri net representing the system defined by (a+b).c, where a+b is

the nondeterministic choice between actions a and b, and . is the sequential composition of such

a choice with the action c, is represented by four events, instead of only three, because there

are two different causal lines for the execution of action c, namely a.c1 and b.c2. Therefore, the

Petri net action c becomes two different events c1 and c2 in the corresponding event structure.

Notation 2.4. Given a transition t = (s,a,s′), also written as s a−→ s′ or s t−→ s′ if no confusion

arises, we have that: state s is called the ‘source’ of t, and write σ(t) = s; state s′ is the ‘target’

of t, and write τ(t) = s′; and a is the ‘label’ of t, and write δ(t) = a. /

Remark 2.5. The systems we study may be finite or infinite, and this is always explicitly

stated. However, they all are ‘image-finite’ [46], i.e., of finite branching. /

2.2 Modal Logics and Fixpoints

Modal logics are formalisms that offer an alternative paradigm of applying logical methods:

instead of using the traditional languages of quantification (first-order or higher-order) to de-

scribe a structure, they look for a quantifier-free language with additional logical operators

(called ‘modalities’) that represent the phenomenon at hand. In many cases, one ends up with a

logical language that is much richer than propositional logic, and yet, unlike several languages

with quantification, does not fall under the scope of classical undecidability limitations, thus

often providing better decidability and complexity results than its rival first-order (FO) logic.

Modal logics can be extended in very simple ways which may turn out to be extremely

expressive. For instance, modal logics can be used to express so-called ‘temporal’ properties

by extending the original modal language with fixpoint operators. Notably, the ‘modal mu-

calculus’ (Lµ [14, 54], which is described later) is a small, yet expressive, temporal logic with

modalities to reason about the actions that can be performed in a system.

Whereas modal logics are rather important in mathematical logic, temporal logics play a

major role in informatics, and especially in concurrency as well as in systems verification.

Temporal logics are special kinds of modal logics. They have modalities for reasoning about

the way in which the truth of an assertion changes over time. In general, temporal logics can

be seen as logics with a modality for a next step/time, and at least one operator to perform

arbitrarily many sequences of steps. They can, therefore, be used to specify properties of the

behaviour of a system in time by describing properties of its execution paths.

Temporal logics come in two varieties: linear-time and branching-time. In a ‘linear-time

temporal logic’, at each point, there is only one possible future moment. On the other hand, in a

‘branching-time temporal logic’ the possible future moments of time have a tree-like structure,

and so there may well be more than only one (as it is in the linear-time case). The modalities

2.2. Modal Logics and Fixpoints 15

of a temporal logic usually reflect the character of time assumed in the semantics of the logical

language. Thus, in a linear-time temporal logic the modalities describe actions along a single

time line. In contrast, in a branching-time temporal logic, the modalities reflect the branching

nature of time by allowing quantification over various possible futures or execution paths.

The best known temporal logics in the linear-time and branching-time spectra are, respec-

tively, the LTL and CTL families [48]. They are used for many practical applications, especially

for ‘model-checking’ [17] hardware and software systems. It is difficult (or perhaps impossi-

ble) to argue that one kind of temporal logic is better than the other in all possible contexts

since this depends on the sort of properties one would like to express and verify.

We have no particular reasons to prefer any kind of temporal properties over the other.

Hence, in this thesis we study logics based on the mu-calculus (and the mu-calculus itself) since

it can be used to express both linear-time and branching-time properties. But first, we review

Hennessy–Milner logic (HML [46]), a precursor modal language to the mu-calculus, which

has played a major role in computer science, and especially in the specification of properties of

concurrent systems. Then we turn our attention to the mu-calculus simply by adding fixpoint

operators to HML. After that, we look at the logical equivalences induced by these logics and

how they have been used as equivalences for concurrency. See [14, 91] for further information

on modal logics, the mu-calculus, or the equivalences induced by such logics.

2.2.1 Hennessy–Milner Logic

Hennessy–Milner logic (HML [46]) is a modal logic of actions that has its roots in the study of

process algebras for concurrent and communicating systems (chiefly, of Milner’s CCS). It was

intended as an alternative, logical approach to the formalisation of the notion of ‘observational

equivalence’ for concurrent and reactive systems. As usual for modal logics, HML formulae

are interpreted over the set of states of a system, e.g., over the set of states of an LTS.

Definition 2.6. Hennessy–Milner logic (HML [46]) has formulae φ built from a set Σ of labels

a,b, ... by the following grammar:

φ ::= ff | tt | φ1∧φ2 | φ1∨φ2 | 〈a〉φ1 | [a]φ1

where ff and tt are the false and true boolean constants, respectively, ∧ and ∨ are boolean

operators, and 〈a〉φ1 and [a]φ1 are the only two modalities of the logic. /

The meanings of ff, tt, ∧, and ∨ are the usual ones as in propositional logic. Besides these,

the semantics of the ‘diamond’ modality 〈a〉φ1 is, informally, that at a given state it is possible

to perform an a-labelled action to a state where φ1 holds; and dually for the ‘box’ modality

[a]φ1. Following [91], we give the denotation of HML formulae inductively using an LTS

model T = (S,T,Σ). Then, the semantics of HML formulae are as follows:

16 Chapter 2. Concurrency, Logic, and Games

Definition 2.7. An HML model T of an HML formula φ is an LTS (S,T,Σ). Then, the deno-

tation ‖φ‖T of a formula φ is given as follows (omitting the superscript T):

‖ff‖ = /0

‖tt‖ = S

‖φ1∧φ2‖ = ‖φ1‖∩‖φ2‖
‖φ1∨φ2‖ = ‖φ1‖∪‖φ2‖
‖〈a〉φ1‖ = {s ∈ S | ∃s′. s a−→ s′∧ s′ ∈ ‖φ1‖}
‖[a]φ1‖ = {s ∈ S | ∀s′. s a−→ s′⇒ s′ ∈ ‖φ1‖}

And the ‘satisfaction’ relation |= is then defined in the obvious way: s |= φ iff s ∈ ‖φ‖. /

One of the most interesting properties of HML is that it characterises ‘bisimilarity’ [46], the

equivalence relation induced by modal logic. A bisimulation equivalence relation between two

rooted systems T1 and T2 with initial states s0 and q0, respectively, is an equivalence relation

∼b such that s0 ∼b q0 if, and only if, they satisfy the same set of HML formulae. Then, we say

that the two states s0 and q0 (or equivalently the two corresponding rooted systems T1 and T2)

are bisimilar iff there is a bisimulation equivalence relation between them.

The importance of this result in concurrency theory is that before Milner and Hennessy

introduced HML, bisimilarity—or so-called observational equivalence—was already a corner-

stone in the theory of concurrency developed by Milner in the 1970’s, which ended up with

the definition of CCS as a calculus for concurrent and communicating processes [65]. Almost

at the same time, bisimilarity was also studied as an equivalence for concurrency in the work

of Park on automata on infinite words [74]. So, we should actually say that the definition

of bisimulation equivalences and in particular of bisimilarity as a behavioural equivalence for

concurrency is due to both Milner and Park. The interested reader is referred to [84] for a nice

tutorial paper on bisimulation and its origins in concurrency, logic, and set theory.

Back to HML, recall that this modal logic was initially defined as an alternative, logical ap-

proach to understanding process equivalence in the context of CCS; Milner and Hennessy [46]

showed that if two CCS processes are bisimilar, or in their words “observationally equivalent”,

then they satisfy the same set of HML formulae. They found, therefore, a strong correspon-

dence between the logical equivalence induced by HML and an equivalence for concurrency

(bisimilarity or observational equivalence in this case), modulo LTS, the class of models that

Milner and Hennessy used for giving the semantics of CCS process expressions.

Even though HML is quite a natural logic for studying process equivalences, it is not so

useful as a specification language of system properties as it cannot express many temporal

properties. Due to this, more expressive logics have been studied. We now review one of such

logics, the modal mu-calculus, which has strong connections to HML and a beautiful theory

based on the addition of fixpoint operators to modal logic.

2.2. Modal Logics and Fixpoints 17

2.2.2 Fixpoints and the Modal Mu-Calculus

Fixpoint logics or mu-calculi [14] are logics that make use of fixpoint operators; in particular,

the modal mu-calculus is a simple extension of modal logic with fixpoint operators. The mu-

calculus as we use it nowadays was defined by Kozen [54], but it can also be seen as HML with

fixpoint operators. The use of fixpoints in program logics was, however, not new by the time

the mu-calculus was proposed. It actually dates back to Scott, De Bakker, and Park (amongst

others) in the late 1960’s and early 1970’s in the contexts of program semantics and verification.

In informatics, and especially in concurrency and systems verification, the main motivation

for extending a logic with fixpoint operators is the ability to express temporal properties of

systems, this is their (possibly infinite) behaviour. In the remainder of this section we describe

the modal mu-calculus but, before giving its formal definition, let us first state some results that

relate to fixpoints and their ubiquity in ordered structures, particularly in lattice theory.

Fixpoints in Ordered Structures. Before stating one of the results on fixpoints that is rele-

vant to this work (which is a direct consequence of the Knaster–Tarski fixpoint theorem [93]),

let us first introduce some of the ordered structures of our interest, namely partially ordered sets,

lattices, and complete lattices. A ‘partially ordered set’ (poset) (A,≤A) is a set A together with

a reflexive, transitive and anti-symmetric relation ≤A on its elements. A ‘lattice’ A = (A,≤A)

is a poset where for every two elements x and y in A, arbitrary meets (written x× y) and joins

(written x+ y) exist. If, moreover, arbitrary meets and joins exist for any subset B⊆ A, then A

is a ‘complete lattice’. Fixpoints are ubiquitous in complete lattices as described next.

Fixpoints can be seen as equilibrium points. Their mathematical definition is simple: given

a function f , we say that x is a fixpoint of f iff x = f (x); it is a ‘pre-fixpoint’ of f if f (x)≤A x

and a ‘post-fixpoint’ if x ≤A f (x). As we shall see, fixpoint theory is rather useful in (math-

ematical) logic when f is monotonic and its domain is a complete lattice. In particular, we

are interested in the Knaster–Tarski fixpoint theorem [93], which says that the set of fixpoints

of a monotone function in a complete lattice is also a complete lattice, i.e., that the fixpoints

themselves also form a complete lattice. An immediate consequence is the following result:

Theorem 2.8. (Least and greatest fixpoints in a complete lattice [93]) Let f : A→ A be

a monotone mapping on a complete lattice A = (A,≤A). Then f has a least fixpoint xµ and a

greatest fixpoint xν determined, respectively, by the pre-fixpoints and post-fixpoints of f :

xµ =
N
{x ∈ A | f (x)≤A x}

xν =
L
{x ∈ A | x≤A f (x)}

where
N

and
L

are the generalisations to arbitrary sets of the operators × : A2 → A and

+ : A2→ A on pairs of elements as described before. /

18 Chapter 2. Concurrency, Logic, and Games

The Modal Mu-Calculus. With these concepts in mind we are now ready to present the modal

mu-calculus in full as well as some properties of mu-formulae.

Definition 2.9. The modal mu-calculus (Lµ [54]) has formulae φ built from a set Var of vari-

ables Y,Z, ... and a set Σ of labels a,b, ... by the following grammar:

φ ::= Z | φ1∧φ2 | φ1∨φ2 | 〈a〉φ1 | [a]φ1 | µZ.φ1 | νZ.φ1

Also, define the boolean constants as ff def= µZ.Z and tt def= νZ.Z; and assume these abbreviations:

〈K〉φ1 for
W

a∈K〈a〉φ1 and [K]φ1 for
V

a∈K [a]φ1, where K ⊆ Σ, as well as [−]φ1 for [Σ]φ1 and

[−K]φ1 for [Σ\K]φ1, and similarly for the diamond modality. /

The meanings of the boolean and modal operators are as for HML. The two additional

operators of Lµ, namely µZ.φ and νZ.φ, are the minimal and maximal fixpoint operators of the

logic. The denotations of Lµ formulae are given over the set of states of a system as follows:

Definition 2.10. A mu-calculus model M = (T,V) is an LTS T = (S,T,Σ) together with a

valuation V : Var→ 2S. The denotation ‖φ‖TV of a mu-calculus formula φ in the model M is a

subset of S given by the following rules (omitting the superscript T):

‖Z‖V = V (Z)

‖φ1∧φ2‖V = ‖φ1‖V ∩‖φ2‖V

‖φ1∨φ2‖V = ‖φ1‖V ∪‖φ2‖V

‖〈a〉φ1‖V = {s ∈ S | ∃s′ ∈ S. s a−→ s′∧ s′ ∈ ‖φ1‖V }
‖[a]φ1‖V = {s ∈ S | ∀s′ ∈ S. s a−→ s′⇒ s′ ∈ ‖φ1‖V }
‖µZ.φ‖V =

T
{Q ∈ 2S | ‖φ‖V [Z:=Q] ⊆ Q}

‖νZ.φ‖V =
S
{Q ∈ 2S | Q⊆ ‖φ‖V [Z:=Q]}

where V [Z := Q] is the valuation V ′ which agrees with V save that V ′(Z) = Q. /

Notice that the denotation of the fixpoint operators is an application of the Knaster–Tarski

fixpoint theorem (by using Theorem 2.8) where the function f is the mapping ‖φ‖TV , the order

relation ≤A is the subset inclusion relation ⊆, and
N

and
L

are
T

and
S

, respectively.

Finally, let us define the subformulae of a modal mu-calculus formula φ; formally, the

‘subformula set’ Sub(φ) of an Lµ formula φ is given by the Fischer–Ladner closure of Lµ

formulae in the following way (we follow the notation for subformula sets used in [55]):

Sub(Z) = {Z}
Sub(φ1∧φ2) = {φ1∧φ2}∪Sub(φ1)∪Sub(φ2)

Sub(φ1∨φ2) = {φ1∨φ2}∪Sub(φ1)∪Sub(φ2)

Sub(〈a〉φ1) = {〈a〉φ1}∪Sub(φ1)

Sub([a]φ1) = {[a]φ1}∪Sub(φ1)

Sub(µZ.φ1) = {µZ.φ1}∪Sub(φ1)

Sub(νZ.φ1) = {νZ.φ1}∪Sub(φ1)

2.3. Logic Games for Verification 19

We finish this presentation of the modal mu-calculus with a note on its expressive power.

One of the most interesting features of the mu-calculus is that most interesting temporal logics

used for software and hardware verification can be embedded into Lµ. The translation of CTL

is straightforward, e.g., as shown in [55]; other mappings, such as the one for CTL∗ and thus

for LTL as well, are not so simple but still possible, e.g., as presented in [18].

The source of the high expressivity of the mu-calculus comes from the freedom to mix (or

alternate) minimal and maximal fixpoint operators arbitrarily. In fact, Bradfield showed that

this alternation defines a strict hierarchy [10], one the most remarkable results regarding the

expressivity of Lµ. Perhaps, the other most interesting result on the expressivity of the mu-

calculus was presented in [49], where Janin and Walukiewicz showed that, up to bisimulation,

Lµ is as expressive as monadic second-order (MSO) logic on transition systems. These results,

amongst others, have made the mu-calculus one of the most important logics in informatics.

2.3 Logic Games for Verification

A logic game [9] for verification is played by two ‘players’, a “Verifier” (∃) and a “Falsifier”

(∀), in order to show the truth or falsity of a given property. In these games the Verifier tries to

show that the property holds, whereas the Falsifier wants to refute such an assertion. Solving

these games amounts to answering the question of whether the Verifier has a ‘strategy’ to win

all plays in the game. Usually the ‘board’ where the game is played is a graph structure in

which each position of the board belongs to only one of the players. Due to this, the games are

sequential as at any point in time only one of them can play. A game can be of finite or infinite

duration, and the winner is determined by a set of winning rules (a winning condition).

There are different questions that can be asked in a verification game. For instance, one

could ask whether a logic formula has at least one model (a satisfiability problem), or whether

a model satisfies a temporal property (a model-checking problem), or whether two systems

are equivalent with respect to some notion of equivalence (an equivalence-checking problem).

In this thesis, we are interested in two particular problems in verification: bisimulation and

model-checking for concurrent systems with partial order semantics. There are some aspects

of the games of our interest that need to be pointed out before moving to their study.

Traditionally, the players of a logic game have been given names depending on the kind

of verification game that is being played. For instance, in a bisimulation game the Verifier is

called Duplicator whereas the Falsifier is called Spoiler. Similarly, in other kinds of games, the

Verifier and Falsifier have been called, respectively, Eloise and Abelard, Player ∃ and Player ∀,
Builder and Critic, Player 3 and Player 2, Proponent and Opponent, Eve and Adam, or simply

Player I and Player II. In order to have a uniform notation in this document, we have chosen to

call them “Eve” and “Adam” regardless of the particular sort of logic game they are playing.

20 Chapter 2. Concurrency, Logic, and Games

The boards where the games are played also have different structures depending on the

kind of verification problem that one wants to solve. In a bisimulation game the board is made

up with the elements of the two systems that are being analysed, e.g., each position in the game

board is an element of the Cartesian product of the state sets of the two systems. On the other

hand, in a model-checking game the board is composed of pairs of elements where one of the

components is an element of the model being checked and the other component relates to the

temporal property under consideration. All these game features are formally defined in this and

further chapters whenever new bisimulation or model-checking games are presented.

Finally, notice that by playing a logic game the two players jointly define sequences of

positions of the game board. Such sequences are called plays of the game. Let Γ be the set of

plays of a game and B be a game board, i.e., a set of positions in the game. The set of plays

is, then, a prefix closed set of finite and infinite sequences of positions. We say that a play is

partial if, and only if, it is the prefix of another play or it is complete otherwise. Moreover, a

deterministic strategy is a function λ : Γ→B from plays in Γ to positions of the game board,

so that such strategies define the next move a player will make.

In some cases, in order for a player to make a move he or she only needs to know their

current position. In these cases, their strategies can be defined as functions on the set of po-

sitions of the board rather than on Γ. These strategies are called ‘history-free’ (also known as

positional or memoryless); formally, a history-free strategy is a function λ : B→B. Finally,

a winning strategy is a strategy that guarantees that the player that uses it can win all plays of

the game. This thesis only features logic games with history-free winning strategies.

2.3.1 Bisimulation Games

Bisimulation games are formal and interactive characterisations of a family of equivalence

relations called bisimulation equivalences. One of the simplest bisimulation equivalences is

‘bisimilarity’, the equivalence relation induced by modal logic. This bisimulation equivalence

was defined, independently, by Johan van Benthem [8] while studying the semantics of modal

logic (and its connections with FO logic), and a few years later by Milner and Park [65, 74]

while studying the behaviour of concurrent systems with interleaving semantics.

Bisimulation equivalences are not as strong as isomorphism, and this was one of the moti-

vations for studying them in concurrency theory. However, the idea of having an equivalence

relation not as strong as isomorphism has been around long before their use in concurrency.

About 80 years ago Alfred Tarski formulated the notion of two structures being elementarily

equivalent iff they satisfy the same set of FO sentences. Some years later, this idea was recast

and developed by logicians Roland Fraı̈ssé and Andrzej Ehrenfeucht in what is now known as

the Ehrenfeucht-Fraı̈ssé (EF) games, thus providing a game-theoretic approach to comparing

different mathematical structures. In particular, EF games are used in concurrency to char-

2.3. Logic Games for Verification 21

acterise bisimulation equivalences, and hence, to compare the behaviour of different parallel

processes. In this case, two interleaving systems are said to be observationally equivalent ac-

cording to Milner (or “elementary equivalent” in Tarski’s words) iff the same modal formulae

are true in both structures, i.e., in both models for concurrency.

More precisely, a bisimulation game G(T1,T2) is a formal representation of a bisimulation

equivalence∼eq between two systems T1 and T2. Whereas Eve believes that T1 ∼eq T2, Adam

wants to show that T1 6∼eq T2. All plays start in the initial position (s0,q0) consisting of the

initial states of the systems, and the players take alternating turns—although Adam always

plays first and chooses where to play. Thus, in every round of the game Adam makes the first

move in either system according to a set of rules, and then Eve must make an equivalent move

on the other system (depending on ∼eq); the game can proceed in this way indefinitely. Thus,

the plays of the game can be of finite or infinite length. All plays of infinite length are winning

for Eve; in the case of plays of finite length, the player who cannot make a move loses the

game. These winning conditions apply to all bisimulation games we study in this thesis.

In concurrency theory, bisimulation games are often used to show that two given concurrent

or reactive systems interact equivalently (with respect to ∼eq) with an arbitrary environment.

Since the exact definition of a particular bisimulation equivalence relation ∼eq can be altered

(strengthened or weakened) by the kinds of properties that one wants to analyse, then the set

of rules for playing a bisimulation game can be different in each game. Nowadays, the best

known bisimulation game for interleaving concurrency is the one that characterises ‘strong’

bisimilarity (sb [46]), the bisimulation equivalence relation induced by HML.

However, in order to capture properties of partial order models of concurrency rather than

of interleaving ones, equivalence relations finer than strong bisimilarity have been defined as

well as their associated bisimulation games. Two of the most important bisimulation games

for partial order models are the ones that characterise ‘history-preserving’ bisimilarity (hpb

[82]) and ‘hereditary history-preserving’ bisimilarity (hhpb [51]). Both (history-preserving)

bisimulation equivalences, together with a deep study of their applications to concurrency and

systems verification, can be found in [35]. Let us now introduce some concepts needed to

present the bisimulation games that characterise sb, hpb, and hhpb.

Strong Bisimulation Games. A bisimulation game for strong bisimilarity is played on a

board B composed of pairs (s,q) of states s and q of two systems T1 and T2, respectively.

Such a pair is a position of the game board B and is called a ‘configuration’ of the game.2 The

position (s0,q0), where s0 and q0 are the initial states of T1 and T2, is the initial configuration of

the game. Since the strategies of the game are history-free, then a strategy λ is a partial function

on B⊆ S×Q, where S and Q are the state sets of the two systems T1 and T2, respectively.

2Do not confuse with the configurations of an event structure, which are the computation states in such a model.

22 Chapter 2. Concurrency, Logic, and Games

Notation 2.11. Since a system has a uniquely defined initial state, a bisimulation game can

be unambiguously presented as either G(T1,T2) or G(s0,q0) if the two systems are obvious

from the context. Also, since bisimulation games are symmetric, we omit the subscript in T

whenever referring to either system. /

Definition 2.12. (Strong bisimulation games) Let (s,q) be a configuration of the game

G(T1,T2). There are two players, Adam and Eve, and Adam always plays first and chooses

where to play. Rsb is a strong bisimulation relation between T1 and T2 if:

• (Base case) The initial configuration (s0,q0) is in Rsb.

• (∼sb rule) If (s,q) is in Rsb and Adam chooses a transition in T, say a transition s a−→ s′ of

T1, then Eve must choose a transition in the other system (any q a−→ q′ of T2 in this case),

such that the new configuration (s′,q′) is in Rsb as well.

Adam wins the game if eventually Eve cannot make a move; otherwise Eve wins the game. We

say that T1 ∼sb T2 iff Eve has a winning strategy for the sb game G(T1,T2). /

Clearly, bisimulation games do not capture any information of partial order models that

is not already present in their interleaving counterparts. For this reason, games for strong

bisimilarity are considered games for interleaving concurrency rather than for partial order

concurrency. In order to capture properties of partial order models of concurrency, one has to

recognise at the very least when two transitions of a system are independent and hence can be

executed in parallel. This feature is captured by the following finer bisimulation games.

History-Preserving Bisimulation Games. A game for history-preserving bisimilarity is a

bisimulation game as presented before (i.e., as the one for strong bisimilarity) with a further

synchronisation requirement on transitions. Such a synchronisation requirement makes the

selection of transitions by Eve more restricted. Let us first define this notion of synchronisation

on transitions before making a formal presentation of the game.

A possibly empty sequence of transitions π = [t1, ..., tk] is a run of a system T. Let ΠT be

the set of runs of T and ρ(π) be the last transition of π. Define ε = ρ([]) and s0 = σ(ε) = τ(ε),

for an empty sequence []. Given a run π and a transition t, the sequence π.t denotes the run π

extended with t. Let π1 ∈ ΠT1 and π2 ∈ ΠT2 for two systems T1 and T2. We say that the pair

of runs (π1.u,π2.v) is ‘synchronous’ iff (ρ(π1),u) ∈ I1 ⇔ (ρ(π2),v) ∈ I2, where I1 and I2 are

the independence relations of T1 and T2, and the posets induced by π1.u with I1 and π2.v with

I2 are isomorphic.3 By definition (ε,ε) is synchronous. As it is more convenient to define hpb

games on pairs of runs rather than of states, a configuration of the game will be a pair of runs.

3Given a run π and an independence relation I, there is a poset (E,≤E) induced by π with I such that E has
as elements the event occurrences associated with the transitions in π and where the partial order relation ≤E is
defined by the event structure unfolding of the system whose independence relation is I.

2.3. Logic Games for Verification 23

Definition 2.13. (History-preserving bisimulation games) Let (π1,π2) be a configuration

of the game G(T1,T2). The initial configuration of the game is (ε,ε). The relation Rhpb is a

history-preserving (hp) bisimulation between T1 and T2 iff it is a strong bisimulation relation

between T1 and T2 and:

• (Base case) The initial configuration (ε,ε) is in Rhpb.

• (∼hpb rule) If (π1,π2) is in Rhpb and Adam chooses a transition u in either system, say in

T1, such that u = τ(ρ(π1))
a−→ s′, then Eve must choose a transition v in the other system

such that v = τ(ρ(π2))
a−→ q′ and the new configuration (π1.u,π2.v) is synchronous, i.e.,

(π1.u,π2.v) is in Rhpb as well.

Adam wins the game if eventually Eve cannot make a move; otherwise Eve wins the game. We

say that T1 ∼hpb T2 iff Eve has a winning strategy for the hpb game G(T1,T2). /

Hereditary History-Preserving Bisimulation Games. A game stronger than an hpb game is

a game for hereditary history-preserving bisimilarity (hhpb), which is an hpb game extended

with backtracking moves. These backtracking moves are restricted to transitions that are said

to be ‘backwards enabled’. More specifically, let π(i) be the i-th transition in π. Given a run

π = [t1, ..., tk], a transition π(i) is ‘backwards enabled’ iff it is independent of all transitions t j

that appear after it in π, i.e., iff for all t j in {π(i+1), ...,π(k)} we have that π(i) I t j.

This definition captures the fact that backwards enabled transitions are the terminal ele-

ments of the partial order induced by the independence relation I on the transitions in π. Now,

let π−π(i) be the sequence of transitions π without its i-th element π(i). It should be clear that

if π(i) is backwards enabled, then the partial order induced by I on those transitions in π−π(i)

is just the same partial order induced by I on π without the terminal element or transition π(i).

Formally, an hhpb game is defined as follows:

Definition 2.14. (Hereditary history-preserving bisimulation games) Let (π1,π2) be a

configuration of the game G(T1,T2). The initial configuration is (ε,ε). The relation Rhhpb

is a hereditary history-preserving (hhp) bisimulation between T1 and T2 iff it is a history-

preserving bisimulation relation between T1 and T2 and:

• (Base case) The initial configuration (ε,ε) is in Rhhpb.

• (∼hhpb rule) If (π1,π2) is in Rhhpb and Adam deletes, say from π1, a transition π1(i) that

is backwards enabled, then Eve must delete the transition π2(i) from the history of the

game in the other system, provided that π2(i) is also backwards enabled and that the new

configuration (π1−π1(i),π2−π2(i)) is in Rhhpb as well.

Adam wins the game if eventually Eve cannot make a move; otherwise Eve wins the game. We

say that T1 ∼hhpb T2 iff Eve has a winning strategy for the hhpb game G(T1,T2). /

24 Chapter 2. Concurrency, Logic, and Games

Unlike the bisimulation game for strong bisimilarity, ∼sb, which is a game for interleaving

concurrency, both history-preserving bisimulation games presented here can capture properties

of partial order models and differentiate them from their interleaving counterparts. The sim-

plest example is the case of the two CCS process expressions a ‖ b and a.b + b.a, which are

equivalent from an interleaving point of view, but different when considering any partial order

semantics for them, say using Petri nets, event structures, or TSI models.

2.3.2 Model-Checking Games

Model-checking games [37, 97], also called Hintikka evaluation games, are logic games played

in a formula φ and a mathematical model M. In a model-checking game G(M,φ) the goal of

Eve is to show that M |= φ, while Adam believes that M 6|= φ.

In concurrency theory and program verification, most usually φ is a modal or a temporal

formula and M is a Kripke structure or an LTS, and the two players play the model-checking

game G(M,φ) by picking single elements of M, according to the game rules defined by φ. For

now, let us consider model-checking games played on interleaving models for concurrency, say

in an LTS, and on formulae given as logical specifications in the mu-calculus.

The game we are about to describe is the local model-checking procedure for mu-calculus

verification as defined by Stirling [89]. It is a natural game interpretation of the tableau-based

method for mu-calculus model-checking introduced by Stirling and Walker [92]. The game

is naturally played on interleaving models of concurrency. However, it can also be used to

model-check partial order models of concurrency, such as Petri nets, if one considers the one-

step interleaving semantics of such models, e.g., as done by Bradfield and Stirling [13].

Local Model-Checking Games in the Mu-Calculus. A local model-checking game G(M,φ)

is played on a mu-calculus model M=(T,V), where T =(S,s0,T,Σ) is an interleaving system,

and on a mu-calculus formula φ. Since the game is local, this is, it answers to the question of

whether the initial state s0 satisfies φ, then it can also be presented as GM(s0,φ), or even as

G(s0,φ) whenever the model M is clear from the context. The board in which the game is

played has the form B ⊆ S× Sub(φ), where Sub(φ) is the set of subformulae of the modal

mu-calculus formula φ (as defined by its Fischer–Ladner closure).

A play is a possibly infinite sequence of configurations C0,C1, ...; each Ci = (s,ψ) is an

element of the board B, i.e., it is a position of the game. Every play starts in C0 = (s0,φ), and

proceeds according to the rules of the game, given below. Two deterministic rules control the

unfolding of fixpoint operators. Moreover, given a configuration (s,ψ), the rules for ∨ and ∧
make, respectively, Eve and Adam choose a next configuration (s,ϕ) which is determined by

the subformula set of ψ. Similarly, the rules for 〈 〉 and [] make, respectively, Eve and Adam

choose a next configuration (q,ψ) which is determined by those transitions t such that s = σ(t)

2.3. Logic Games for Verification 25

and q = τ(t). These conditions can be captured in the following way. Let (s,φ) be the current

configuration of the game; the next configuration of the game is defined by the following rules:

• if φ = µZ.ϕ (resp. φ = νZ.ϕ), then Eve (resp. Adam) replaces µZ.ϕ (resp. νZ.ϕ) by its

associated fixpoint variable Z and the next configuration is (s,Z).

• if φ = Z such that ψ = µZ.ϕ (resp. ψ = νZ.ϕ) for some mu-calculus formula ψ, then Eve

(resp. Adam) unfolds the fixpoint and the next configuration is (s,ϕ).

• if φ = ψ1∨ψ2 (resp. φ = ψ1∧ψ2), then Eve (resp. Adam) chooses some ψi, for i∈{1,2},
and the next configuration is (s,ψi).

• if φ = 〈a〉ψ (resp. φ = [a]ψ), then Eve (resp. Adam) chooses a transition s a−→ s′ and the

next configuration is (s′,ψ).

Finally the following rules are the winning conditions that determine a unique winner for

every finite or infinite play C0,C1, ... in a game G(s0,φ). Adam wins a finite play C0,C1, ...,Ck

or an infinite play C0,C1, ... iff:

1. Ck = (s,Z) and s 6∈ V (Z).

2. Ck = (s,〈a〉ψ) and {s′ | s a−→ s′}= /0.

3. The play is of infinite length and there exists a mu-calculus formula Z which is both the

least fixpoint of some subformula µZ.ψ and the syntactically outermost variable in φ that

occurs infinitely often in the game.

Dually, Eve wins a finite play C0,C1, ...,Cn or an infinite play C0,C1, ... iff:

1. Ck = (s,Z) and s ∈ V (Z).

2. Ck = (s, [a]ψ) and {s′ | s a−→ s′}= /0.

3. The play is of infinite length and there exists a mu-calculus formula Z which is both the

greatest fixpoint of some subformula νZ.ψ and the syntactically outermost variable in φ

that occurs infinitely often in the game.

Then s0 |= φ iff Eve has a winning strategy in the model-checking game G(s0,φ).

Decidability and Determinacy

There are two properties related to games which are of interest from an algorithmic view point:

decidability and determinacy. A logic game for verification is ‘decidable’ if, and only if, there

exists a decision procedure (i.e., an algorithm that always terminates with a “yes” or “no”

answer) that solves all possible instances of a game. Apart from the game for hhpb, the games

that have been presented in this chapter, either for bisimulation or for mu-calculus model-

checking, are all decidable when the models under consideration are finite.

Whereas the undecidability of hhpb was shown in [52], the decidability of the weaker hpb

was shown in [50] with an exponential time complexity; strong bisimilarity is also decidable,

26 Chapter 2. Concurrency, Logic, and Games

and even solvable in polynomial time [53]. On the other hand, we know that mu-calculus

model-checking on finite systems is decidable [23] but the exact complexity is still an open

problem; at present, it is widely known that the problem belongs to the NP∩co-NP complexity

class [22]. In particular, the local model-checking algorithm of Stirling presented before runs

in exponential time; however, since it is local, it has the advantage that one could use it to verify

some classes of infinite-state systems as the whole model need not be constructed beforehand.

Determinacy is another important property. A game is ‘determined’ if, and only if, for every

instance of the game it is always the case that one of the two players has a winning strategy.

Thus, determinacy is simply a guarantee of the existence of winning strategies. Traditionally,

determinacy has been studied with respect to another property of games, namely that of being of

‘perfect’ or ‘imperfect’ information. Roughly speaking, a game is of perfect information if both

players have complete knowledge of the whole history of the game, so that when they make a

move they are fully informed of the previous choices of their opponent. Otherwise, the game

is of imperfect information. The games presented in this chapter are all of perfect information,

but this thesis features games of perfect and imperfect information in other chapters.

Another property also related to determinacy is the kind of winning conditions under con-

sideration. Such winning conditions define the sets of plays that are winning for each player.

These sets are called winning sets, and in the case of the bisimulation and model-checking

games just presented they are (topologically) quite simple; in particular they are ‘Borel’ sets. It

is well known that all two-player perfect-information infinite games whose winning conditions

define Borel winning sets are determined [59]. From this result follows that the bisimulation

and model-checking games we have described in this chapter are determined.

Finally, notice that determinacy is a mathematical property of a game (the existence of

winning strategies) rather than an algorithmic property of a game (the existence of a decision

procedure to solve the game). For instance, a class of games may well be undecidable and de-

termined at the same time, e.g., several bisimulation games over arbitrary infinite-state systems.

The interested reader is referred to [38] for further information on properties of games and their

relationships with various computational issues, especially complexity and expressivity ones.

Chapter 3

Mu-Calculi for True Concurrency

In this chapter we start by studying the underlying mathematical properties of a number of par-

tial order models of concurrency based on transition systems, Petri nets, and event structures,

and show that the partial order behaviour represented by these models of (true) concurrency

can be captured in a uniform way by two simple and general dualities of local behaviour. We

then give logical characterisations to these dualities and find that natural fixpoint modal logics

with partial order semantics can be extracted from such characterisations.

The naturality of these modal logics is supported by the logical equivalences they induce,

which, in a number of cases, coincide with some of the most important bisimulation equiva-

lences for both interleaving and true concurrency. Such coincidence results suggest a logical

approach to defining a notion of equivalence for concurrency tailored to be abstract or model

independent. The approach put forward here sets the grounds for a logic-based framework for

studying different kinds of models of concurrency uniformly. The main results of this chapter

were first presented in [39]; an extended and revised version appears in [40].

3.1 Local Dualities in Partial Order Models

In this section we present two ways in which concurrency can be regarded as a dual concept to

‘conflict’ and ‘causality’, respectively. These two ways of observing concurrency will be called

‘immediate concurrency’ and ‘linearised concurrency’. Whereas immediate concurrency is

dual to conflict, linearised concurrency is dual to causality.

The intuitions behind these two observations are the following. Consider a concurrent sys-

tem and any two different transitions t and t ′ with the same source node, i.e., σ(t)= σ(t ′). These

two transitions are either immediately concurrent, and therefore independent, i.e., (t, t ′) ∈ I, or

dependent, in which case they must be in conflict. Similarly, consider any two transitions t and

t ′ where τ(t) = σ(t ′). Again, the pair of transitions (t, t ′) can either belong to I, in which case

the two transitions are concurrent, yet have been linearised, or the pair does not belong to I,

27

28 Chapter 3. Mu-Calculi for True Concurrency

and therefore the two transitions are causally dependent. Notice that, in both cases, the two

conditions are mutually exclusive and, more importantly, that there are no other possibilities.

These dualities of concurrent behaviour make sense only in a local setting. If two arbitrary

transitions t and t ′ do not have the property that σ(t) = σ(t ′) or τ(t) = σ(t) (or vice versa), then

nothing can be said about them doing only this analysis. Nevertheless, this simple notion of

behavioural observation introduced here is rather powerful and the basic ingredient for defining

several fixpoint modal logics with partial order semantics.

The local dualities just described are formally defined in the following way:

⊗ def= {(t, t ′) ∈ T ×T | σ(t) = σ(t ′)∧ t I t ′}
def= {(t, t ′) ∈ T ×T | σ(t) = σ(t ′)∧¬(t I t ′)}
	 def= {(t, t ′) ∈ T ×T | τ(t) = σ(t ′)∧ t I t ′}
≤ def= {(t, t ′) ∈ T ×T | τ(t) = σ(t ′)∧¬(t I t ′)}

Notice the dual conditions between ⊗ and # and between 	 and ≤ with respect to the

independence relation, if assuming valid the locality requirement.

Definition 3.1. (Local dualities) Let t and t ′ be two transitions. We say that t and t ′ are

immediately concurrent iff (t, t ′)∈⊗, in conflict iff (t, t ′)∈ #, linearly concurrent iff (t, t ′)∈	,

or causally dependent iff (t, t ′) ∈ ≤. /

Sets in a Local Context. The relation ⊗ on pairs of transitions can be used to define sets

where every transition is independent of each other and hence can all be executed concurrently.

These sets of transitions are called conflict-free; moreover, the transitions in such sets are said

to belong to the same (Mazurkiewicz) ‘trace’ [62].

Definition 3.2. (Conflict-free sets) A conflict-free set of transitions P is a set of transitions

with the same source node, where t⊗ t ′ for all t, t ′ in P. /

Notice that by definition empty sets and singleton sets are trivially conflict-free. Given

a system T, all conflict-free sets of transitions at a state s can be defined locally from the

‘maximal set’ of transitions X(s), where X(s) is the set of all transitions t such that σ(t) = s. We

simply write X when the state s is defined elsewhere or is implicit from the context. Moreover,

all maximal sets and conflict-free sets of transitions are fixed given a particular system T.

Definition 3.3. (Support sets) Given a system T, a support set R in T is either a maximal set

of transitions or a non-empty conflict-free set of transitions in T. /

Given a system T, the set of all its support sets is denoted by P. As can be seen from the

definition, support sets can be of two kinds, and one of them provides a way of doing local

reasoning. More precisely, local reasoning on sets of independent transitions becomes possible

when considering conflict-free sets since they can be decomposed into smaller ones, where

every transition is, again, independent of each other.

3.2. Fixpoint Logics with Partial Order Semantics 29

Definition 3.4. (Complete supsets) Given a support set R, a complete supset M of R, denoted

by M v R, is a support set M ⊆ R such that ¬∃t ∈ R\M. ∀t ′ ∈M. t⊗ t ′. /

Note that if R is a conflict-free support set, then we have that M = R. Otherwise, R is

necessarily a maximal set of transitions X(s), for some state s, and M must be a proper subset

of R. Therefore, if R = X(s) then the sets of transitions M such that M v X(s) are the biggest

conflict-free support sets that can be recognised in a particular state s of a system T; we call

them ‘maximal supsets’. Since both complete and maximal supsets are all support sets, then

they are also fixed and effectively computable given a particular finite-state system T.

3.2 Fixpoint Logics with Partial Order Semantics

The local dualities and sets defined in the previous section can be used to provide partial order

semantics of various fixpoint modal logics that capture the concurrent behaviour of partial order

models that is not present in interleaving ones. Due to this, such logics are more adequate

specification languages for expressing properties of so-called ‘true concurrency’ models such

as those studied in this thesis, namely Petri nets, event structures, and TSI models.

The naturality of these (fixpoint) modal logics is reflected by the logical equivalences they

induce, since in various cases they either coincide with well-known bisimilarities for concur-

rency, e.g., with Milner and Park’s strong bisimilarity or with hp bisimilarity, or have better

decidability properties than other bisimulation equivalences for true concurrency, e.g., with

respect to hhp bisimilarity, which is undecidable even on finite-state systems.

The partial order semantics of the fixpoint modal logics defined here are based on the

recognition of what is actually observable, locally, in a partial order model of concurrency. In

other words, properties of system executions that are conflict-free. Two main fixpoint logics

are introduced, Separation Fixpoint Logic (SFL) and Trace Fixpoint Logic (Lµ). As defined by

their semantics, they capture the duality between concurrency and causality in the same way,

by means of a refinement of the usual modal operator of the mu-calculus.

However, the duality between concurrency and conflict is captured in different ways in

each logic. In the case of SFL we use a separating operator that behaves as a structural con-

junction. This structural operator allows one to do local reasoning on conflict-free support

sets. On the other hand, in Lµ the duality between concurrency and conflict is captured by

a second-order modality that recognises maximal supsets in the system. Such a modality en-

joys beautiful mathematical properties; in particular, not only it is a monotonic, but also an

idempotent operator, a property of closure operators which we formalize next.

Definition 3.5. (Closure operators) A function f : A→ A is a closure operator on a poset

(A,≤A) iff it is extensive, monotonic, and idempotent, this is, if f satisfies that for all a,a′ ∈ A:

a≤A f (a); a≤A a′ implies f (a)≤A f (a′); and f (a) = f (f (a)) /

30 Chapter 3. Mu-Calculi for True Concurrency

Process Spaces. In order to define the denotational semantics of SFL and Lµ we construct

an intermediate mathematical structure into which any of the systems we consider here can be

mapped. Such a structure determines a ‘space of processes’, which are simple abstract entities

that represent pieces of isolated (i.e., local and independent) behaviour.

Definition 3.6. (Process spaces) Let T = (S,s0,T, I,Σ) be a system. A process space S is a

subset of S×P×A, such that S is the set of states of T, P is the set of support sets of T, and

A is the set of transitions T ∪{tε}, where tε is the empty transition such that for all t ∈ T , if

s0 = σ(t) then tε ≤ t. A tuple (s,R, t) ∈ S is a process; the initial process is (s0,X(s0), tε). /

The empty transition is introduced to formalize the fact that at the beginning of any com-

putation no transitions have been performed. Then, tε represents the inactivity of the system

before anything happens. On the other hand, regarding process spaces, it is important to note

that one does not need to actually consider the whole lattice S×P×A in practice, since sup-

port sets are defined with respect to a particular state. Therefore, if one knows the support set

component of a process, then it is possible to infer the particular state in T. If S is presented

as P×A, then such a process space is called ‘stateless’. Also, let X be the subset of P that

contains only maximal sets and supsets. Call S = X ×A a ‘stateless maximal’ process space.

Although the denotation of both SFL formulae and Lµ formulae can be given using a stan-

dard process space, we will present the denotation of Lµ formulae using a stateless maximal

process space. We do it this way with the purpose of showing how the results presented in the

following sections can be obtained using a simplified structure.

Notation 3.7. We use the name ‘process space’ for both S = S×P×A and S = X ×A.

The particular kind of mathematical structure we are referring to will always be clear from the

context. Similarly, we use the word ‘process’ for elements both in S and in S. /

Separation Fixpoint Logic

Definition 3.8. Separation Fixpoint Logic (SFL) has formulae φ built from a set Var of vari-

ables Y,Z, ... and a set Σ of labels a,b, ... by the following grammar:

φ ::= Z | ¬φ1 | φ1∧φ2 | 〈a〉cφ1 | 〈a〉ncφ1 | φ1 ∗φ2 | µZ.φ1

where Z ∈ Var and µZ.φ1 has the restriction that any free occurrence of Z in φ1 must be within

the scope of an even number of negations. Dual operators are defined in the usual way:

φ1∨φ2
def= ¬(¬φ1∧¬φ2)

[a]c φ1
def= ¬〈a〉c¬φ1

[a]nc φ1
def= ¬〈a〉nc¬φ1

φ1 1 φ2
def= ¬(¬φ1 ∗¬φ2)

νZ.φ1
def= ¬µZ.¬φ1 [¬Z/Z]

3.2. Fixpoint Logics with Partial Order Semantics 31

Moreover, ‘plain modalities’, i.e., HML modalities, can be represented as follows:

〈a〉φ1
def= 〈a〉cφ1∨〈a〉ncφ1

[a]φ1
def= [a]c φ1∧ [a]nc φ1

Boolean constants and other abbreviations are defined as for Lµ. /

Notation 3.9. (Positive forms) We say that a logical formula is in ‘positive form’ if negations

are applied only to variables. Any formula built with the language given in Definition 3.8,

together with the dual operators, can be converted into positive form; it is moreover in ‘positive

normal form’ (PNF) if there are no clashes of bound variables. Again, any logical formula can

be converted into an equivalent one in positive normal form. Then, without loss of generality,

hereafter we only consider formulae in positive normal form. /

Definition 3.10. An SFL model M is a system T = (S,s0,T, I,Σ) together with a valuation

V : Var→ 2S, where S = S×P×A is the process space associated with T. The denotation

‖φ‖TV of an SFL formula φ in the model M = (T,V) is a subset of S, given by the following

rules (omitting the superscript T):

‖Z‖V = V (Z)

‖¬φ1‖V = S−‖φ1‖V

‖φ1∧φ2‖V = ‖φ1‖V ∩‖φ2‖V

‖〈a〉cφ1‖V = {(s,R, t) ∈ S | ∃s′ ∈ S. ∃t ′ ∈ R.

t ′ = s a−→ s′∧ t ≤ t ′∧ (s′,X(s′), t ′) ∈ ‖φ1‖V }
‖〈a〉ncφ1‖V = {(s,R, t) ∈ S | ∃s′ ∈ S. ∃t ′ ∈ R.

t ′ = s a−→ s′∧ t	 t ′∧ (s′,X(s′), t ′) ∈ ‖φ1‖V }
‖φ1 ∗φ2‖V = {(s,R, t) ∈ S | ∃R1,R2 ∈P.

R1]R2 v R∧ (s,R1, t) ∈ ‖φ1‖V ∧ (s,R2, t) ∈ ‖φ2‖V }

Given the usual restriction on free occurrences of variables, imposed to obtain monotone op-
erators in ℘(S) = 2S, the powerset lattice of S, it is possible to define the denotation of the
fixpoint operator µZ.φ1 in the standard way, according to the Knaster–Tarski fixpoint theorem:

‖µZ.φ1‖V =
T
{Q ∈℘(S) | ‖φ1‖V [Z:=Q] ⊆ Q}

where V [Z := Q] is the valuation V ′ which agrees with V save that V ′(Z) = Q. Since PNF

is assumed, the semantics of the dual operators is defined as usual. Finally, let |=T
V denote the

satisfaction relation, i.e., for any process P ∈ S, we have that P |=T
V φ iff P ∈ ‖φ‖V . /

Informally, the meaning of the basic SFL operators is the following: boolean constants

and operators are interpreted as usual; the semantics of the ‘causal’ diamond modality 〈a〉cφ1

(resp. of the ‘non-causal’ diamond modality 〈a〉ncφ1) is that a process (s,R, t) satisfies 〈a〉cφ1

(resp. 〈a〉ncφ1) if it can perform an a-labelled action t ′ that causally depends on t (resp. that is

32 Chapter 3. Mu-Calculi for True Concurrency

independent of t) and move through t ′ into a process where φ1 holds; and dually for the causal

and non-causal box modalities [a]c φ1 and [a]nc φ1. Moreover, the structural operator φ1 ∗ φ2

specifies that there exists a partition in the support set, i.e., a partition of the transitions in the

set to be considered, w.r.t. which both formulae φ1 and φ2 can hold independently. This does

not necessarily mean that both formulae hold in parallel everywhere because the operator ∗ has

a local meaning. Finally, the fixpoint operators are interpreted in the same way that for Lµ.

SFL can express several properties of true concurrency systems that cannot be specified

using Lµ. Some examples are given in a forthcoming section. Before that, let us introduce Lµ,

a logic where the duality between concurrency and conflict is captured using a higher-order

modality on conflict-free sets. Although the main results in this and the next chapter apply for

SFL and for Lµ, the proofs in the latter case are slightly simpler and, therefore, preferred.

Trace Fixpoint Logic

Definition 3.11. Trace Fixpoint Logic (Lµ) has formulae φ built from a set Var of variables

Y,Z, ... and a set Σ of labels a,b, ... by the following grammar:

φ ::= Z | ¬φ1 | φ1∧φ2 | 〈a〉cφ1 | 〈a〉ncφ1 | 〈⊗〉φ1 | µZ.φ1

where Z ∈ Var and µZ.φ1 has the restriction that any free occurrence of Z in φ1 must be within

the scope of an even number of negations. Dual boolean, modal, and fixpoint operators as well

as boolean constants and other abbreviations are defined as for SFL; in particular, let [⊗]φ1 be

the dual of 〈⊗〉φ1 which is defined as usual for modal operators, i.e., [⊗]φ1
def= ¬〈⊗〉¬φ1. /

Let us now define the semantics of Lµ. Again, since PNF is assumed, the semantics of the

dual boolean, modal, and fixpoint operators are given in the usual way.

Definition 3.12. A Lµ model M is a system T = (S,s0,T, I,Σ) together with a valuation V :

Var→ 2S, where S = X ×A is the process space associated with T. The denotation ‖φ‖TV of

a formula φ in the model M = (T,V) is a subset of S, given by the following rules (omitting

the superscript T):

‖Z‖V = V (Z)

‖¬φ1‖V = S−‖φ1‖V

‖φ1∧φ2‖V = ‖φ1‖V ∩‖φ2‖V

‖〈a〉cφ1‖V = {(R, t) ∈S | ∃r ∈ R. δ(r) = a∧ t ≤ r∧ (X(τ(r)),r) ∈ ‖φ1‖V }
‖〈a〉ncφ1‖V = {(R, t) ∈S | ∃r ∈ R. δ(r) = a∧ t	 r∧ (X(τ(r)),r) ∈ ‖φ1‖V }
‖〈⊗〉φ1‖V = {(R, t) ∈S | ∃M ∈ X . M v R∧ (M, t) ∈ ‖φ1‖V }
‖µZ.φ1‖V =

T
{Q⊆S | ‖φ1‖V [Z:=Q] ⊆ Q}

As before, V [Z := Q] is the valuation V ′ which agrees with V save that V ′(Z) = Q. Finally,

the satisfaction relation |=T
V is defined as before: for any P ∈S, P |=T

V φ iff P ∈ ‖φ‖V . /

3.2. Fixpoint Logics with Partial Order Semantics 33

The informal meanings of the Lµ operators that are also part of SFL is as in the SFL case. In

fact, one can show that their semantics are equivalent. Therefore, the only difference between

SFL and Lµ is given by the structural operator ∗ of SFL and the modality 〈⊗〉 of Lµ (and their

duals). The modalities 〈⊗〉 and [⊗] also provide second-order power on conflict-free sets of

transitions, i.e., on concurrent executions of systems, but they do so in a way that is different

from how ∗ and 1 do it. The higher-order modal operators of Lµ allow one to restrict, locally,

the executions of a system to those ones that can actually happen concurrently at a given state.

It is easy to show that 〈⊗〉 is monotonic; however, more interestingly, it is also idempotent.

Proposition 3.13. 〈⊗〉 is an idempotent operator.

Proof. Let H = ‖〈⊗〉φ‖ and G = ‖φ‖. The set G can be split into two disjoint sets of stateless

maximal processes G⊗]G# (called simply processes in the sequel), where the former is the

set of processes in G whose support sets are conflict-free, and the latter those processes whose

support sets are not, i.e., G\G⊗. Similarly, the set H can be represented as the disjoint union

of sets of processes H⊗ and H#. Notice that H⊗ = G⊗ because for any process PH⊗ = (R, t) in

H⊗ there is a process PG⊗ = (R, t) in G⊗, as Rv R for any conflict-free support set R.

However, this equality does not necessarily hold for processes in G# and H#, since there

may be a process PG# in G# (whose support set is necessarily maximal and not conflict-free)

such that there is no process PG⊗ in G⊗ to which the support set of PG# can be related using v.

Therefore, whereas the set G# would contain such a process, the set H# would not. Sim-

ilarly, there may be new processes in H# whose support sets can be related to support sets of

processes in G⊗ (and of course in H⊗ as well) using v, but that were not in G#. Now, let

F = F⊗]F# = ‖〈⊗〉〈⊗〉φ‖. For the same reason given before, F⊗ = H⊗. However, in this

case F# = H# since now for every process in both F# and H#, there must be a process in H⊗

(and of course in F⊗) to which their support sets can be related using v. Since applying 〈⊗〉
only once always leads to a fixpoint, one can conclude that 〈⊗〉 is an idempotent operator.

Fact 3.14. 〈⊗〉 is not an extensive operator.

Proof. Let H = H⊗]H# = ‖〈⊗〉φ‖ and G = G⊗]G# = ‖φ‖, where H⊗ and H# as well as G⊗

and G# are defined as before. As shown in the proof of Proposition 3.13, it is possible that G#

contains processes that are not in H#. Then, G * H in general.

Corollary 3.15. 〈⊗〉 is not a closure operator.

Proof. 〈⊗〉 is monotonic and idempotent, but is not extensive.

Example 3.16. This example shows that 〈⊗〉 is not a closure operator as it is not extensive.

Let φ be 〈a〉c〈b〉ctt and ψ = 〈⊗〉φ; moreover, let P = Q + R, Q = a.b, and R = a.b be three

CCS processes whose behaviour is represented by the systems MP, MQ, and MR, respectively.

Although the three processes satisfy φ, only MQ and MR satisfy ψ. Thus, ‖φ‖* ‖ψ‖. /

34 Chapter 3. Mu-Calculi for True Concurrency

3.3 Examples and Applications

SFL vs. Lµ. The first example is aimed at uncovering the subtle difference between SFL and

Lµ, which is related to the difference between ∗ and 〈⊗〉. Roughly, it has to do with the fact

that, in SFL, the operator ∗ considers all conflict-free support sets rather than only maximal

ones (as it is the case for 〈⊗〉 in Lµ). As a consequence, in SFL one can differentiate systems

with different patters in the independence relation by looking only at the sizes of the support

sets of their associated process spaces, without relying on the labelling of the transitions in

such support sets. The following example makes this claim concrete.

Example 3.17. Consider the following three sequential processes A1 = a.A1, A2 = a.A2, and

A3 = a.A3, which execute an action with an a-label and return to their previous local states.

Notice that the two concurrent systems A1 ‖ A2 and A1 ‖ A2 ‖ A3 can be differentiated by

〈a〉tt ∗ 〈a〉tt ∗ 〈a〉tt but cannot be distinguished by any Lµ formula. The reason, as described

above, is that SFL can recognize that the process A1 ‖ A2 ‖ A3 has a support set of size 3,

whereas A1 ‖ A2 has support sets of size 2 only. From the viewpoint of Lµ, the difference

between the two systems is hidden by the fact that all actions are equally labelled. /

Temporal Logics. SFL and Lµ can express all usual temporal properties, such as, liveness,

safety, and so on. These properties are equally handled in interleaving and partial order models.

Example 3.18. (Causal reachability) Let φ be the following reachability logical formula:

φ = [h]c µZ.(〈a〉ctt∗〈b〉ctt)∨〈−〉cZ. This SFL formula expresses that after executing any initial

action h (if any) there exists at least one execution of causally dependent actions such that

eventually two actions a and b can be executed in parallel (since they must be independent).

This temporal specification is better than a similar one given by, e.g., the modal mu-calculus,

since in the SFL case unnecessary interleavings are not checked (those not depending causally

on h) and hence a combinatorial explosion of the state space to be searched is reduced. /

Example 3.19. (Safety of critical regions) Let φ = νZ. [⊗] ([wrA] ff∨ [wrB] ff)∧ [−]Z. This

Lµ formula says that always it is impossible for a system to execute in parallel two actions wrA

and wrB. If, for instance, ‘wrA’ and ‘wrB’ refer to actions—of two parallel processes A and

B—that modify (write) a particular critical region, then one can be sure that the access to such

a critical section is safe if the temporal specification φ is satisfied by the system. /

Example 3.20. (Secure synchronisation) When using a process algebra like CCS, one would

like to specify the property that whenever some action, say a, is executed there exists a parallel

action ā that can also be executed in order for them to synchronise. Then, one can be sure that

the temporal property that whenever some component of a system performs a always another

component is ready to respond with ā is satisfied iff φ = νZ.[a]c 〈ā〉nctt∧ [−]Z is satisfied. /

3.3. Examples and Applications 35

Example 3.21. (Response properties) Another interesting property, which requires the com-

bination of least and greatest fixpoints, is a response to a request of a service. Suppose that

whenever a system component executes an a-labelled action, there must exist a sequential sys-

tem component that eventually executes a b-labelled action, which is meant to be the allocation

of the service being requested through a. Such a property is expressed in both SFL and Lµ with

the following fixpoint formula: φ = νZ. [a] (µY.〈b〉ctt∧〈−〉cY)∧ [−]Z. If, moreover, one wants

to specify that b is necessarily reachable in all causal lines, i.e., that it is unavoidable, then φ

can be modified as follows: φ = νZ. [a] (µY.〈b〉ctt∧ [−]cY ∧〈−〉ctt)∧ [−]Z. /

In similar ways, many more temporal (true concurrency) properties can be specified with

SFL and Lµ, especially by allowing a free alternation of least and greatest fixpoint operators.

Model-Independent Logics. SFL and Lµ can be used to compare the partial order behaviour

of concurrent systems represented with different sorts of models, e.g., Petri nets, TSI, or event

structures. This can be done in this unified framework as the semantics of these two fixpoint

modal logics are given using a process space, which abstracts away from the particular features

of each of the concrete partial order models of concurrency we consider here.

In this way, we say that two concurrent systems T1 and T2 are behaviourally equivalent

with respect to the bisimulation equivalence induced by SFL (resp. Lµ) if, and only if, the

process spaces associated with T1 and T1 satisfy the same set of SFL (resp. Lµ) formulae. This

notion of partial order behavioural (or observational) equivalence is made precise in the next

section. For now, let us use, in the following example, the intuitive definition just given.

Example 3.22. In Figure 3.1, whereas the two systems at the top are not SFL equivalent, the

two systems at the bottom are Lµ equivalent. This can be concluded even though T1 is a TSI,

T2 is an LTS, T3 is a Petri net, and T4 is an event structure. /

• b
""F

FF

◦
a <<xxx

b ""
FFF

I •
• a
<<xxx

• b
##GG

G

◦
a ;;www

b
##GG

G •
• a
;;www

A TSI T1 (on the left) and an LTS T2 (on the right)

'&%$!"#• // a //'&%$!"# // b //'&%$!"#
'&%$!"#• //

66mmmmmmmmmmmm b //'&%$!"#
b

6
6

a b
A Petri net T3 (on the left) and an event structure T4 (on the right)

Figure 3.1: Comparing different models of concurrency uniformly using SFL and Lµ

36 Chapter 3. Mu-Calculi for True Concurrency

Logics for True Concurrency. SFL and Lµ can differentiate concurrency from nondetermin-

ism using two different local dualities. Consider the following concurrent systems (in CCS

notation and with a partial order semantics, e.g., using Petri nets [19] or event structures [99]):

P = a ‖ b and Q = a.b + b.a; models of P and Q are depicted in Figure 3.2. Processes P and

Q are equivalent in an interleaving context (e.g., P ∼sb Q), but different from a partial order

viewpoint as they are not equated by any equivalence for true concurrency (e.g., P 6∼hpb Q).

Such a difference can be captured with both SFL and Lµ in several ways: for instance,

using the duality between concurrency and conflict with the SFL formula φ = 〈a〉tt∗ 〈b〉tt and

the Lµ formula φ′ = 〈⊗〉(〈a〉tt∧〈b〉tt), or using the duality between concurrency and causality

with the SFL and Lµ formula ψ = 〈a〉c〈b〉nctt, which are all true in P but not in Q.

• b
##GG

G

◦
a ;;www

b
##GG

G •
• a
;;www

• b // •
◦

a ;;www

b
##GG

G

• a
// •

Interleaving representation of processes P (on the left) and Q (on the right).

'&%$!"#• // a //'&%$!"#
'&%$!"#• // b //'&%$!"#

a //'&%$!"# // b //'&%$!"#
'&%$!"#•

;;www

##G
GG

b //'&%$!"# // a //'&%$!"#
Partial order representation of processes P (on the left) and Q (on the right).

Figure 3.2: Interleaving vs. partial order representations of P = a ‖ b and Q = a.b+b.a.

Now, within the true concurrency spectrum there are several bisimilarities (cf. [26, 35]); for

instance, step bisimilarity, pomset bisimilarity, or hp bisimilarity, which was already mentioned

in Chapter 2. As shown in the following section, the equivalences induced by SFL and Lµ are

strictly stronger than any of these three bisimilarities in some classes of systems.

Example 3.23. Consider the systems in Figure 3.3. The two Petri nets are told apart by the

formula 〈a〉c(〈b〉ctt∧ 〈b〉nctt), the two event structures by the formula 〈a〉c(〈b〉ctt∧ [−]nc ff),

and the two TSI models by the Lµ formula 〈⊗〉(〈a〉c〈c〉ctt∧ 〈b〉c〈d〉ctt) and the SFL formula

〈a〉c〈c〉ctt∗ 〈b〉c〈d〉ctt, which, in each case, hold only in the system on the right. /

Remark 3.24. The previous example shows the strong distinguishing power of SFL and Lµ.

As shown later, the equivalences they induce are the strongest decidable bisimilarities over the

classes of partial order models we consider in the following section and with respect to the best

known (bisimulation) equivalences in the literature (see [26]), which make them interesting

logics for true concurrency. These logics take full account of the interplay between causality

and branching, and recognise subtle differences between partial order behaviours, differences

that are hidden behind complex nondeterministic choices of independent local processes. /

3.3. Examples and Applications 37

'&%$!"#• // a //'&%$!"#
'&%$!"#• // b //'&%$!"#

'&%$!"#• // a //'&%$!"# // b //'&%$!"#
'&%$!"#• //

66mmmmmmmmmmmmm b //'&%$!"#
Two step bisimilar systems that are not pomset bisimilar.

b

7
7

7

a b

b

a __ a __ b
Two pomset bisimilar systems that are not hp bisimilar.

•
•b

{{xxx
x • b

##FF
FF

c ::vvv

• I ◦
accFFFF

b{{x
xxx

a ;;xxxx

b ##
FFF

F I •
•

dzzv
vv

a
ccFFFF

• a
;;xxxx

•

•
•b

{{xxx
x • b

##FF
FF

c ::vvv

• I ◦
accFFFF

b{{x
xxx

a ;;xxxx

b ##
FFF

F I •
•a

ccFFFF
• a

;;xxxx

d $$
HHH

•
Two hp bisimilar systems that are not hhp bisimilar.

Figure 3.3: True concurrency systems with different partial order behaviour.

Logics for Multi-Agent Systems (MAS). MAS, such as those analysed with logics like ATL

[5] and extensions therefrom, can be studied using SFL and Lµ. In order to model MAS,

an explicit notion of an agent must be defined. Since our basic partial order model is based

on transitions representing instances of actions in the system, such transitions should belong to

uniquely defined agents. Therefore, the following set of agents and corresponding “ownership”

mapping on transitions are defined. Let Γ be a finite set of sequential agents and A : A→ Γ be a

mapping that assigns transitions to agents. In this way, it is possible to know the transitions that

an agent can execute. However, since transitions in a partial order model represent instances

of actions in a system, rather than actions that an agent can execute, a consistency restriction

must be defined so that all transitions that are instances of the same action are performed by

the same agent. This is captured by adding the constraint: if t1 ∼ t2 then A(t1) = A(t2).1

Also, since modal logics can make distinctions between transitions with different labels,

a consistency relation on labels of transitions should also be defined: if A(t1) 6= A(t2) then

δ(t1) 6= δ(t2). Imposing these restrictions is equivalent to defining a distributed alphabet Σ

over a set of independent agents Γ. A partial order model extended with these definitions

and restrictions is called ‘consistent’ for MAS. Furthermore, a modality 〈a〉αφ is called ‘well-

defined’ for MAS iff for all transitions t ∈A if a = σ(t) then α = A(t). Modalities of the form

〈K〉αφ, where K ⊆ Σ, can be defined by 〈K〉αφ =
W

a∈K〈a〉αφ using the standard notation for

modalities with sets of labels. We write 〈−〉αφ to mean the diamond modality on the set of

labels restricted to those of α. Assume similar definitions for the other modalities.

1Recall that ∼ is the equivalence relation on system or TSI transitions as defined in Chapter 2.

38 Chapter 3. Mu-Calculi for True Concurrency

Example 3.25. The formula ψ = [−]β 〈−〉αncµZ.φ∨ 〈−〉αc Z says that there is an agent α (the

system) that can satisfy φ regardless the behaviour of an adversarial agent β (the environment).2

Informally, ψ says “whatever you (the environment) do, I (the system) can get to φ, though I

may have to do some things that do not depend on what you previously did.” /

3.4 Logical and Concurrent Equivalences

We now turn our attention to the formal study of the relationships between the explicit notion

of independence in partial order models of concurrency (which we call model independence),

and the explicit notion of independence in the modal logics we have defined in the previous

section (which we call logical independence). We do so by relating well-known bisimulation

equivalences for interleaving and true concurrency, namely ∼sb, ∼hpb, and ∼hhpb, with the

logical equivalences induced by different SFL and Lµ sublogics where the interplay between

concurrency and conflict, and concurrency and causality is syntactically restricted.

Definition 3.26. (L equivalence ∼L) Given a logic L, two processes P and Q associated with

two systems T1 and T2, respectively, are L-equivalent, P ∼L Q, iff for every L formula φ in

FL, P |= φ⇔ Q |= φ, where FL is the set of all fixpoint-free closed formulae of L. /

Remark 3.27. The previous definition delivers a logical, abstract notion of equivalence that

can be used across different models of concurrency, i.e., tailored to be model independent.

With this logical notion of (bisimulation) equivalence two systems T1 and T2, possibly of

different kinds, are equivalent with respect to some equivalence relation ∼L if, and only if,

their associated process spaces cannot be differentiated by any L-logical formula. /

Recall that in order to obtain an exact match between finitary modal logic and bisimulation,

all models considered here are image-finite [46], i.e., of finite branching. Moreover, since the

semantics of SFL and Lµ are based on action labels, we only consider models or systems

without ‘auto-concurrency’ [72], a common restriction when studying either modal logics or

bisimulation equivalences for (labelled) partial order models of concurrency.

More precisely, auto-concurrency is the phenomenon by which multiple instances of vari-

ous concurrent or transitions are equally labelled. In other words, auto-concurrency can be seen

as nondeterminism inside a set of independent transitions. In many cases auto-concurrency is

regarded as an undesirable situation on partial order models since, firstly, can be easily avoided

in practice and, secondly, makes slightly counter-intuitive the analysis of behavioural properties

of concurrent processes with partial order semantics.

As a matter of fact, on finite systems, auto-concurrency is formally, but not actually, a

further restriction since any bounded branching system that has auto-concurrency can be ef-

fectively converted into a system that does not have auto-concurrency by a suitable relabelling
2I thank Julian Bradfield for the IFML [11] version of this example.

3.4. Logical and Concurrent Equivalences 39

of auto-concurrent transitions without changing the concurrent behaviour of the model. Notice

that no auto-concurrency is a real further restriction for infinite systems as image-finiteness

does not imply branching boundedness on infinite models.

Having said that, let us turn to the study of some syntactic fragments of SFL and Lµ. They

are called the natural syntactic fragments of SFL and Lµ because such sub-logics arise as

the languages where the dualities between concurrency and causality as well as concurrency

and conflict are syntactically manipulated. As we will see the logical equivalences induced

by all such syntactic fragments are decidable and, in some cases, coincide with well-known

bisimilarities for interleaving and for partial order models of concurrency.

3.4.1 The Causal-Free Cases

We start this study of logical and concurrent equivalences by analysing the syntactic fragments

of SFL and Lµ that are oblivious to any causal information in the systems.

The Modal Mu-Calculus. The first sublogic we consider is obtained from both SFL and Lµ

by disabling the sensitivity of these logics to both dualities. On the one hand, insensitivity to

the duality between concurrency and causality can be captured by considering only modalities

without subscript, using the abbreviations for modalities given previously in Definition 3.8,

which also applies to Lµ. So, only the following modalities are considered (the ones of HML):

〈a〉φ1 = 〈a〉cφ1∨〈a〉ncφ1

[a]φ1 = [a]c φ1∧ [a]nc φ1

On the other hand, insensitivity to the duality between concurrency and conflict can be

captured in SFL (resp. Lµ) by considering the ∗-free SFL sublanguage (resp. the 〈⊗〉-free Lµ

sublanguage).3 The resulting logic has the same syntax as the modal mu-calculus. This natural

syntactic fragment is the purely-modal ∗-free (resp. 〈⊗〉-free) fragment of SFL (resp. of Lµ).

Proposition 3.28. The syntactic purely-modal ∗-free (resp. 〈⊗〉-free) fragment of SFL (resp.

of Lµ) is semantically equivalent to the modal mu-calculus.

Proof. Recall the denotational semantics of the logical operators of SFL and Lµ. Without loss

of generality, we can decide to consider only the case of the modal operators, which are the

same in both logics. Also, since every support set defines a unique state, then the semantics of

Lµ can be extended with a state component in order to match the structure of the SFL semantics,

and so deliver a single proof. Therefore, the following proof, as well as all other proofs not

involving either ∗ or 〈⊗〉 (and their duals) apply to both SFL and Lµ.

3By the ∗-free (resp. 〈⊗〉-free) sublanguage we mean the sublogic without that operator and its dual.

40 Chapter 3. Mu-Calculi for True Concurrency

‖〈a〉φ1‖V = ‖〈a〉cφ1∨〈a〉ncφ1‖V = ‖〈a〉cφ1‖V ∪‖〈a〉ncφ1‖V

= {(s,R, t) ∈ S | ∃s′ ∈ S. ∃t ′ = s a−→ s′ ∈ R. t ≤ t ′∧ (s′,X(s′), t ′) ∈ ‖φ1‖V }∪
{(s,R, t) ∈ S | ∃s′ ∈ S. ∃t ′ = s a−→ s′ ∈ R. t	 t ′∧ (s′,X(s′), t ′) ∈ ‖φ1‖V }

The first observation to be made is that the {∗,〈⊗〉}-free fragment of these logics only considers

maximal sets in the semantics. Therefore if a transition can be performed at a state s then it

is always in the support set at s. Hence, support sets can be disregarded and only the state of

every support set must be kept. Then, we get the following simplified expression:

‖〈a〉φ1‖V = {(s, t) ∈ S×A | ∃s′ ∈ S. t ≤ s a−→ s′∧ (s′,s a−→ s′) ∈ ‖φ1‖V } ∪
{(s, t) ∈ S×A | ∃s′ ∈ S. t	 s a−→ s′∧ (s′,s a−→ s′) ∈ ‖φ1‖V }

The second observation is that when computing the semantics of the combined operator 〈a〉,
the conditions t ≤ s a−→ s′ and t	s a−→ s′ complement each other and become trivially true (since

there are no other possibilities). Therefore, the second component of every pair (s, t) ∈ S×A

can also be disregarded, and the denotation of the diamond modality can be written as follows:

‖〈a〉φ1‖V = {s ∈ S | ∃s′ ∈ S. s a−→ s′∧ s′ ∈ ‖φ1‖V }

The case for the box operator [a] is similar. As a consequence, the semantics of all the

operators of this sublogic and the modal mu-calculus coincide.

Remark 3.29. Lµ cannot recognise pairs of transitions in I and therefore sees any partial order

model as its interleaving counterpart, or what is equivalent, a partial order model with an empty

relation I. As a consequence, although using a partial order model, it is possible to retain in

these logics all the joys of a logic with an interleaving model, and so, nothing is lost in terms

of expressivity with respect to the main interleaving approaches to concurrency. /

Regarding logical and concurrent equivalences, which is the main concern of this section,

it is now easy to see that Milner and Park’s strong bisimilarity,∼sb, the equivalence induced by

modal logic (and therefore HML), is captured by the fixpoint-free fragment of this sublogic,

which we denote by∼Lµ . Hence, the correspondence∼Lµ ≡∼sb follows from Proposition 3.28

and the fact that modal logic characterises bisimulation on image-finite models.

The Separation Modal Mu-Calculus. The second sublogic we study is the ‘separation modal

mu-calculus’, L∗µ . This logic is obtained from SFL by allowing only the recognition of the

duality between concurrency and conflict by using its structural operator ∗. The syntax of L∗µ
is as follows: φ ::= Z | ¬φ1 | φ1∧φ2 | 〈a〉φ1 | φ1 ∗φ2 | µZ.φ1.

We write ∼L∗µ for the equivalence induced by this SFL sublogic. It is easy to see that

L∗µ is more expressive than Lµ in partial order models simply because L∗µ includes Lµ and

can differentiate concurrency from nondeterminism. However, there is a counter-example that

shows that ∼L∗µ and ∼hpb, in general, do not coincide.

3.4. Logical and Concurrent Equivalences 41

Proposition 3.30. Neither ∼hpb ⊆∼L∗µ nor ∼L∗µ ⊆∼hpb.

Proof. In Figure 3.3, the two TSI models at the bottom are hp bisimilar and yet can be distin-

guished by the L∗µ formula φ = 〈a〉〈c〉tt∗ 〈b〉〈d〉tt. On the other hand, the two Petri net models

at the top are not pomset bisimilar (and hence are not hp bisimilar either) and cannot be dif-

ferentiated by any L∗µ formula. Because of the sizes of the systems, this can be verified by

exhaustively checking all semantically different L∗µ formulae of modal depth no greater than 2

(of which there are finitely many) in all the states of these systems.

The Trace Modal Mu-Calculus. The third sublogic is the ‘trace modal mu-calculus’, L⊗µ .

This logic is obtained from Lµ by allowing, similar to the L∗µ case, only the recognition of the

duality between concurrency and conflict. The syntax of L⊗µ is given by the following rules:

φ ::= Z | ¬φ1 | φ1 ∧ φ2 | 〈a〉φ1 | 〈⊗〉φ1 | µZ.φ1. We write ∼L⊗µ for the equivalence induced by

this Lµ sublogic. As in the L∗µ case, L⊗µ is more expressive than Lµ in partial order models and

the equivalence it induces does not coincide with ∼hpb either.

Proposition 3.31. Neither ∼hpb ⊆∼L⊗µ nor ∼L⊗µ ⊆∼hpb.

Proof. Use the same arguments as in the proof of Proposition 3.30 and the L⊗µ formula φ =

〈⊗〉(〈a〉〈c〉tt∧〈b〉〈d〉tt) instead.

Causal-free Mu-Calculi on Confusion-free Systems. There is a fundamental reason for the

mismatch between ∼hpb and ∼L∗µ and between ∼hpb and ∼L⊗µ . It has to do with a special

“sharing” of resources between some of the transitions in the model. This special kind of

sharing of resources is characterised by a phenomenon of true concurrency systems called

‘confusion’, which is a concept in net theory, and thus, it is useful (and actually much easier)

to think of it directly on net models. For this reason we will present it using Petri nets.

Confusion can be of two different kinds: symmetric or asymmetric. Roughly speaking,

confusion is a phenomenon that arises between at least three different actions, say between t1,

t2, and t3. In the symmetric case, two of them are independent, e.g., t1 par t2, and at the same

time are in conflict with the third action, i.e., •t1∩ •t3 6= /0 and •t2∩ •t3 6= /0. On the other hand,

in the asymmetric case, two of the actions are independent, e.g., t1 par t2 as before, whereas the

third one causally depends on one of the independent actions, say on t1, and is in conflict with

the other, i.e., one has that t•1 ∩ •t3 6= /0 and •t2∩ •t3 6= /0, respectively.

Confusion is important because, although it is undesirable when analysing the behaviour

of a concurrent system, it is also “inherent to any reasonable net model of a mutual exclusion

module” [87]. Confusion is also present when modelling race conditions in concurrent and

distributed systems with shared memory models. These facts show the ubiquity of this phe-

nomenon when analysing real-life models of communicating concurrent systems. Although

42 Chapter 3. Mu-Calculi for True Concurrency

confusion is a natural concept in net theory, it can also be defined for TSI and event structures,

though in the TSI case the definition is slightly more complicated because it involves sets of

transitions rather than single actions or events as in the Petri net and event structure cases.

Confusion appears in the systems used in the proofs of Propositions 3.30 and 3.31, in both

cases in its asymmetric variant. The problem is that ∼hpb, ∼L∗µ , and ∼L⊗µ can recognise some

forms of confusion, but not all of them. However, there are classes of systems where confusion

never arises, and for which coincidence results between these bisimilarities may be possible.

Definition 3.32. (Confusion-free systems) A system T is confusion-free if, and only if, for

all different transitions t1, t2, and t3 such that t1#t2 and t1⊗ t3, there exist transitions r1 and r2,

where t1 ∼ r1 and t2 ∼ r2, such that r1#r2 and t3	 r1 and t3	 r2. /

Informally, the previous definition means that a choice, i.e., a conflict in terms of Petri

nets or event structures, cannot be globally affected by the execution of a concurrent transition,

since equivalent choices are always possible both before and after that4. These facts, along with

the observations made before, led us to believe that the following statement holds for systems

without auto-concurrency, although we have so far not been able to prove it.

Conjecture 3.33. ∼L∗µ ≡∼hpb ≡∼L⊗µ on confusion-free systems without auto-concurrency.

Now, let us move to the study of a modal logic that is sensitive to the causal information

embodied in partial order systems. In particular, it will be shown that for some classes of (true

concurrency) systems the local duality between concurrency and causality is good enough to

capture the full notion of global causality defined by ∼hpb on partial order models.

3.4.2 From Local to Global Causality

In this section we show the first coincidence result of the equivalence induced by one of the

sublogics of both SFL and Lµ with a bisimilarity for partial order systems. The result holds

for a class of systems whose expressive power lies between that of so-called ‘free-choice’ nets

[20] and that of safe nets (cf. Chapter 2), as before with the usual restrictions to systems that

are image-finite and have no auto-concurrency.

The coincidence result is with respect to ∼hpb. This equivalence is considered to be the

standard bisimulation equivalence for causality since it fully captures the interplay between

branching and causal behaviour. The interesting feature of this coincidence result is that ∼hpb

provides a global notion of causality whereas the modal logic we are about to study induces

a local one, as shown later on. Then, the question we answer here is that of the class of true

concurrency systems for which ‘local causality’ fully captures the standard, and mathematically

more complex, notion of ‘global causality’. Such an answer is given by the following logic.

4Another way to define confusion-free systems, which we use later on, is to define a ‘confusion’ relation and
confusion-free systems as those for which such a relation is empty.

3.4. Logical and Concurrent Equivalences 43

The Causal Modal Mu-Calculus. The fourth sublogic to be considered is the ‘causal modal

mu-calculus’, Lc
µ . This sublogic is obtained from SFL and Lµ by allowing only the recognition

of the duality between concurrency and causality throughout the modal operators on transitions

of these logics. The syntax of this syntactic fragment is given by the following language:

φ ::= Z | ¬φ1 | φ1∧φ2 | 〈a〉cφ1 | 〈a〉ncφ1 | µZ.φ1.

Clearly, Lc
µ is also more expressive than Lµ because of the same reasons given for L∗µ and

L⊗µ . The naturality of Lc
µ for expressing causal properties is demonstrated by the equivalence

it induces, written as ∼Lc
µ
, which coincides with ∼hpb, the standard bisimilarity for causal

systems, when restricted to systems without auto-concurrency where any 3-tuple of transitions

(t1, t2, t3) in confusion is in some sense deterministic. Thus, let us define confusion, a ternary

relation on transitions as well as its deterministic variant when considering labelled systems.

Definition 3.34. (Confusion) Let cfs be a ternary relation on transitions of a system T such

that (t1, t2, t3) ∈ cfs iff t1⊗ t2 and either t1#t3 and t2#t3 (the symmetric case) or t1 ≤ t3 and

∃r2. t2 ∼ r2∧ r2#t3 (the asymmetric case). A tuple (t1, t2, t3) ∈ cfs is deterministic iff either the

three transitions have different labels or δ(t1) = δ(t3) and t1 ≤ t3. /

There are analogous Petri net and event structure definitions for confusion using the basic

elements of such models. Those definitions are better known than the one presented here since

confusion is a basic concept in net theory; however, the definition we have given is equivalent.

Perhaps due to this is that an easy way of depicting confusion is using nets. Figure 3.4 shows

the two simplest nets featuring confusion, both in their symmetric and asymmetric variants.

a

'&%$!"#•
;;vvvv

##HH
HH

b
'&%$!"#•

;;vvvv

##HH
HH

c

'&%$!"#• // a //'&%$!"# // a

'&%$!"#• //

66mmmmmmmmmmmmm b

Figure 3.4: Confusion: the Petri net on the left has symmetric confusion and the Petri net on the right

has asymmetric confusion. In both cases it is deterministic.

Any Petri net that has confusion must have either of these two nets as a subsystem. The

statement equivalently holds for TSI and event structures if considering, respectively, the TSI

and event structure models corresponding to such nets. This property allows one to define a

class of concurrent systems for which the logical equivalence induced by Lc
µ captures ∼hpb.

Such a class contains all those concurrent systems without auto-concurrency that either are

free-choice or whose confusion relation has only deterministic tuples. Thus, let us now define

the class of free-choice systems. For simplicity, we do so indirectly via the standard definition

of free-choice nets, which is well-known in the (Petri net) literature.

44 Chapter 3. Mu-Calculi for True Concurrency

Definition 3.35. (Free-choice nets) Let N be a net. A net is free-choice if, and only if, for all

s ∈ P we have that | s• | ≤ 1 or ∀t ∈ s•.| •t |= 1. /

We extend the previous definition on nets to systems in the following way: a free-choice

Petri net is a free-choice net with an initial marking; moreover, a free-choice event structure

is an event structure unfolding [71] of a free-choice Petri net and a free-choice TSI is the TSI

model obtained from a free-choice Petri net (cf. see the mappings presented in Chapter 2).

Free-choice nets, and hence free-choice systems, have no confusion as other classes of

concurrent systems. But what is more important to note about this class of nets is that the

confusion-freeness property (which is a behavioural characteristic) comes directly from a sim-

ple structural property of the nets in such a class. In particular, any free-choice net, and there-

fore free-choice system, can be built using the subnets shown in Figure 3.5 (with additional

flow arrows after net actions, which can be used unrestrictedly as long as the net stays safe).

'&%$!"#
��@

@@
@

...
'&%$!"#

??~~~~

'&%$!"#
??~~~~

��@
@@

@ ...

Figure 3.5: Free-choice nets: the two subnets from which any free-choice system can be built.

We are almost ready to show that the two bisimulation equivalences∼Lc
µ

and∼hpb coincide

for a big family of concurrent systems that we call ‘fc-structured’, and denote by Ξ.

Definition 3.36. (Fc-structured (Ξ) systems) The family of fc-structured (Ξ) systems is the

class of systems without auto-concurrency that either are free-choice or whose confusion rela-

tion has only deterministic elements. /

Remark 3.37. The family of Ξ-systems contains, at least, the following classes of models

(without auto-concurrency and with a deterministic confusion relation): Moore and Mealy

machines, labelled transition graphs, synchronous and asynchronous products of sequential

systems, free-choice systems, and compositions of nondeterministic concurrent systems. As

shown at the end of this section, this is a big family of models which can represent several

complex systems with interesting concurrent behaviour from a practical viewpoint. /

Now, back to the issue of relating ∼hpb and ∼Lc
µ
, the proof that ∼hpb and ∼Lc

µ
coincide for

the class of Ξ-systems goes by showing that the two inclusions ∼hpb ⊆ ∼Lc
µ

and ∼Lc
µ
⊆ ∼hpb

hold separately. In fact, the first inclusion holds for any class of systems (a result that shows

that ∼hpb is stronger than ∼Lc
µ
) while the second one requires the restriction to the class of

Ξ-systems introduced above. In a number of cases, the proof uses, or is driven by, key insights

that come directly from the properties of the net representation of Ξ-systems.

3.4. Logical and Concurrent Equivalences 45

In addition, in order to deliver a single proof covering the process space models of both

SFL and Lµ, let us use the model that considers processes in S rather than in S. The reduction

actually goes in both ways, i.e., from S to S as well as from S to S, and can always be used

so long as the operators ∗ and 〈⊗〉 are not considered since only maximal sets will be needed.

Notice that any (X(τ(t)), t) ∈S induces a unique (τ(t),X(τ(t)), t) ∈ S, and vice versa.

Lemma 3.38. (Logical soundness) ∼hpb ⊆∼Lc
µ
.

Proof. This inclusion can be shown by induction on Lc
µ formulae, which we denote by FLc

µ
.

Let T1 and T0 be two systems and P∈S1 and Q∈S0 two processes that belong to the process

spaces S1 and S0 associated with T1 and T0, respectively. If P∼hpb Q then for all φ ∈ FLc
µ

we

have that P |=T1
V1

φ⇔Q |=T0
V0

φ given two models M1 = (T1,V1) and M0 = (T0,V0). Since Lc
µ

only considers maximal sets, the process P = (p, t) (resp. the process Q = (q, t)) is actually a

tuple in S1×A1 (resp. in S0×A0) rather than a tuple in X1×A1 (resp. in X0×A0). Henceforth,

let us write |= instead of |=Ti
Vi

, for i ∈ {0,1}, since the models will be clear from the context.

The base case of the induction is when φ = tt or when φ = ff which is trivial since the

logical formulae tt and ff are always true and false, respectively. Now, consider the cases for

the boolean operators ∧ and ∨; first suppose that φ is the conjunction ψ1∧ψ2 and assume that

the result holds for both formulae ψ1 and ψ2. By the definition of the satisfaction relation P |= φ

iff P |= ψ1 and P |= ψ2 iff by the inductive hypothesis Q |= ψ1 and Q |= ψ2, and hence, by the

definition of the satisfaction relation Q |= φ. The case for the boolean operator ∨ is similar.

Now, consider the cases for the four modalities. First, suppose φ = [a]nc ψ and P |= φ.

Therefore, for any P′ = (p′, t ′), such that a = δ(t ′) and P a−→ P′ and t	 t ′, it follows that P′ |= ψ.

Now, let Q a−→Q′ such that a = δ(t ′) and t	 t ′ since the bisimulation must remain synchronous.

Just to recall, synchrony in an hp bisimulation means that the last transition chosen in T1

(resp. in T0) is concurrent with the former transition also chosen in T1 (resp. in T0) iff the

same pattern holds in the last two transitions chosen in T0 (resp. in T1), and moreover the

two sequences of transitions (i.e., runs) that are generated in this way are the linearisations

of isomorphic posets. So, as we know that for some P′ there is a P a−→ P′, where t 	 t ′, and

by the inductive hypothesis P′ ∼hpb Q′, then Q′ |= ψ, where t	 t ′, and so by the definition of

the satisfaction relation Q |= φ. The case when Q satisfies φ is symmetric, and the case when

φ = [a]c ψ is similar (only changing 	 for ≤). The cases for 〈a〉c and 〈a〉nc are analogous.

In order to show the second inclusion (∼Lc
µ
⊆∼hpb) we first require some lemmas that char-

acterise the set of runs that can be identified by Lc
µ in a partial order system. More specifically,

a proof that if two systems T0 and T1 are Lc
µ-equivalent, then for each run of one of the systems

there exists a ‘locally synchronous’ run (which is defined below) in the other system. Then,

one can use this result to show that for any two Ξ-systems T0 and T1 such that T0 ∼Lc
µ
T1, each

pair of locally synchronous runs is moreover induced by two isomorphic posets, and hence, the

46 Chapter 3. Mu-Calculi for True Concurrency

two systems must be ∼hpb too, as in such a case the pair of runs is synchronous.

Recall the definition of runs and of synchronous runs from Chapter 2, and let π0 ∈ ΠT0

and π1 ∈ ΠT1 be two runs of two systems T0 and T1, and u,v two transitions. A pair of runs

(π0.u,π1.v) is inductively defined as ‘locally synchronous’ iff (π0,π1) is locally synchronous

and (ρ(π0),u) ∈ I0⇔ (ρ(π1),v) ∈ I1, where I0 and I1 are the independence relations of T0 and

T1. By definition, (ε,ε) is locally synchronous. Note that the definitions of locally synchronous

runs and synchronous runs are quite similar; the only difference is that synchronous runs must

be the linearization of isomorphic posets whereas locally synchronous runs need not be.

Lemma 3.39. Let T0 and T1 be two systems and ΠT0 and ΠT1 their sets of runs. If T0 ∼Lc
µ
T1

then for each π0 ∈ΠT0 (resp. π1 ∈ΠT1) there exists a run π1 ∈ΠT1 (resp. π0 ∈ΠT0) such that

the pair of runs (π0,π1) is locally synchronous.

Proof. The proof goes by a contradiction argument. Suppose that for all φ in FLc
µ

we have that

P |= φ⇔ Q |= φ and there exists a run in one of the systems that is not locally synchronous to

any of the runs in the other system. The case where P and Q are the initial processes of T0 and

T1, respectively, is trivially false since, by definition, the pair (ε,ε) is locally synchronous.

Then, suppose now that (π0,π1) is locally synchronous and that P and Q are two processes

reached, respectively, in T0 and in T1 after following π0 and π1 in each system (starting from

their initial processes). Additionally, suppose that there exists a transition u in one of the

systems, say in T0, such that there is no transition v in the other system for which the pair of

runs (π0.u,π1.v) is locally synchronous. Note that P and Q are strongly bisimilar, since Lc
µ

includes Lµ, and thus, the case in which a processes can perform a transition (regardless of its

label) and the other cannot do so is impossible as this contradicts the hypothesis that P∼sb Q.

So, suppose that for some transition u with label a, P = (p,ρ(π0))
a−→ P′ = (p′,u) and

ρ(π0)	 u (resp. ρ(π0) ≤ u), but for all transitions v such that a = δ(v) it holds that Q =

(q,ρ(π1))
a−→ Q′ = (q′,v) and ρ(π1) ≤ v (resp. ρ(π1)	 v) only. However, we know that, by

hypothesis, P ∼Lc
µ

Q and so, it must be true that if P |= 〈a〉ncφ (resp. if P |= 〈a〉cφ) then

Q |= 〈a〉ncφ (resp. if Q |= 〈a〉cφ), which is a contradiction. Thus, one must be able to match

pairs of independent transitions in one of the systems whenever the same happens in the other

system for all pairs of processes P and Q satisfying that P∼Lc
µ

Q.

Lemma 3.39 says that if two systems satisfy the same set of Lc
µ formulae, then, locally, they

have the same causal behaviour. However, to show that globally they also have the same causal

behaviour, one needs some additional information, which is given by the following lemma.

Lemma 3.40. Let T be a Ξ-system whose conflict relation is cfs and let π ∈ ΠT. If after

executing the run π in T there are two different enabled transitions u and v such that δ(u) =

δ(v), then the following two statements hold:

3.4. Logical and Concurrent Equivalences 47

1. u#v.

2. There is at most one transition t in π such that τ(t) = σ(u′) = σ(v′) for which t ≤ u′ and

t ≤ v′ and u∼ u′ and v∼ v′.

Proof. In the same order as in the statement of the lemma:

1. Because there is no auto-concurrency.

2. Since the confusion relation is deterministic there is no c ∈ cfs such that both u and v

belong to c; in particular neither transition can be an instance of an action e (at the net

level) for which | •e | > 1. Instead, such transitions must be instances of two different

actions e1 and e2 for which | •e1 |= 1 = | •e2 |.

Finally, the following lemma ensures that for the class of Ξ-systems, the notion of lo-

cally synchronous runs (associated with local causality) is good enough—strong enough or

sufficient—to capture the stronger, and more complex, notion of synchronous runs (associated

with global causality), provided that the two systems satisfy the same set of Lc
µ formulae.

Lemma 3.41. Let T0 and T1 be Ξ-systems whose sets of runs are ΠT0 and ΠT1 . If for each

π0 ∈ ΠT0 (resp. π1 ∈ ΠT1) there exists some π1 ∈ ΠT1 (resp. π0 ∈ ΠT0) such that (π0,π1) is

locally synchronous, then (π0,π1) is, moreover, synchronous.

Proof. The proof is based on the fact that if (π0,π1) is a locally synchronous pair, then the

posets induced by such locally synchronous runs induce isomorphic posets if the systems are

fc-structured, and hence, the pair of runs is also globally synchronous. We proceed by induction

on the length of runs. The base case, i.e., when the pair of runs is the pair of empty runs

(π0,π1) = (ε,ε), is trivial since in this case the two posets are empty.

For the induction step, suppose that there is a non-empty run π0 of size k that is locally

synchronous to some run π1; moreover, suppose that π0 and π1 induce isomorphic posets. We

show that there is not a run π0.u which induces a poset that is not isomorphic to any of the

posets induced by those runs π1.v for which the pairs of extended runs (π0.u,π1.v) are locally

synchronous. Then, we have to analyse the way in which u and v extend the runs π0 and π1.

Due to the definition of Ξ-systems, one can consider the following three cases: (1) the

transition u is the instance of a net action e such that | •e | > 1 and u is not in the conflict

relation of T0; (2) the transition u is the instance of a net action e such that for some net place

s we have that e ∈ s• and ∀e ∈ s•.| •e |= 1 and u is not in the conflict relation of T0; or (3) the

transition u is an instance of a net action of either type and is in the conflict relation of T0.

For the first case, let π0 be any run such that ρ(π0) ≤ u. By hypothesis we have that the

posets induced by π0 and π1 are isomorphic, that u depends only on one transition (namely,

on ρ(π0)), and that ρ(π1) ≤ v as well. Then, the only possibility for this case to fail is if

v, unlike u, causally depends on more than only one transition (since it already depends on

48 Chapter 3. Mu-Calculi for True Concurrency

ρ(π1)). Suppose this could happen; then, there is at least one transition e j in π1 on which v also

causally depends and that is independent of ρ(π1). Then there must exist a run π
−
1 of length

k−1 that do not contain e j and where ρ(π−1) ≤ v′ for some v′ such that δ(v′) = δ(v). Since v

and v′ cannot be two instances of the same net action, then they must be in conflict (because

there is no auto-concurrency) and moreover belong to some tuple c of the confusion relation

cfs of T1, which is impossible since Ξ-systems have a deterministic confusion relation.

As a consequence any transition u of this kind can be matched only by a transition v that

is the instance of a net action e for which | •e | = 1, and due to Lemma 3.40, such kind of

transitions extend a unique transition of any run, keeping the two extended runs π0.u and π1.v

not only locally synchronous but also globally synchronous.

For the second case, suppose that u depends on a set of elements {ei
0, ...,e

k
0, ...,e

m
0 } of the

poset induced by π0, i.e., ∀e ∈ {ei
0, ...,e

k
0, ...,e

m
0 }.(e,u) 6∈ I0, and there is at least one ek

0 that was

related to some ek
1 of π1 while constructing the two locally synchronous runs, i.e., ek

0 = π0(k)

and ek
1 = π1(k) for some natural number k, but that is not extended in π0 with respect to u as

ek
1 is extended in π1 with respect to v, i.e., which makes the two induced posets not isomorphic

because (ek
0,u) 6∈ I0 whereas (ek

1,v) ∈ I1.

For the same reasons given in the first case, v cannot depend on only one transition in π1.

On the contrary it must depend on at least two transitions, one of which must have the same

label as ek
0 and ek

1; let en
1 be such a transition. As in the first case, w.l.o.g. the other transition

can be ρ(π1). Then, we have that v causally depends on en
1 and is independent of ek

1, which is

independent of en
1. But this is impossible since δ(en

1) = δ(ek
1) and there is no auto-concurrency.

Therefore, both runs must be extended in a synchronous way in this case as well.

Finally, for the third case notice that the arguments given before apply here as well, re-

gardless of the kind of transition under consideration since the two properties in the former

cases still hold: on the one hand, any two transitions equally labelled are always in conflict and

causally depend (locally) on only one transition of any run; and, on the other hand, whenever

is enabled a transition that is an instance of a net action whose preset is not a singleton, then

that transition is the only one enabled with such a label.

Then, v must extend the poset induced by π1 as u extends the poset induced by π0, i.e.,

for all k in {1, ..., | π0 |} one has that (π0(k),u) 6∈ I0 iff (π1(k),v) 6∈ I1, making the two posets

isomorphic in all cases and for all pairs (π0,π1) of locally synchronous runs of any length.5

Informally, one can say that the arguments in the proof just given go through because any

“extra-concurrency” in one of the systems with respect to the other can be recognised since

there is no auto-concurrency, and any “extra-causality” can be recognised since, for models in

the class of Ξ-systems, any two transitions that are enabled at the same time and are equally

labelled must be in conflict and causally depend on one transition in any run.

5I thank Sibylle Fröschle for discussions and comments on this result and its associated proof.

3.4. Logical and Concurrent Equivalences 49

Corollary 3.42. (Logical completeness) ∼Lc
µ
⊆∼hpb on Ξ-systems.

Proof. From Lemmas 3.39 and 3.41.

Theorem 3.43. (Full logical definability) ∼Lc
µ
≡∼hpb on Ξ-systems.

Proof. Immediate from Lemma 3.38 and Corollary 3.42.

Corollary 3.44. ∼Lc
µ

is decidable on Ξ-systems.

Proof. Follows from Theorem 3.43 and the fact that ∼hpb is decidable [96].

The previous theorem shows that for the class of Ξ-systems the notion of local causality

defined by Lc
µ captures the stronger notion of global causality, which is captured by ∼hpb in

arbitrary classes of models of true concurrency. The result does not immediately carry over to

all finite systems because in such a case ∼Lc
µ
6≡ ∼hpb. A simple counter-example (which uses

auto-concurrency) is the following: consider the three processes A1 = a.A1, A2 = a.A2, and

A3 = a.A3 of Example 3.17; the two concurrent systems A1 ‖ A2 and A1 ‖ A2 ‖ A3 are not hp

bisimilar and yet cannot be differentiated by ∼Lc
µ
. However, the counter-example does not rule

out, by any means, the possibility that ∼Lc
µ

is decidable on general systems. In fact, since ∼Lc
µ

is not as strong as ∼hpb on all finite systems, we believe the following holds:

Conjecture 3.45. ∼Lc
µ

is decidable on all finite systems.

Theorem 3.44 may have interesting practical applications. For instance, the complexity

of deciding whether two arbitrary concurrent systems are hp bisimilar, i.e., that they possess

the same causal properties, is EXPTIME-complete [50] (a result obtained for 1-safe nets);

however, since Ξ-systems belong to a subclass of general (1-safe) Petri nets, checking ∼hpb,

and therefore checking ∼Lc
µ
, on the class of Ξ-systems may be computationally easier. Then,

computationally easier simply means that it cannot be harder than the EXPTIME-complete

complexity bound given by ∼hpb for general systems.

Then, the question is ‘how expressive are Ξ-systems?’; and the answer may be given by

analysing which systems can be modelled by Ξ-systems and not by free-choice systems without

auto-concurrency. Two such systems are mutual exclusion mechanisms and some models of

communicating systems. Due to this, the picture looks interesting from a practical viewpoint as

well. A more detailed discussion on this topic is presented in Chapter 6. For now, let us present

the following examples of two systems that belong to the Ξ family, but that are not free-choice.

Example 3.46. (A net-based mutual exclusion protocol) The concurrent system shown in

Figure 3.6 is a Petri net representation of a mutual exclusion protocol, which cannot be rep-

resented using a free-choice system, but can be modelled using a Ξ-system. In the figure, the

actions ra and rb are requests for entering a critical region denoted by γ; moreover, ia and ib

50 Chapter 3. Mu-Calculi for True Concurrency

(resp. oa and ob) are actions for entering (resp. leaving) γ. The unlabelled action abstracts

away from the interaction of either subsystem—SysA or SysB—with the rest of the system

once permission to access the critical region γ has been granted. /

'&%$!"#•
����

��
��

�

��?
??

??
??

ra //'&%$!"# // ia

�� ��=
==

==
==

ib

������
��

��
�

'&%$!"#oo rboo

'&%$!"#•
OO

SysA '&%$!"#
||zz

zz
zz

zz
'&%$!"#γ

wwnnnnnnnnnnnnnn

''PPPPPPPPPPPPPP

��

'&%$!"#
""D

DD
DD

DD
D SysB '&%$!"#•

OO

oa

@A

GF //

bbDDDDDDDD

OO

ob

<<zzzzzzzz
BC

EDoo

Figure 3.6: A model of a mutual exclusion protocol for two (sub)systems SysA and SysB.

Example 3.47. (A synchronisation model) The concurrent system in Figure 3.7 is the Petri

net representation of the CCS process P = a ‖ ā. As before, such a communicating system

cannot be represented with a free-choice model as confusion is required. /

a //'&%$!"#
'&%$!"#•

;;vvvv

##HH
HH

τa

DD						

��5
55

55
5'&%$!"#•
;;vvvv

##HH
HH

ā //'&%$!"#

Figure 3.7: A model of the CCS process P = a ‖ ā. The ‘synchronization algebra’ of P allows a and ā

either to synchronise and produce a joint action τa or to be executed independently.

3.4.3 Concurrency Beyond Causality

Some studies on (bisimulation) equivalences for partial order models of concurrency, e.g.,

[3, 29, 30], suggest that whereas ∼hpb is an equivalence relation only for causality, ∼hhpb is

an equivalence for true concurrency; I am neither against nor in favour of this idea. There are

also categorical and algebraic studies [27, 35, 51] that support the claim that ∼hhpb is indeed

a natural equivalence notion for true concurrency. What is clear is that a bisimulation equiva-

lence relation for concurrency stronger than∼hpb can capture (partial order) behaviours that go

beyond causality, and, as we show in the remainder of this section as well as at the beginning

of the next chapter, SFL and Lµ can capture some of such kinds of concurrent behaviour.

3.4. Logical and Concurrent Equivalences 51

A Partial Result on the Logical Equivalences Induced by SFL and Lµ. Although the bisim-

ulation equivalences induced by SFL and Lµ are fully analysed in the following chapter using

game-theoretical techniques, we first present a simple preliminary result that relates both ∼SFL

and ∼Lµ with ∼hhpb, without using any game-theoretical machinery.

Consider the counter-example given by Fröschle [27] using Petri nets, which provides ev-

idence of the non-coincidence between ∼hpb and ∼hhpb in free-choice systems. Although the

systems presented there in Figure 4.8 (page 132) and here in Figure 3.8 are not hhp bisimilar,

they cannot be distinguished by any SFL or Lµ formula. This result shows that in general the

equivalence relation ∼hhpb coincide neither with ∼SFL nor with ∼Lµ .

Proposition 3.48. ∼SFL 6⊆ ∼hhpb and ∼Lµ 6⊆ ∼hhpb.

'&%$!"#•
����

��
��;

;;
; SysA '&%$!"#•

����
��

��;
;;

;

a
��

a
��

b
��

b
��'&%$!"# '&%$!"#

$$I
IIII '&%$!"#
zzuuuuu

'&%$!"#
c

'&%$!"#•
����

��
�� ��;

;;
; SysB '&%$!"#•

����
��
�� ��;

;;
;

a
��

a
��

a
��

b
��

b
��

b
��'&%$!"# '&%$!"#

""E
EE

EE
EE

EE
EE

'&%$!"#
$$I

IIII '&%$!"#
zzuuuuu

'&%$!"#

||yy
yy

yy
yy

yy
y

'&%$!"#
c

c

Figure 3.8: Not inclusion of ∼SFL and ∼Lµ in ∼hhpb. Follows from the fact that the following relations

hold for the two systems above: SysA {∼SFL,∼Lµ , 6∼hhpb} SysB.

A Note on Logical Characterisations of Equivalences for Concurrency. An interesting

and challenging problem is that of having (modal) logics capturing bisimulation equivalences

for concurrency. A hierarchy of so-called ‘true concurrent equivalences’ can be found in [26].

Such a hierarchy includes some of the most important equivalence relations for concurrency:

strong, step, pomset, hp, and hhp bisimilarity amongst others.6

The results presented so far show that a number of bisimilarities in such a hierarchy are

captured by (the fixpoint-free fragment of) some of the natural sublogics of SFL and Lµ; more

precisely, two sublogics capture the weakest (∼sb) and the strongest (∼hpb) decidable bisimi-

larities in such a hierarchy, in the latter case when considering the family of Ξ-systems.

In the first part of the following chapter we continue this study of logical and concurrent

equivalences and show that the bisimilarities induced by SFL and Lµ lay strictly between ∼hpb

and ∼hhpb for the class of Ξ-systems, but this time using a new form of game for bisimulation.

6For a description of true concurrency equivalences the reader is referred to [35].

52 Chapter 3. Mu-Calculi for True Concurrency

3.5 Summary

In this chapter we have studied the underlying mathematical properties of various partial order

models of concurrency based on transition systems, Petri nets, and event structures, and showed

that the concurrent behaviour of these systems can be captured in a uniform way by two simple

and general dualities of local behaviour.

Such dualities are used to provide partial order semantics of new fixpoint modal logics,

some of which induce the same identifications as some of the bisimilarities used in concurrency

when considering a number of particular classes of systems.

Moreover, we defined a logical notion of equivalence tailored to be model independent

which makes use of a mathematical structure called a process space—a structure that is used as

a common bridge between different models of concurrency. Using this approach, two partial

order models, possibly of different kinds, can be compared within the same framework by

comparing logically their associated process spaces.

Chapter 4

Higher-Order Logic Games

The logic games for verification presented in Chapter 2 provide a first-order power on the

elements of the board that are picked when playing the game. In order to be able to analyse

true-concurrency properties of concurrent systems with partial order semantics, in this chapter

we introduce bisimulation and model-checking games that give the players higher-order power

on the sets of elements of the game board they are allowed to play.

Since such games may be rather powerful without any restrictions, we consider higher-

order games where the capabilities of a player are restricted to handle simple characteristic sets

of transitions in the boards. Moreover, as these games are intended to be used in the analysis of

properties expressible with the modal logics defined in the previous chapter, then such a higher-

order power is also restricted to a local setting but freely mixed with fixpoint specifications,

which in turn allow for the verification of very complex possibly infinite behaviours.

The main results in this chapter are twofold: on the one hand, by giving game-theoretical

characterizations to the logical equivalences induced by SFL and Lµ—in the form of two game

abstraction theorems—it is shown that the bisimilarities that SFL and Lµ induce are strictly

stronger than hpb and strictly weaker than hhpb when restricted to those systems for which the

logical equivalence induced by Lc
µ captures hpb, this is, for the class of Ξ-systems.

On the other hand, we also define a new form of sound and complete model-checking

games which can verify, in concurrent systems with partial order semantics, several properties

not expressible with Lµ. In particular, such games underpin a novel decision procedure for

model-checking all temporal properties of a class of infinite and regular event structures, thus

improving, in terms of temporal expressive power, previous results in the literature.

The model-checking games presented in this chapter are defined only for SFL. The Lµ

version of these games follows exactly the same ideas and therefore is omitted in order to

improve the readability of the chapter. Such model-checking games can be found in [40].

53

54 Chapter 4. Higher-Order Logic Games

4.1 Higher-Order Games for Bisimulation

This section studies higher-order games for bisimulation that help understand the equivalences

induced by SFL and Lµ, and how these equivalences relate to the best known hp bisimilarities

for concurrency. To this end, we consider games with monadic second-order power on conflict-

free sets of transitions, and show that such games capture the equivalences induced by SFL and

Lµ and, moreover, are easily related to the logic games that characterise hpb and hhpb.

4.1.1 Model Correspondence

Based on some of the results contained in the previous chapter, we now give a game-theoretical

characterisation of the equivalences that SFL and Lµ induce by defining bisimulation games for

them. The games presented here conservatively extend the hp bisimulation game, and therefore

usual games for modal logics, i.e., classical bisimulation. The games we are about to define

are called the ‘independence hp bisimulation’ (ihpb) games and ‘trace hp bisimulation’ (thpb)

games, which characterise, respectively, the logical equivalences induced by SFL and Lµ.

Since the ihpb (resp. thpb) game induces an equivalence relation that identifies exactly the

same set of models as it does SFL (resp. Lµ), then we say that there is a model correspondence

between the equivalence relations given by ihpb and SFL (resp. by thpb and Lµ), which is

mathematically captured by a game abstraction theorem for such an equivalence.

We also want to remark that there are some features of SFL and Lµ that make them in-

teresting logics for true concurrency; in particular, that, as shown later on, the bisimilarities

they induce are decidable and capture behaviours of concurrent systems that go strictly beyond

causality. Before presenting the games for SFL and Lµ, let us make a definition that helps

understand the role of support sets as locally identifiable sets of concurrent transitions.

Definition 4.1. Let two sets of transitions R1 and R2 be history-preserving isomorphic with

respect to a pair of transitions (tm, tn) if, and only if, there exists a bijection B between them

such that for every (t1, t2) ∈ B , if tm ≤ t1 (resp. tm	 t1) then tn ≤ t2 (resp. tn	 t2). /

Notice that any infinite play of an hpb game where Eve wins always induces a sequence

of history-preserving isomorphic sets, where each set is a singleton. If this was not the case

then Adam could win simply by choosing a transition in R1 or R2 such that the hp bisimulation

would not be synchronous. Let us now define the two new bisimulation games.

Definition 4.2. (Independence history-preserving bisimulation games) An independence

history-preserving bisimulation game is a bisimulation game between two players, Eve and

Adam, in a pair of systems T1 and T2 with initial states/processes P and Q, respectively. A

configuration of a play in the game G(T1,T2) is a pair (π1,π2), where π1 ∈ΠT1 and π2 ∈ΠT2 .

The equivalence relation Rihpb is an independence history-preserving (ihp) bisimulation,∼ihpb,

between T1 and T2 iff it is a history-preserving bisimulation between T1 and T2, and:

4.1. Higher-Order Games for Bisimulation 55

• (Base case) The initial configuration (ε,ε) is in Rihpb.

• (∼ihpb rule) Before Adam chooses a transition t1 (t2) from the set of enabled ones at π1

(π2), he can also choose a non-empty conflict-free subset of them to be the new set of

enabled transitions R1 (R2). Then, Eve must respond by choosing a history-preserving

isomorphic set R2 (R1) with respect to (ρ(π1),ρ(π2)) in the opposite structure T2 (T1).

We say that T1 ∼ihpb T2 iff Eve has a winning strategy for the ihpb game G(T1,T2). /

Recall that as usual for bisimulation games, if the play continues forever or Adam cannot

make a move, then Eve wins the game. Otherwise Adam wins the game.

Lemma 4.3. If Eve has a winning strategy for every play in the independence history-preserving

bisimulation game G(T1,T2), then T1 ∼SFL T2.

Proof. By contradiction suppose that Eve has a winning strategy in the ihpb game G(T1,T2)

and that P 6∼SFL Q, where P and Q are the initial processes of T1 and T2, respectively. There

are two cases to analyse. Suppose that at some point Adam cannot make a move. This means

that both P |= [−] ff and Q |= [−] ff only, which is a contradiction.1 The other case is when Eve

wins in an infinite play. For the same reasons given previously, without any loss of generality,

it is possible to consider only the case when Adam uses the ∼ihpb rule of the ihpb game.

Let P |= φ1 ∗φ2 for some formula φ = φ1 ∗φ2 that, by hypothesis, is not satisfied by Q. By

the satisfaction relation we have that P1 |= φ1 and P2 |= φ2 and Q1 6|= φ1 or Q2 6|= φ2, where

Pi = (p,Ri, t) for i ∈ {1,2} and R = R1]R2 for some set Rv X(p), and similarly for the other

processes. Then, there are two cases. First, the support set for Qi cannot be constructed. But

this leads to a contradiction since Eve can always do so by hypothesis. The second case is

that the support set can be constructed but a synchronous transition in it cannot be found. But

this also leads to a contradiction because the support sets that Eve chooses are, additionally,

history-preserving isomorphic to the ones that Adam chooses while playing the game.

Therefore all properties that include ∗ must be satisfied at this stage and the the game has

to proceed to the next round. However, since the play will continue forever, this holds for all

reachable processes, and therefore, all formulae containing ∗ that are satisfied in P must also

be satisfied in Q, which is again a contradiction. The case when P |= φ1 1 φ2 is similar.

Corollary 4.4. (Soundness) If T1 6∼SFL T2, then Adam has a winning strategy for every play

in the independence history-preserving bisimulation game G(T1,T2).

Lemma 4.5. (Completeness) If T1 ∼SFL T2, then Eve has a winning strategy for every play in

the independence history-preserving bisimulation game G(T1,T2).

1Notice that as the models are clear from the context, the decorations in the relation |= are omitted.

56 Chapter 4. Higher-Order Logic Games

Proof. By constructing a winning strategy for Eve based on the fact that T1 ∼SFL T2. Since

Lc
µ induces an hp bisimilarity on Ξ-systems and the ihpb game conservatively extends the hpb

game, w.l.o.g. we can consider only the case when Adam plays the∼ihpb rule of the ihpb game.

So, suppose that Adam is able to choose a conflict-free set of transitions M of size k enabled

at P = (p,M, t), where P is a process in the process space associated with T1. This implies that

P |= φ, where φ = φ1∗ ...∗φk for some formula φ with support set M of size k. By the hypothesis,

for some process Q = (q,N,r) that is ihp bisimilar to P, it must be true that Q |= φ as well, and

therefore Eve can choose a conflict-free set N which is the support set for φ in Q = (q,N,r).

Since P∼SFL Q then M and N must be history-preserving isomorphic sets with respect to (t,r);

otherwise, there would be a simple modal formula differentiating them.

Then Adam must choose an element of either set of transitions using the ∼hpb rule, say a

transition tm ∈M. However, since for every i : 1≤ i≤ k, (p,Mi, t) |= φi and (q,Ni,r) |= φi, where

M =
S

1≤i≤k Mi and N =
S

1≤i≤k Ni, and for every Pi = (p,Mi, t) and Qi = (q,Ni,r), Pi ∼SFL Qi,

then it is always possible for Eve to find a transition rn ∈ N that synchronises as tm ∈M, and

proceed to a next round. The play, therefore, must either go on forever or stop because Adam

cannot make a move. In either case Eve will win the game. The dual case, for a formula

φ = φ1 1 ... 1 φk, is similar since Adam can always choose to play in either structure.

Corollary 4.4 (soundness) and Lemma 4.5 (completeness) give a full game-theoretical char-

acterisation to the logical equivalence induced by SFL.

Theorem 4.6. (Full game abstraction) T1 ∼SFL T2 iff Eve has a winning strategy for the ihp

bisimulation game G(T1,T2); conversely, T1 6∼SFL T2 iff Adam has a winning strategy for the

ihp bisimulation game G(T1,T2).

Corollary 4.7. (Full logical definability) ∼SFL ≡∼ihpb.

Now, we turn out attention to the definition of the characteristic game for Lµ. Following

very similar arguments, one can make a few adjustments to the proofs just presented to show

that given two systems T1 and T2, Eve has a winning strategy for every play in the thpb game

G(T1,T2) iff T1 ∼Lµ T2, i.e., that T1 ∼thpb T2⇔ T1 ∼Lµ T2, or equivalently that∼thpb ≡∼Lµ .

Definition 4.8. (Trace history-preserving bisimulation games) Let the pair (π1,π2) be a

configuration of the game G(T1,T2). The initial configuration of the game is (ε,ε). There are

two players, Eve and Adam, and Adam always plays first and chooses where to play before

using any rule of the game. The equivalence relation Rthpb is a trace history-preserving (thp)

bisimulation, ∼thpb, between T1 and T2 iff it is an hp bisimulation between T1 and T2 and:

• (Base case) The initial configuration (ε,ε) is in Rthpb.

• (∼thpb rule). Before Adam chooses a transition using the ∼hpb rule, he can also restrict

the set of available transitions by choosing either in π1 or π2 a maximal supset to be

4.1. Higher-Order Games for Bisimulation 57

the new set of available choices. Then, Eve must choose a maximal set in the other

component of the configuration.

We say that T1 ∼thpb T2 iff Eve has a winning strategy for the thpb game G(T1,T2). /

Lemma 4.9. If Eve has a winning strategy for every play in the trace history-preserving bisim-

ulation game G(T1,T2), then T1 ∼Lµ T2.

Proof. By contradiction suppose that Eve has a winning strategy in the thpb game G(T1,T2)

and that P 6∼Lµ Q, where P = (M, t) and Q = (N,r) are two processes of T1 and T2, respectively.

As in the SFL case, there are two cases to consider: the first one is when Adam cannot make a

move, which leads to a contradiction; and the second one is when Eve wins in an infinite play,

for which, as before, we can consider only the case when the rule ∼thpb is necessarily played

as the ihpb game also conservatively extends the hpb game on Ξ-systems.

Then, let P |= 〈⊗〉φ1 that, by hypothesis, is not satisfied by Q. By the satisfaction relation

either M is already a maximal supset or there is a maximal supset M′ such that M′ v M. In

addition, such a maximal supset cannot be recognised from the set of transitions N. However,

this is not possible since, by hypothesis, Eve can always find such a support set.

Thus, the only other possibility is that the support set can be constructed but a synchronous

transition in it cannot be found. But this also leads to a contradiction because the support

sets that Eve chooses are, additionally, history-preserving isomorphic to the ones that Adam

chooses. Therefore all properties that include 〈⊗〉 must be satisfied at this stage and the game

has to proceed to the next round. However, since the play will continue forever, this holds for

all reachable processes, and therefore, all formulae containing 〈⊗〉 that are satisfied in P must

also be satisfied in Q, which is again a contradiction. The case when P |= [⊗]φ1 is similar.

Corollary 4.10. (Soundness). If T1 6∼Lµ T2, then Adam has a winning strategy for every play

of the trace history-preserving bisimulation game G(T1,T2).

Lemma 4.11. (Completeness). If T1 ∼Lµ T2, then Eve has a winning strategy for every play

of the trace history-preserving bisimulation game G(T1,T2).

Proof. By constructing a winning strategy for Eve based on the fact that T1 ∼Lµ T2. For the

same reasons given previously, w.l.o.g., it is possible to consider only the case when Adam

uses the ∼thpb rule. So, suppose that Adam is able to choose a maximal set M enabled at

P = (M, t), where P is a process in the stateless maximal process space S associated with T1.

This implies that P |= φ, where φ = 〈⊗〉φ1 for some formula φ with support set M. By the

hypothesis, for some process Q = (N,r) that is thp bisimilar to P, it must be true that Q |= φ as

well, and therefore Eve can choose a maximal set N which is the support set for φ in Q = (N,r).

Since P∼Lµ Q then M and N must be history-preserving isomorphic sets with respect to (t,r);

otherwise, there would be a simple modal formula differentiating them.

58 Chapter 4. Higher-Order Logic Games

Then Adam must choose an element of either set of transitions using the ∼hpb rule, say

a transition t ′ ∈M. But since M and N are history-preserving isomorphic sets with respect to

(t,r), then it is always possible for Eve to find a transition r′ ∈N that synchronises as t ′, forcing

the game to proceed to a next round. Therefore, the play must go on forever or stop because

Adam cannot make a move. In either case Eve wins the game. The dual case is similar since

Adam can always choose where to play before applying any rule of the game.

The soundness and completeness results give a full game-theoretical characterisation to the

equivalence induced by Lµ.

Theorem 4.12. (Full game abstraction) T1 ∼Lµ T2 iff Eve has a winning strategy for the thp

bisimulation game G(T1,T2); conversely, T1 6∼Lµ T2 iff Adam has a winning strategy for the

thp bisimulation game G(T1,T2).

Corollary 4.13. (Full logical definability) ∼Lµ ≡∼thpb.

The previous results let us relate ∼hhpb with both ∼SFL and ∼Lµ using game-theoretical

arguments. Since all their associated games, namely the one for hhpb, the one for thpb, and

the one for ihpb, are conservative extensions of the hpb game, they can be compared just by

looking at their additional rules with respect to the hpb game.

Then, consider the game-theoretical definition of hhpb as presented before. Now, only by

showing that the additional rule for the hhpb game is at least as powerful as the additional rules

for the ihpb and thpb games, and taking into account that, by Proposition 3.48, the equivalences

∼hhpb and ∼SFL as well as ∼hhpb and ∼Lµ do not coincide in the general case, then we have:

Theorem 4.14. Both ∼hhpb ⊂∼Lµ and ∼hhpb ⊂∼SFL.

Proof. Let us prove this theorem by showing that the contrapositive argument holds, this is: if

two systems are not thp (resp. ihp) bisimilar, then they are not hhp bisimilar either. Without

loss of generality let us suppose that although the two systems are not thp (resp. ihp) bisimilar,

yet they are hp bisimilar; otherwise one would not even need to use the {h, i, t}hpb rule in order

to win the corresponding bisimulation game.

Let (π1,π2) ∈ ∼thpb but (π1.r,π2.t) 6∈ ∼thpb for at least one pair of transitions (r, t) that

makes the bisimulation equivalence relation fail;2 moreover, let P and Q be the processes that

are reached after executing the runs π1 and π2, respectively. Since (π1.r,π2.t) 6∈ ∼thpb, then

there exists a conflict-free set of transitions M, where r ∈M, for which there is no conflict-free

set N such that t ∈ N and (π1.r,π2.t) ∈∼thpb, or vice versa. Without loss of generality suppose

the former case holds and let i be an index on the elements of M and j an index on the conflict-

free sets N j that can be constructed at Q and for which these two conditions hold: |M |= | N j |
and ∀r ∈M.∃t ∈ N.δ(r) = δ(t). Then, since (π1.r,π2.t) 6∈ ∼ihpb, one can conclude that:

2For reasons given at the end of the proof, the arguments used hereafter apply to the ∼ihpb case too.

4.1. Higher-Order Games for Bisimulation 59

∀i ∈ {1, ...,k}.∃ j ∈ {1, ...,n}.P ri−→ Pi∧Q ti−→ Q j
i ∧ (π1.ri,π2.ti) 6∈ ∼thpb

where k = |M |, n is the maximum number of conflict-free sets satisfying the two conditions

above, Pi is the process reached after executing the transition ri from P, and Q j
i is the pro-

cess reached after executing the transition ti ∈ N j from Q. We also have that δ(ri) = δ(ti) as

otherwise the last part of the statement would be trivially true.3

Given this information, let us show that there is a systematic way of playing the hhpb game

that exposes the same mismatch between the concurrent behaviour of the two systems under

consideration, implying that the hhpb rule is at least as powerful as the {i, t}hpb rules. The

strategy is simple and has only two stages, which are described next.

Firstly, Adam has to play all actions corresponding to the transitions in M; so, the following

sequence is generated: P r1−→ P1
r∼2−→ ...

r∼i−→ Pi...
r∼k−→ Pk, where ri ∼ r∼i for all i ∈ {2, ...,k}; and

Eve will generate a corresponding sequence with her choices: Q t1−→ Q1
t∼2−→ ...

t∼i−→ Qi...
t∼k−→ Qk.

This way of playing the hhp bisimulation game exposes a set N j such that t1 ∈ N j and for all

i in the set {2, ...,k} one has that ti ∼ t∼i and ti ∈ N j. But now, given this j we know the i for

which P ri−→ Pi, Q ti−→ Q j
i , and (π1.ri,π2.ti) 6∈ ∼thpb, i.e, for which Pi 6∼thpb Q j

i .

Then, using the hhpb rule, Adam has to delete all transitions chosen after reaching P, but

the one for which the bisimulation equivalence fails—and let r∼i be such a transition. This can

clearly be done because at this point all transitions chosen after P are backwards enabled. Eve

must respond by deleting her previous choices accordingly in the only possible way she can.

Since ri ∼ r∼i and ti ∼ t∼i , after playing in this way the game is in a state as if they had played

ri and ti at (P,Q), as desired. This concludes the proof for the thpb case.

Finally, regarding the ihpb case, notice that the strategy just described to play the hhpb

game can also be used if we had supposed that we were playing the ihpb game. The reason

is that we are assuming that at least two conflict-free sets M and N can be constructed with

the properties mentioned before (same cardinality and where no two transitions are equally

labelled). Therefore, subsequent selections of subsets of M and N are not needed (which can

be done in the ihpb game but not in the thpb one). We can simplify the problem in this way

as we are assuming that the two systems are hp bisimilar and, moreover, know that there is no

auto-concurrency. Otherwise we would not need to use the {i, t}hpb rules to win the game.

Remark 4.15. (Decidability of hp bisimilarities) In order to capture the distinguishing power

of the {i, t}hpb rules with the hhpb rule we needed k backtracking moves. This means that a

k-hhp bisimilarity as defined by Fröschle et al. [29], which is decidable, would have been

powerful enough to achieve this goal. But note that, in our setting, k is computable on fi-

nite systems since it is the bound of their ‘concurrency degree’, i.e., the maximum number of

concurrent transitions in the systems (the cardinality of their biggest conflict-free sets). /

3Notice that this statement holds for both the ihpb and the thpb games.

60 Chapter 4. Higher-Order Logic Games

The ihpb Game vs. the thpb Game. Let us finish this section by presenting an example that

illustrates the main difference between the ihpb game and the thpb game. Such a difference

has to do with that in SFL and Lµ, already discussed in the previous chapter.

Example 4.16. (Linear power in the ihpb game) The main difference between the thpb and

ihpb games is that in the ihpb game the players have the power to decompose support sets into

smaller ones until they are singletons. This ‘linear’ power in the ihpb game allows Adam to

differentiate systems that cannot be distinguished in the thpb game, e.g., those in Figure 4.1.

The two systems in Figure 4.1 feature auto-concurrency, but that is not a problem for Adam

to win in the ihp bisimulation game. Interestingly, he can do so even if we had considered

unlabelled concurrent systems. Let us look at how the two games are played. On the one hand,

in the ihpb game Adam can choose to play the only support set available in SysB at that point

in the game (whose size is 3). Then, Eve has to choose the corresponding support set available

at that point in the game in SysA; such a support set is of size 2. Then, Adam can play the

ihpb rule two more times so that he produces a support set that is a singleton set. However,

Eve cannot do the same as the support set she chose is of size 2. Then, Adam wins the game

without even having to look at the labels of the actions in the Petri net.

On the other hand, in the thpb game Adam will start by doing the same, i.e., choosing a

support set in SysB and Eve will respond as in the ihpb game. However, in this case Adam

cannot do anything else but choosing an action, whose label is a. Eve can do so in the other

system as well. Then, after such a first round the only that both Adam and Eve can do is to

choose a support set and afterwards either a causally or a non-causally dependent action which

is labelled with an a. Either way, Eve can always do the same Adam does (in any system).

Therefore, an infinitely long play is generated where, necessarily, Eve wins. /

SysA

'&%$!"#•
��

'&%$!"#•
��

a

��

a

��'&%$!"#
��

'&%$!"#
��

a

��

a

��'&%$!"#
��

'&%$!"#
��

...
...

SysB

'&%$!"#•
��

'&%$!"#•
��

'&%$!"#•
��

a

��

a

��

a

��'&%$!"#
��

'&%$!"#
��

'&%$!"#
��

a

��

a

��

a

��'&%$!"#
��

'&%$!"#
��

'&%$!"#
��

...
...

...

Figure 4.1: Two concurrent systems that are not ihpb equivalent.

4.1. Higher-Order Games for Bisimulation 61

4.1.2 Determinacy and Decidability

From results in the previous section we can draw some conclusions about the decidability and

determinacy of the games for bisimulation studied in this chapter. In this section, we give

further arguments that provide evidence of the decidability and determinacy of these games.

Corollary 4.17. (Determinacy) Both the ihpb and the thpb games are determined.

Proof. This follows from the fact that the ihpb game and thpb game are both sound and com-

plete, and therefore also determined. Alternatively, it also follows from some set-theoretic

properties of the games. Notice that, as all other bisimulation games presented in this thesis,

the ihpb and thpb games are two-player zero-sum perfect-information (infinite) games whose

winning conditions define ‘Borel’ sets, thus due to Martin [59] they are determined.

Determinacy of the games implies that if Eve does not win a play, then Adam must win it,

and vice versa. But, since Eve only wins when the two systems are either SFL-equivalent or Lµ-

equivalent, then Adam must win whenever the two systems are not equivalent. Furthermore,

the soundness and completeness properties of the games, i.e., determinacy, can be used (and

will be) to show that computing the winner of such games is a decidable problem.

Indeed, decidability on finite systems can be shown by ensuring that the number of elements

of a process space (e.g., sets of states, of transitions, or of support sets) that must be computed

when playing the game is finite and computable from (i.e., bounded by the size of) the initial

specification. In other words, we need to show that the number of different configurations of

the games is finite, even for plays of infinite length. For ihpb and thpb games this is the case.

This follows from the fact that whenever Adam cannot make a move or a configuration

previously seen is reached again, then such a play can be given as winning for Eve and all

previous Eve’s moves, which are finite, can be used to construct the winning strategy for Eve.

Otherwise, the play is given as winning for Adam and the information of the play (Adam’s

choices in this case) is used to construct the winning strategy for Adam. Recall that Adam can

only win plays of finite length and therefore he always wins after a finite number of rounds.

Theorem 4.18. (Decidability) Both ∼ihpb and ∼thpb are decidable on finite systems.

Proof. Since plays of finite length are can all be effectively decided because the game is deter-

mined, let us focus on plays of infinite length. We can ensure that any play of infinite length,

which is winning for Eve, must visit a previous configuration as follows. Note that an infinite

play is possible only if the two systems have cycles (because the systems are finite). Therefore,

there must be at least one configuration that is visited infinitely often. By looking at the sound-

ness and completeness proofs of the games it is clear that in order to define a winning strategy

for Eve one only needs to analyse the locality of the process space where Eve is playing, rather

than the whole history of the game. In the case of the ihpb and thpb games this feature can

62 Chapter 4. Higher-Order Logic Games

be effectively verified because given a state of a partial order model there is always only a

finite number of processes with such state in the first component, and similarly, a finite number

of support sets relative to such a state. The finiteness of the elements in the third component

also follows from these facts—recall that the systems are image-finite and therefore of finite-

branching; as a consequence there are only finitely many transitions going to a particular state.

Clearly, these arguments also apply for the (stateless maximal) process spaces of Lµ, since they

are strictly smaller than the process spaces of the models for SFL formulae.

More precisely, any finite system produces a finite process space where the number of

states (whose size is denoted by m) is bounded by the number of states of the biggest of the

two systems being compared. The number of support sets is also bounded by m.2n (where n

is the number of transitions in the systems).4 Finally, the third component is bounded by the

number n + 1 (because of the additional empty transition in any process space). Therefore, a

process space, which is a subset of S×P×A (in the case of SFL and even smaller in the case

of Lµ because S is not explicitly considered and X is a subset of A) has up to m.(2n−1).n+1

processes (because of the additional initial state). Note that the bound of the size of a process

space is not m2.(2n− 1).n + 1 because a particular support set is defined with respect to a

unique state. Since a board is a subset of the Cartesian product of the two process spaces

under consideration, such a board has finite size as well. Finally, since one can stop playing a

particular play when a configuration is visited again (because according to the soundness and

completeness results the games have memoryless winning strategies), then length of any play

is bounded by the size of the Cartesian product of the two process spaces just described.

Now, when constructing a winning strategy for Eve it is important to note that only a finite

number of processes must be analysed given a particular state of a partial order model. Firstly,

notice that a process space embeds the immediate history of a play in the transition component

of a process (its last component), and so such information is available locally by exploring

a finite number of processes (no more than 2.m.(2n− 1).n) given a particular element in the

process space. Secondly, the support sets that a player can choose given a particular process is

also finite (no more than 2.n.2n−1 at each round) and can be explored simply by checking all

support sets relative to the same either state or support set of the process in the last configuration

of the game, i.e., all those in the same neighbourhood. This analysis must be done for all states

of the partial order models being compared, but again these sets of states are also finite.

Finally, since Eve wins when Adam cannot make a move (a finite play easily decided) or

when a finite set of repeated configurations is visited infinitely often (for infinite plays, which

are won only by Eve), then it is always possible to compute the positional winning strategies

for Eve, and therefore decidability of these bisimulation games follows. Notice that the proof

uniformly applies for both kinds of process spaces, i.e., the one for SFL and the one for Lµ.

4The bound is actually m.(2n−1) since support sets cannot be empty.

4.1. Higher-Order Games for Bisimulation 63

Due to the correspondence between∼SFL and∼ihpb as well as between∼Lµ and∼thpb over

the class of Ξ-systems, the following result immediately holds:

Corollary 4.19. Both ∼SFL and ∼Lµ are decidable over Ξ-systems.

Proof. Follows from Theorem 4.18 and Corollaries 4.7 and 4.13.

Nevertheless, no complexity results are currently known for any class of systems. Such a

kind of questions should be addressed in the future. As mentioned in Chapter 2 no complexity

issues are investigated in this thesis, partly because they are trivially known to be no better

than those for interleaving structures, which are already exponential in the case of bisimulation

equivalences for general systems. We believe that better complexity results could be achieved

only if restricting to simple classes of systems—much simpler than free-choice ones.

Finally, the logical definability results in this section allow one to define a hierarchy of

logics and (bisimulation) games for partial order models which is based on the hierarchy of

equivalences for true-concurrency studied by Fecher [26]; and moreover, they provide a decid-

ability border with respect to the bisimilarities for true-concurrency in [26] (for Ξ-systems).

4.1.3 A Hierarchy of Logics and Games

An interesting problem in concurrency theory is that of having (modal) logics and games cap-

turing standard bisimilarities for concurrency. A hierarchy of so-called ‘true concurrent equiv-

alences’ can be found in [26]. The results presented so far define a hierarchy of equivalences

for concurrent systems with partial order semantics, where the bisimilarities induced by SFL

and Lµ rank at the top of the decidable equivalences in such a hierarchy when restricted to Ξ-

systems. As such equivalences are related to some logics (through their characteristic games),

then there is also an induced hierarchy, in terms of expressivity, for such logics and games.

Prior to this work, we had that on systems without auto-concurrency∼hhpb was captured by

the Path Logic (PL) studied by Nielsen et al. [70], as well as the result by Milner and Hennessy

[46] that on image-finite systems ∼sb is captured by HML; also, we had that ∼hpb is captured

by the logics LP and LT studied by De Nicola and Ferrari [68]. We have studied logics that add

to results of this kind, in the context of fc-structured systems, since in Chapter 3 it was shown

that Lc
µ also captures ∼hpb. However, Lc

µ does so by following both a forward and a local style

of reasoning as opposed to what is done in other settings where causality is captured by means

of either past tense operators or global reasoning on infinitely large sets of events.5

Moreover, in this chapter, two new equivalences have been introduced, namely ∼ihpb and

∼thpb, which have been shown to be decidable and strictly between ∼hpb and ∼hhpb in terms

of discriminating power. These results are summarised in Figure 4.2, where ∼PL represents

5A more detailed description of other logics and related work is given in Chapter 6.

64 Chapter 4. Higher-Order Logic Games

the bisimilarity induced by PL and ∼L{P,T} the one induced by both LP and LT ; moreover, ∼eq

refers to several other equivalences for concurrency, which are not studied in this thesis, e.g.,

step or pomset bisimulation equivalences. The original hierarchy can be found in [26].

∼hhpb≡∼PL

ttiiiiiiiii
**UUUUUUUUUU

∼thpb≡∼Lµ

**TTTTTTTTT
∼ihpb≡∼SFL

ttiiiiiiiii

∼hpb≡∼Lc
µ
≡∼L{P,T}

��

�
�
�
� _ _ _ _ _ _ _ _ _ _________

�
�
�
�

∼eq

��

_ _ _ _ _ _ _ _ _

∼sb≡∼HML

Figure 4.2: A hierarchy of equivalences for concurrency. The arrow→ means inclusion ⊂.

Only recently Baldan and Crafa [7] developed a logic that captures many of the bisimilar-

ities in [26]. Their work is partly inspired by the results in this PhD thesis. A description of

their work together with some ideas for a possible “only forward” game characterisation of the

equivalence induced by their logic, which captures∼hhpb on event structures is discussed in the

final chapter of this thesis since it is actually seen as a potential avenue for future work.

4.2 Higher-Order Games for Model-Checking

In this section we introduce logic games for model-checking that allow local monadic second-

order power on sets of independent transitions in the underlying partial order models of con-

currency where the games are played. Since the interleaving semantics of such models is not

considered, some problems that may arise when using interleaving representations are avoided

and new decidability results for classes of partial order models are achieved [42, 43].

This kind of logic games for verification is sound and complete, and therefore determined.

While in the interleaving case they coincide with the local model-checking games for Lµ, in a

partial order setting they can be used to verify temporal true-concurrency properties which are

not expressible with Lµ over concurrent systems with partial order semantics.

As said before, similar to the case of higher-order logic games for bisimulation, the two

players in this new game are given local monadic second-order power on conflict-free sets of

transitions. The technical details behind the construction of (and proofs for) this game follow

seminal ideas on local model-checking games for Lµ as presented by Stirling [89].

4.2. Higher-Order Games for Model-Checking 65

4.2.1 LMSO Model-Checking Games

Trace local monadic second-order (LMSO) model-checking games G(M,φ) are played on a

model M = (T,V), where T = (S,s0,T, I,Σ) is a system, and on an SFL formula φ. This logic

game can also be presented as GM(H0,φ), or even as GM(s0,φ), where H0 = (s0,X0(s0), tε) is

the initial process of S. We write G instead of GM since M is usually clear from the context.

The game board in which the game is played has the form B ⊆ S× Sub(φ), where S is the

process space S×P×A associated with T and Sub(φ) is the subformula set of φ, which is

formally defined by the Fischer–Ladner closure of SFL formulae in the following way:

Definition 4.20. (Fischer–Ladner closure of SFL formulae) The ‘subformulae’ or subfor-

mula set Sub(φ) of an SFL formula φ is given in the following way:

Sub(Z) = {Z}
Sub(φ1∨φ2) = {φ1∨φ2}∪Sub(φ1)∪Sub(φ2)

Sub(〈a〉cφ1) = {〈a〉cφ1}∪Sub(φ1)

Sub(〈a〉ncφ1) = {〈a〉ncφ1}∪Sub(φ1)

Sub(φ1 ∗φ2) = {φ1 ∗φ2}∪Sub(φ1)∪Sub(φ2)

Sub(µZ.φ1) = {µZ.φ1}∪Sub(φ1)

and similarly for the dual operators ∨, [a]c, [a]nc, 1, and ν. /

A play in a trace LMSO model-checking game is a possibly infinite sequence of game

configurations C0,C1, ..., written as (s,R, t) ` φ or H ` φ whenever possible; each Ci is an

element of the board B. Every play starts in the configuration C0 = H0 ` φ, and proceeds

according to the rules of the game given in Figure 4.3. As usual for model-checking games,

Eve tries to prove that H0 |= φ whereas Adam tries to show, instead, that H0 6|= φ.

The rules (FP) and (VAR) control the unfolding of fixpoint operators. Their correctness

is based on the fact that ν
µZ.φ ≡ φ

[
ν
µZ.φ/Z

]
, where ν

µ ∈ {µ,ν}, according to the semantics of

the logic. Rules (∨) and (∧) have the same meaning as the disjunction and conjunction rules,

respectively, in a Hintikka game for propositional logic. Rules (〈 〉c), (〈 〉nc), ([]c) and ([]nc) are

like the rules for quantifiers in a standard Hintikka game semantics for first-order (FO) logic,

provided that the box and diamond operators behave, respectively, as restricted universal and

existential quantifiers sensitive to the causal information in the partial order model.

Finally, the most interesting rules are (∗) and (1). Local monadic second-order moves are

used to recognize conflict-free sets of transitions in M, i.e., those in the same Mazurkiewicz

trace. Such moves, which restrict the second-order power (locally) to Mazurkiewicz traces,

give the name to this game. The use of the rules (∗) and (1) requires both players to make a

choice in the same round: whereas the player who moves first must look for two conflict-free

sets of transitions R0 and R1, the player that moves afterwards has to select a formula φi whose

support set will be the corresponding Ri, for i ∈ {0,1}, just chosen by the other player.

66 Chapter 4. Higher-Order Logic Games

(FP)
H ` ν

µZ.φ

H ` Z

(VAR)
H ` Z

H ` φ

for some ν
µZ.φ

(∨)
H ` φ0∨φ1

H ` φi
[∃] i : i ∈ {0,1}

(∧)
H ` φ0∧φ1

H ` φi
[∀] i : i ∈ {0,1}

(〈 〉c)
(s,R, t) ` 〈a〉cφ

(s′,X(s′), t ′) ` φ

[∃]a : t ′ = s a−→ s′, t ′ ∈ R, t ≤ t ′

(〈 〉nc)
(s,R, t) ` 〈a〉ncφ

(s′,X(s′), t ′) ` φ

[∃]a : t ′ = s a−→ s′, t ′ ∈ R, t	 t ′

([]c)
(s,R, t) ` [a]c φ

(s′,X(s′), t ′) ` φ

[∀]a : t ′ = s a−→ s′, t ′ ∈ R, t ≤ t ′

([]nc)
(s,R, t) ` [a]nc φ

(s′,X(s′), t ′) ` φ

[∀]a : t ′ = s a−→ s′, t ′ ∈ R, t	 t ′

(∗)
(s,R, t) ` φ0 ∗φ1

(s,Ri, t) ` φi
[∃]R0,R1; [∀] i : R0]R1 v R, i ∈ {0,1}

(1)
(s,R, t) ` φ0 1 φ1

(s,Ri, t) ` φi
[∀]R0,R1; [∃] i : R0]R1 v R, i ∈ {0,1}

Figure 4.3: Trace LMSO Model-Checking Game Rules of SFL. Whereas the notation [∀] denotes a

choice made by Adam, the notation [∃] denotes a choice made by Eve.

Guided by the semantics of ∗ (resp. 1), it is defined that Eve (resp. Adam) must look for

a pair of non-empty conflict-free sets R0 and R1 to be assigned to each formula φi as their

support sets. This is equivalent to playing a supset for each subformula in the configuration.

Then Adam (resp. Eve) chooses one of the two subformulae, with full knowledge of the sets

that have been given by Eve (resp. Adam). Note that ∗ can be regarded as a kind of conjunction

and 1 of disjunction. Indeed, they are a structural conjunction and disjunction, respectively.

Remark 4.21. A similar setting can be defined for Lµ (as done in [40]). The main difference

between the two games is in the rules for 〈⊗〉 and [⊗], which also allow LMSO moves to

recognize conflict-free sets. The use of 〈⊗〉 and [⊗] requires a player to make a choice, locally,

on a set of transitions rather than on a singleton set as in the traditional games for model-

checking. Guided by the semantics of 〈⊗〉 (resp. [⊗]), it is defined that Eve (resp. Adam) must

look for a maximal set to be assigned to a particular Lµ formula as its support set. /

4.2. Higher-Order Games for Model-Checking 67

Definition 4.22. (Winning conditions) The following rules are the winning conditions that

determine a unique winner for every finite or infinite play C0,C1, ... in a game G(H0,φ). As

defined before, X(s′) is the maximal set at a state s′.

Adam wins a finite play C0,C1, ...,Cn or an infinite play C0,C1, ... iff:

1. Cn = H ` Z and H 6∈ V (Z).

2. Cn = (s,R, t) ` 〈a〉cψ and {(s′,X(s′), t ′) : t ≤ t ′ = s a−→ s′ ∈ R}= /0.

3. Cn = (s,R, t) ` 〈a〉ncψ and {(s′,X(s′), t ′) : t	 t ′ = s a−→ s′ ∈ R}= /0.

4. Cn = (s,R, t) ` φ0 ∗φ1 and {(s,R0∪R1, t) : R0]R1 v R}= /0.

5. The play is infinite and there are infinitely many configurations where Z appears, such

that Z is the least fixpoint of some subformula µZ.ψ and the syntactically outermost

variable in φ that occurs infinitely often.

Eve wins a finite play C0,C1, ...,Cn or an infinite play C0,C1, ... iff:

1. Cn = H ` Z and H ∈ V (Z).

2. Cn = (s,R, t) ` [a]c ψ and {(s′,X(s′), t ′) : t ≤ t ′ = s a−→ s′ ∈ R}= /0.

3. Cn = (s,R, t) ` [a]nc ψ and {(s′,X(s′), t ′) : t	 t ′ = s a−→ s′ ∈ R}= /0.

4. Cn = (s,R, t) ` φ0 1 φ1 and {(s,R0∪R1, t) : R0]R1 v R}= /0.

5. The play is infinite and there are infinitely many configurations where Z appears, such

that Z is the greatest fixpoint of some subformula νZ.ψ and the syntactically outermost

variable in φ that occurs infinitely often.

We are now ready to show that trace LMSO model-checking games are sound, complete,

and determined—despite their higher-order power. An important step in proving so is to show

the effective construction of the strategies that Eve and Adam follow while playing the game.

4.2.2 Soundness and Completeness

Let us first give some intermediate results. The statements in this section are all either standard

modal mu-calculus mathematical statements, or standard statements where additional cases

for the new operators of SFL need to be checked. Let T be a system and C = (s,R, t) ` ψ

a configuration in the game G(H0,φ), as defined before. As usual, the denotation ‖φ‖TV of

an SFL formula φ in the model M = (T,V) is a subset of the process space S. Let a game

configuration C of GM(H0,φ) be true iff (s,R, t) ∈ ‖ψ‖TV holds and be false otherwise.

Fact 4.23. SFL is closed under negation.

Lemma 4.24. A game G(H0,φ), where Eve has a winning strategy, has a dual game G(H0,¬φ)

where Adam has a winning strategy, and conversely.

68 Chapter 4. Higher-Order Logic Games

Proof. Note that as SFL is closed under negation, for every rule that requires a player to make

a choice on a formula ψ there is a dual rule in which the other player makes a choice on the

negated formula ¬ψ. Also, note that for every winning condition for one of the players in a

formula ψ there is a dual winning condition for the other player in ¬ψ. Now, suppose Eve has

a winning strategy π in G(H0,φ). Adam can use π in the dual game G(H0,¬φ) since whenever

he has to make a choice, by duality, there is a rule that requires ∃ to make a choice in G(H0,φ).

In this way, regardless of the choices that Eve makes, Adam can enforce a winning play for

himself. The case when Adam has a winning strategy in the game G(H0,φ) is dual.

Lemma 4.25. Eve preserves falsity and can preserve truth with her choices. Hence, she cannot

choose true configurations when playing in a false configuration. Dually, Adam preserves truth

and can preserve falsity with his choices. Then, he cannot choose false configurations when

playing in a true configuration.

Proof. The cases for the rules (∧) and (∨) are just as for the Hintikka evaluation games for FO

logic. Thus, let us go on to check the rules for the other operators. Firstly, consider the rule

(〈 〉c) and a configuration C = (s,R, t) ` 〈a〉cψ, and suppose that C is false. In this case there

is no a such that t ≤ t ′ = s a−→ s′ ∈ R, and (s′,X(s′), t ′) ∈ ‖ψ‖TV . Hence, the following configu-

rations will be false as well. Contrarily, if C is true, then Eve can make the next configuration

(s′,X(s′), t ′) ` ψ true by choosing a transition t ′ = s a−→ s′ ∈ R such that t ≤ t ′. The case for

(〈 〉nc) is similar (simply change ≤ for), and the cases for ([]c) and ([]nc) are dual.

Now, consider the rule (∗) and a configuration C = (s,R, t) `ψ0 ∗ψ1, and suppose that C is

false. In this case there is no pair of sets R0 and R1 such that R0]R1 v R and both (s,R0, t) ∈
‖ψ0‖TV and (s,R1, t) ∈ ‖ψ1‖TV to be chosen by Eve. Hence, Adam can preserve falsity by

choosing the i ∈ {0,1} where (s,Ri, t) 6∈ ‖ψi‖TV , and the next configuration (s,Ri, t) ` ψi will

be false too. On the other hand, suppose that C is true. In this case, regardless of which i Adam

chooses, Eve has previously fixed two support sets R0 and R1 such that for every i∈ {0,1}, one

has that (s,Ri, t) ∈ ‖ψi‖TV . Thus, the next configuration (s,Ri, t) ` ψi will be true as well.

Finally, the deterministic rules (FP) and (VAR) preserve both truth and falsity because

of the semantics of fixpoint operators. Recall that for any process H, if H ∈ ‖ν
µZ.ψ‖ then

H ∈ ‖ψ‖Z:=‖ν
µZ.ψ‖ for all free variables Z in ψ.

Lemma 4.26. In any infinite play of a game G(H0,φ) there is a unique syntactically outermost

variable that occurs infinitely often.

Proof. By contradiction, assume that the statement is false. Without loss of generality, suppose

that there are two variables Z and Y that are syntactically outermost and appear infinitely often.

The only possibility for this to happen is that they are at the same level in φ. However, if this

is the case Z and Y cannot occur infinitely often unless there is another variable X that also

4.2. Higher-Order Games for Model-Checking 69

occurs infinitely often and whose unfolding contains Z and Y . But this means that Z and Y are

syntactically beneath X , and hence neither Z nor Y is outermost, which is a contradiction.

Fact 4.27. Only rule (VAR) can increase the size of a formula in a configuration. All other

rules decrease the size of formulae in configurations.

Lemma 4.28. Every play of a game G(H0,φ) has a uniquely determined winner.

Proof. Suppose the play is of finite length. Then, the winner of the game is uniquely deter-

mined by one of the winning conditions one to four (Definition 4.22) of either Eve or Adam

since such winning rules cover all possible cases and, moreover, are mutually exclusive. Now,

suppose that the play is of infinite length. Due to Fact 4.27, rule (VAR) must be used infinitely

often in the game, and thus, there is at least one fixpoint variable that is replaced by its defining

fixpoint formula each time it occurs. Therefore, winning condition five of one of the players

can be used to uniquely determine the winner of the game since, due to Lemma 4.26, there is a

unique syntactically outermost fixpoint variable that occurs infinitely often.

Definition 4.29. (Approximants) Let Z be the least fixpoint of some formula φ and let α,λ ∈
Ord be two ordinals, where λ is a limit ordinal. Then:

Z0 := ff, Zα+1 = φ [Zα/Z], Zλ =
W

α<λ Zα

For greatest fixpoints the approximants are defined dually. Let Z be the greatest fixpoint of

some formula φ and, as before, let α,λ ∈Ord be two ordinals, where λ is a limit ordinal. Then:

Z0 := tt, Zα+1 = φ [Zα/Z], Zλ =
V

α<λ Zα /

It is now possible to show that the analysis for fixpoint modal logics [14] can be extended

to this scenario. The proof of soundness uses similar arguments to that in Lµ case, but it is

presented here in full because it is the basis of the decision procedure for SFL model-checking.

Theorem 4.30. (Soundness) Let M = (T,V) be a model of a formula φ in the game G(H0,φ).

If H0 6∈ ‖φ‖TV then Adam wins H0 ` φ.

Proof. Suppose H0 6∈ ‖φ‖TV . We construct a possibly infinite game tree that starts in H0 ` φ, for

Adam. We do so by preserving falsity according to Lemma 4.25, i.e., whenever a rule requires

Adam to make a choice then the tree will contain the successor configuration that preserves

falsity. All other choices that are available for Eve are included in the game tree.

First, consider only finite plays. Since Eve only wins finite plays that end in true configura-

tions, then she cannot win any finite play by using her winning conditions one to four. Hence,

Adam wins each finite play in this game tree. Now, consider infinite plays. The only chance for

Eve to win is to use her winning condition five. So, let the configuration H ` νZ.φ be reached

70 Chapter 4. Higher-Order Logic Games

such that Z is the syntactically outermost variable that appears infinitely often in the play ac-

cording to Lemma 4.26. In the next configuration H ` Z, variable Z is interpreted as the least

approximant Zα such that H 6∈ ‖Zα‖TV and H ∈ ‖Zα−1‖TV , by the principle of fixpoint induc-

tion. As a matter of fact, by monotonicity and due to the definition of fixpoint approximants it

must also be true that H ∈ ‖Zβ‖TV for all ordinals β such that β < α. Note that, also due to the

definition of fixpoint approximants, α cannot be a limit ordinal λ because this would mean that

H 6∈ ‖Zλ =
V

β<λ Zβ‖TV and H ∈ ‖Zβ‖TV for all β < λ, which is impossible.

Since Z is the outermost fixpoint variable that occurs infinitely often and the game rules

follow the syntactic structure of SFL formulae, the next time that a configuration C′ = H ′ ` Z

is reached, Z can be interpreted as Zα−1 in order to make C′ false as well. And again, if α−1

is a limit ordinal λ, then there must be a γ < λ such that both H ′ 6∈ ‖Zγ‖TV and H ′ ∈ ‖Zγ−1‖TV .

One can repeat this process even until λ = ω.

But, since ordinals are well-founded the play must eventually reach a false configuration

C′′ = H ′′ ` Z where Z is interpreted as Z0. And, according to Definition 4.29, Z0 := tt, which

leads to a contradiction since the configuration C′′ = H ′′ ` tt should be false, i.e., H ′′ ∈ ‖tt‖TV
should be false, which is impossible. In other words, if H had failed a maximal fixpoint, then

there must have been a descending chain of failures, but, as can be seen, there is not.

As a consequence, there is no such least α that makes the configuration H ` Zα false, and

hence, the configuration H ` νZ.φ could not have been false either. Therefore, Eve cannot win

any infinite play with her winning condition 5 either. Since Eve can win neither finite plays nor

infinite ones whenever H0 6∈ ‖φ‖TV , then Adam must win all plays of G(H0,φ).

Remark 4.31. If only finite state systems are considered Ord, the set of ordinals, can be

replaced by N, the set of natural numbers. /

Notice that, in our setting, the previous remark is particularly important when the system T

in a model M is the TSI representation of an event structure, since any concurrent system fea-

turing recursive behaviour would be represented by an infinite event structure, and hence, by an

infinite-state TSI model, if one uses the mapping from event structures to TSI given previously.

Therefore, in this setting, we have to consider the possibility of dealing with infinite-state sys-

tems in order for the results of this section to apply to all the partial order models we presented

in Chapter 2, as well as to the interleaving models they generalize.

Theorem 4.32. (Completeness) Let M = (T,V) be a model of a formula φ in the game

G(H0,φ). If H0 ∈ ‖φ‖TV then Eve wins H0 ` φ.

Proof. Suppose that H0 ∈ ‖φ‖TV . Due to Fact 4.23 it is also true that H0 6∈ ‖¬φ‖TV . According

to Theorem 4.30 (soundness), Adam wins H0 ` ¬φ, i.e., has a winning strategy in the game

G(H0,¬φ). And, due to Lemma 4.24, Eve has a winning strategy in the dual game G(H0,φ).

Therefore, Eve wins H0 ` φ if H0 ∈ ‖φ‖TV , as desired.

4.2. Higher-Order Games for Model-Checking 71

Theorems 4.30 (soundness) and 4.32 (completeness) imply that the game is also deter-

mined. Determinacy and perfect information make the notion of truth defined by this Hintikka

game semantics coincide with its Tarskian denotational counterpart.

Corollary 4.33. (Determinacy) Adam wins the game G(H0,φ) iff Eve does not win it.

4.2.3 Local Properties and Decidability

It has been shown that trace LMSO model-checking games are still sound and complete even

when players are allowed to manipulate sets of independent transitions. Importantly, the power

of these model-checking games, and also of SFL, is that such a second-order quantification is

kept both local and restricted to transitions in the same Mazurkiewicz trace.

We now show that trace LMSO model-checking games enjoy several local properties that in

turn make them decidable in the finite case. Such a decidability result is used later on to extend

the decidability border of model-checking a category of partial order models of concurrency.

Proposition 4.34. (Winning strategies) The winning strategies for the trace LMSO model-

checking games of Separation Fixpoint Logic are history-free.

Proof. Consider a winning strategy π for Eve. According to Lemma 4.25 and Theorem 4.32

such a strategy consists of preserving truth with her choices and annotating variables with their

approximant indices. But neither of these two tasks depends on the history of a play. Instead

they only depend on the current configuration of the game. In particular notice that, of course,

this is also the case for the structural operators since the second-order quantification has only a

local scope. Similar arguments apply for the winning strategies of Adam.

Remark 4.35. Corollary 4.33 and Proposition 4.34 follow also from the fact that the trace

LMSO model-checking games for SFL are a form of parity games with perfect information, a

game for which history-free winning strategies are known. This kind of winning strategies are

desirable, from an algorithmic viewpoint, since they are easier to synthesize. /

This result is key to achieve decidability of these games in the presence of the local second-

order quantification on the Mazurkiewicz traces of the partial order models considered here.

Theorem 4.36. The model-checking game for finite systems against Separation Fixpoint Logic

specifications is decidable.

Proof. A game is decidable if one can tell in all possible cases which of the players has a

winning strategy. As the game is determined, finite plays are decided by winning conditions

one to four of either player. Now, consider the case of infinite plays; since the winning strategies

of both players are history-free, we only need to look at the set of different configurations in

the game, which is finite even for plays of infinite length. Now, in a finite system an infinite

72 Chapter 4. Higher-Order Logic Games

play can be possible only if the model is cyclic. But, since the model has a finite number of

states, there is an upper bound on the number of fixpoint approximants that must be calculated

(as well as on the number of configurations of the game board that must be checked) in order to

ensure that either a greatest fixpoint is satisfied or a least fixpoint has failed. As a consequence,

all possible history-free winning strategies for a play of infinite length can be computed, so that

the game can be decided using winning condition five of one of the players.

Remark 4.37. (Complexity) The complexity of model-checking is in principle substantially

worse than for Lµ, but in practice not. The change in complexity from plain Lµ arises from the

local second-order quantification in the ∗ operator – in principle, this could involve choosing

a partition of a set of the order of the size of the state space, making the ∗ operation NP in

the state space; hence the complexity for a formula of length k and alternation depth d on a

system of size n is O(kn.2nd) with the simple algorithms (or O(kn.2nd/2) using the Browne

et al. optimization). This maximal complexity occurs in highly concurrent systems, where it

is the inevitable manifestation of state explosion. For typical systems encountered in reality,

where the concurrency is small compared to the overall size, the support sets will be much

smaller than the size of the system. Hence for practical purposes, the complexity is unlikely to

be significantly worse than that of Lµ.6 /

The Interleaving Case. Local properties of trace LMSO model-checking games can also be

found in the interleaving case, namely, they coincide with the local model-checking games for

the modal mu-calculus as defined by Stirling [89]. As shown in the previous chapter interleav-

ing systems can be cast using SFL by both syntactic and semantic means. The importance of

this feature of SFL is that even having constructs for independence and a partial order model,

nothing is lost with respect to the main approaches to interleaving concurrency. Recall that

Lµ can be obtained from SFL by considering the ∗-free language and using only the following

derived operators: 〈a〉φ = 〈a〉cφ∨〈a〉ncφ and [a]φ = [a]c φ∧ [a]nc φ.

Proposition 4.38. If either a model with an empty independence relation or the syntactic Lµ

fragment of SFL is considered, then the trace LMSO model-checking games for SFL degenerate

to the local model-checking games for Lµ.

Proof. Let us consider the case when the syntactic Lµ fragment of SFL is considered. The first
observation to be made is that the ∗-free fragment of SFL only considers maximal sets. Hence
if a transition can be performed at s then it is always in the support set at s. Therefore, support
sets in P can be disregarded. Also, without loss of generality, consider only the case of the
modal operators since the Lµ and SFL boolean and fixpoint operators have the same denotation.

‖〈a〉φ1‖TV = {(s, t) ∈ S×A | ∃s′ ∈ S. t ≤ t ′ = s a−→ s′∧ (s′, t ′) ∈ ‖φ1‖TV }
∪{(s, t) ∈ S×A | ∃s′ ∈ S. t	 t ′ = s a−→ s′∧ (s′, t ′) ∈ ‖φ1‖TV }

6This remark is entirely due to Julian Bradfield. I thank him for it.

4.2. Higher-Order Games for Model-Checking 73

The second observation is that when computing the semantics of the combined modal op-

erator 〈a〉, the conditions t ≤ t ′, i.e., (t, t ′) 6∈ I, and t 	 t ′, i.e., (t, t ′) ∈ I, complement each

other and become always true (since there are no other possibilities). Therefore, the second

component of every pair in the structure S×A can also be disregarded.

‖〈a〉φ1‖TV = {s ∈ S | ∃s′ ∈ S. s a−→ s′∧ s′ ∈ ‖φ1‖TV }

The case for the box operator [a] is similar. Now, notice that the new game rules and

winning conditions enforced by these restrictions coincide with the ones defined by Stirling for

the local model-checking games of Lµ over interleaving models. In particular, the new game

rules and winning conditions for the modalities are as follows.

In a finite play C0,C1, ...,Cn of G(H0,φ), where Cn has a modality as a formula component,

Adam wins if, and only if, Cn = s ` 〈a〉ψ and {s′ : s a−→ s′}= /0, and Eve wins iff Cn = s ` [a]ψ

and {s′ : s a−→ s′}= /0. Since winning conditions for infinite plays do not depend on modalities,

they remain the same. Furthermore, the game rules for modal operators reduce to:

(〈 〉)
s ` 〈a〉φ

s′ ` φ

[∃]a : s a−→ s′ ([])
s ` [a]φ

s′ ` φ

[∀]a : s a−→ s′

Clearly, the model-checking games just defined are equivalent to the ones presented in

[89]. As can be easily verified, the reason for this coincidence is that when a plain modality

〈a〉φ (resp. [a]φ) is encountered while playing the game, only Eve (resp. Adam) gets to choose

both the next subformula and the transition used to verify (resp. falsify) the truth value of φ.

Now, let us look at the case when a model with an empty independence relation is consid-

ered. In such a case the rules ([]nc) and (1) become trivially true and (〈 〉nc) and (∗) trivially

false since in an interleaving model all pairs of transitions are in ≤. For these reasons the el-

ements that belong to the sets P and A need no longer be considered and the rules ([]c) and

(〈 〉c) become ([]) and (〈 〉), respectively. The other rules remain the same.

4.2.4 Model-Checking Infinite Posets

In this section we use trace LMSO model-checking games to push forward the decidability bor-

der of the local model-checking problem of a particular class of partial order models, namely,

of a class of infinite and regular event structures [72, 94]. More precisely, we improve previous

results in the literature [56, 77] in terms of temporal expressive power.

SFL on Regular Trace Event Structures. As shown in previous sections, trace LMSO model-

checking games can be played in either finite or infinite state systems (with finite branching).

However, decidability for the games was proved only for finite systems. Therefore, if the sys-

tem at hand has recursive behaviour and, moreover, is represented by an event structure, then

the TSI representation of it may be infinite, and decidability is not guaranteed.

74 Chapter 4. Higher-Order Logic Games

We now analyse the decidability of trace LMSO model-checking games for a special class

of infinite, but regular, event structures called ‘regular trace event structures’. This class of

systems was introduced by Thiagarajan [94] in order to give a canonical representation to the

set of Mazurkiewicz traces modelling the behaviour of a finite concurrent system. The model-

checking problem for this class of models has been studied independently by Madhusudan [56]

and by Penczek [77], and shown to be rather difficult. In the reminder of this section it is shown

that model-checking SFL properties of this kind of systems is also decidable.

The first step to do so is to restrict ourselves to concurrent systems which are labelled with

so-called Mazurkiewicz ‘trace alphabets’. Such alphabets are usual sets of labels with a built in

independence relation on their elements. Let us now introduce Mazurkiewicz trace alphabets

as well as some classes of (concurrent) systems with such a sort of set of labels. The original

definitions can all be found in [94], in some cases, with a slightly different notation.

Definition 4.39. (Trace alphabets) A Mazurkiewicz trace alphabet is a pair (ΣDR, IDR) where

ΣDR is a finite alphabet set and IDR ⊆ ΣDR×ΣDR is an irreflexive and symmetric relation. /

Now, recall the definition of event structures given in Chapter 2 and based on that, in the

remainder of this section, consider the following notations and abbreviations:

Notation 4.40. (Configuration states and minimal relations) The ‘configuration states’ of a

(labelled prime) event structure EES = (E,4,],η,Σ) will be denoted by Conf ES. Moreover, for

two events e,e′ ∈ E, write e]me′ iff (({v ∈ E | v 4 e}×{u ∈ E | u 4 e′})∩]) = {(e,e′)}, and

call]m the ‘minimal conflict’ relation; and, write e l e′ iff both e 4 e′ and for all e′′ ∈ E such

that e 4 e′′ 4 e′ either e = e′′ or e′ = e′′, and call l the ‘minimal conflict’ relation. /

Based on the definition of trace alphabets one can define classes of systems (event structures

in this case) where the independence relation of the trace alphabet can be associated with the

independence relation of the systems themselves. As noted by Thiagarajan this can be done

through the use of the minimal conflict and causality relations in the following way:

Definition 4.41. (Trace event structures) A trace event structure over a Mazurkiewicz trace

alphabet (ΣDR, IDR) is an event structure EES = (E,4,],η,ΣDR) that satisfies the following:

1. If e]me′, then η(e) 6= η(e′).

2. If e l e′ or e]me′, then (η(e),η(e′)) 6∈ IDR.

3. If (η(e),η(e′)) 6∈ IDR, then e 4 e′ or e′ 4 e or e]e′ /

Then, a trace event structure is an event structure in which the pattern of labelling, which

is given by η respects the independence relation IDR. In fact such patterns of labelling must

respect the independence relation co of the underlying (labelled prime) event structure.

4.2. Higher-Order Games for Model-Checking 75

Definition 4.42. (Subtrace event structures) Let EES = (E,4,],η,ΣDR) be a trace event

structure over a trace alphabet (ΣDR, IDR), C ∈ Conf ES, and \(C) = {e′ ∈ E | ∃e ∈C.e]e′}. The

subtrace event structure EES ⇑C is the trace event structure E′ES = (E ′,4′,]′,η′,Σ′DR) where:

• E ′ = E \ ({C}∪ \(C)).

• 4′ and]′ are, respectively, 4 and] both restricted to E ′×E ′.

• η′ and Σ′DR are, respectively, η and ΣDR both restricted to E ′. /

Since a subtrace event structure is also a trace event structure [94], then hereafter we will

not make any distinctions between subtrace and trace event structures. Informally, the reader

may think of a trace event structure EES ⇑ C as the trace event structure built from EES and

rooted at the configuration state C ∈ Conf ES.

Definition 4.43. (Σ-labelled trace event structures) A Σ-labelled trace event structure is a pair

ELES = (EES,ηT) where EES = (E,4,],η,ΣDR) is a trace event structure over a Mazurkiewicz

trace alphabet (ΣDR, IDR) and ηT : E→ Σ is a labelling function. /

Note that a Σ-labelled trace event structure has two labelling functions, an “internal” one

(η) which must respect the independence relation IDR of the trace alphabet and an “external”

one (ηT) which could be used in an unrestricted way. However, in our setting both labelling

functions are restricted in the same way: to Mazurkiewicz trace alphabets—a restriction that

is good enough for us to achieve the result we are looking for, this is, decidability of the trace

LMSO model-checking problem for SFL specifications over regular trace event structures.

Definition 4.44. (Regular trace event structures) Let ELES = (EES,ηT) be a Σ-labelled trace

event structure for which EES = (E,4,],η,ΣDR) is a trace event structure over a Mazurkiewicz

trace alphabet (ΣDR, IDR); moreover, suppose that C ∈ Conf ES. Then:

1. ELES ⇑C = (E′ES,η
′
T) where E′ES = EES ⇑C and η′T is ηT restricted to E ′.

2. The equivalence relation ∼LES ⊆ Conf ES×Conf ES is given by:

C ∼LES C′ iff ELES ⇑C ≡ ELES ⇑C′, i.e., iff ELES ⇑C and ELES ⇑C′ are isomorphic.

3. ELES is regular iff ∼LES is of finite index. /

In [94] Thiagarajan showed that a regular trace event structure can be given a finite net

representation in the form of a safe Petri net (when restricted to Mazurkiewicz trace alphabets).

Using such a construction, and the canonical map from Petri nets to TSI models presented in

Chapter 2, one can effectively construct a finite TSI model and therefore a finite board where

a trace LMSO model-checking game can be played. The previous simple observation leads us

to the following result, which is an immediate consequence of Theorem 4.36:7

Corollary 4.45. Model-checking regular trace event structures against Separation Fixpoint

Logic specifications is decidable.
7I thank the reviewers of this PhD thesis for suggesting the use of Thiagarajan’s construction.

76 Chapter 4. Higher-Order Logic Games

4.3 Summary

In this chapter we have studied (infinite) higher-order logic games for bisimulation and for

model-checking, where the players of the games are given (local) monadic second-order power

on the sets of elements they are allowed to play. In both cases, these logic games were shown

to be sound and complete (and therefore determined) and, even, to admit history-free winning

strategies despite their higher-order power.

From a more practical standpoint, the games were shown to be decidable in the finite case

and to underpin novel decision procedures for bisimulation and model-checking. These logic

games, and associated decision procedures, were used to extend, respectively, the decidability

border of a hierarchy of bisimulation equivalences for true concurrency as well as the temporal

verification capabilities over a class of infinite and regular event structures.

These higher-order logic games were also studied when restricted to an interleaving setting

(the first-order case) and two coincidence results were found. In the case of bisimulation,

they are equivalent to the game for Milner and Park’s strong bisimilarity, whereas in the case of

model-checking, they become the local model-checking games of Stirling for Lµ. These results

show, once again, that the techniques presented here extend conservatively, to a partial order

setting, those for interleaving concurrency.

Chapter 5

Concurrent Logic Games

Apart from the applications to verification (as extensively discussed in this thesis so far), logic

games have been used for semantic purposes as well. In particular, in the last 20 years, these so-

called ‘semantic games’ have been used for giving ‘fully complete’ models of logic systems as

well as ‘fully abstract’ denotational semantics of various programming languages. Due to their

mathematical properties, semantic games are regarded as very precise models of interaction.

Interestingly, in the last decade, a number of works have shown that some semantic games

can be used to define logic games for verification. One of such lines of work was initiated and

has been further developed by Abramsky and Ong, together with collaborators within the game

semantics community, as a semantic approach to systems verification. This line of work has

provided a very powerful transfer of technology from semantic to verification games.

Albeit new, this approach to verification has already given very positive results, mainly

due to the compositionality property that comes with the denotational (game) models on which

the technique is based. For instance, (sequential) semantic games have been used to define

game-based verification techniques for both imperative and functional sequential programming

languages as well as for concurrent programs and systems with interleaving semantics.

However, as already discussed in previous chapters, it is a well-known fact in systems

verification that interleaving semantics of concurrent systems are highly combinatorial and

therefore tend to produce non-local, monolithic, large models which may be difficult to check

in practice. This fact poses a serious problem both for systems verification itself as well as for

the use of (sequential) semantic games in the verification of concurrent systems.

But, as described earlier in Chapter 1, due to this combinatorial problem when using inter-

leaving representations of concurrent systems, partial order semantics have been considered

rather than interleaving ones in the context of systems verification. It is then natural to wonder

whether concurrent semantic games played on partial order models can be used for defining

concurrent verification games as has already been successfully done for concurrent systems

with interleaving semantics. This is the main motivation and starting point of this chapter.

77

78 Chapter 5. Concurrent Logic Games

The main problem when trying to define a concurrent verification game from a semantic

one in a partial order framework is that concurrent verification games played directly on con-

current systems with partial order semantics (such as Petri nets or event structures) are not

known to be determined in the general case since they may well be of imperfect information,

chiefly, due to the information about locality and independence in such partial order models.

However, we have found that the process of defining sound and complete concurrent games

(which must be determined) played on different partial order models of concurrency can be

significantly simplified if one moves to a partial order setting in which the players of the game

are allowed to make choices concurrently and asynchronously only in some suitably chosen

independent localities of the partially ordered structures where the game is played.

This observation allows us to develop a very general theory intended to be uniformly appli-

cable to a wide range of problems and systems. Since games in this chapter are played on partial

orders the technique we put forward here lends itself particularly useful for the verification of

concurrent systems with partial order semantics. Nonetheless, games on some interleaving

models appear here as particular cases. Indeed, our results generalize those presented in [90],

namely the (sequential) games for bisimulation and mu-calculus model-checking of Stirling.

Our framework builds upon two main ideas: firstly, the use of posets to give a uniform

representation of concurrent systems, logical specifications, and problem descriptions; and

secondly, the restriction to games with a semantic condition that reduces reasoning on different

models and decision problems to the analysis of simpler local correctness conditions. These

features make considerably easier the analysis of different decision problems and concurrent

systems by allowing one to abstract away from particularities of the concrete classes of systems

and problems. Formally, this is achieved by a number of metatheorems that can be parameter-

ized and reused in order to provide “off-the-shelf” solutions to different problems.

The proof method is realised by a new ‘concurrent logic game’ (CLG) which is shown to

be determined—even though it is, locally, of imperfect information. Moreover, the elements

of the game are all formalised in order-theoretic terms; as a result, this new model builds a

bridge between some concepts in order theory and the more operational world of games. To

the best of my knowledge, such an order-theoretic characterisation has not been previously

investigated for verification games. The formal definition of the CLG model together with the

metatheorems for soundness and completeness comprises the first part of this chapter.

Then, in the second half, two algorithmic applications are shown to be cast within this

unified approach: bisimulation and model-checking. The reductions from bisimulation and

model-checking to a CLG problem make use of posets extracted from the partially ordered

structures obtained when using McMillan’s unfolding method [63]. But, as the inputs of the

decision procedures are posets rather than the concrete systems themselves, different models

of concurrency can be treated in the same manner, even some interleaving ones in a trivial way.

5.1. Concurrent Games on Partial Orders 79

Then, the main contribution of this chapter is the formalization of a concurrent logic game

model that generalises the results in [90] to a partial order setting—this is, the games of Stir-

ling for bisimulation and model-checking on interleaving structures (and therefore also related

tableau-based techniques). The CLG model is inspired by a concurrent semantic game model

(of a fragment of Linear Logic [34]) studied by Abramsky and Melliès [1]. However, the math-

ematics of the original semantic game model have been drastically reformulated (in the quest

towards to answer of algorithmic questions), and only a few technical features were kept.

In particular, the results in this chapter provide answers for the following two questions: ‘is

this concurrent logic game determined?’; and if so, ‘is the winner of such a game computable

(and under which conditions)?’. As we are looking for winning strategies with finite poset

representations, such strategies may be considerably smaller than those for games on interleav-

ing structures, and hence attractive from a synthesis viewpoint. Let us now introduce some

concepts and notations before presenting the mathematical formalization of the CLG model.

Preliminaries on Posets and Closure Operators Revisited

A ‘⊥A -bounded poset’ A = (A ,≤A) is a poset with a bottom element ⊥A such that for all

a∈A we have that⊥A ≤A a; we may omit the subscript in⊥ whenever clear from the context.

For any a ∈ A , an ‘immediate successor’ of a (hereafter simply called a successor of a) is an

element a′ such that a <A a′ and for all b if a ≤A b and b ≤A a′ then either a = b or b = a′.

Write a→ a′ iff a′ is a successor of a and call a a ‘terminal element’ of A iff a 6→. A ‘chain’ B

of A is a totally ordered subset of A such that if a,b ∈ B and c ∈ A and a < c < b, then c ∈ B.

Given a, a ‘(principal) ideal’ ↓a is the downward-closed set {b ∈ A | b ≤A a}; dually, a

‘(principal) filter’ ↑a of A is the upward-closed {b ∈ A | a ≤A b}. Also, for any set A ⊆ A ,

write ↓A for the set
S

a∈A{b | b ∈ ↓a}, and likewise, ↑A for
S

a∈A{b | b ∈ ↑a}; call ↓A a ‘lower

subset’ and ↑A an ‘upper subset’. We write ↓a for the induced poset (↓a,≤A), and similarly

for ↑a, ↓A, and ↑A. Clearly the posets ↓a and ↑a are ⊥-bounded if A is ⊥-bounded, since

⊥↓a = ⊥A in the former case and ⊥↑a = a in the latter. Finally, recall (from Chapter 3) that a

function f : A → A is a ‘closure operator’ iff it is extensive, monotonic, and idempotent—i.e.,

iff f satisfies that for all a,a′ ∈ A : a≤A f (a); a≤A a′⇒ f (a)≤A f (a′); and f (a) = f (f (a)).

5.1 Concurrent Games on Partial Orders

As presented in previous chapters a logic game for verification is played by two players, the

Verifier called Eve (∃) and the Falsifier called Adam (∀), in order to show the truth or falsity

of a given property. In these games Eve tries to show that the property holds, whereas Adam

wants to refute such an assertion. In traditional settings, the game is played sequentially in a

board represented by a graph structure, where each node belongs to one of the players.

80 Chapter 5. Concurrent Logic Games

As briefly mentioned at the beginning of this chapter, we have found that by enriching a

logic game with the explicit information about local and independent behaviour that comes with

any partial order model, the sequential setting for logic games can be turned into a concurrent

one on a partial order. This framework is simple and general enough to embody different

verification problems uniformly—for several partial order models. In the remainder of this

section we define the structure and dynamics of a ‘concurrent logic game’ (CLG) played on a

partially ordered structure, and present some algorithmically useful properties of it.

5.1.1 Structure and Dynamics

Game Boards. A board in a CLG is a⊥-bounded poset D = (D,≤D) which is well-founded.

A lower (resp. an upper) sub-board B of D is a poset (B,≤D) such that B is a lower (resp. an

upper) subset of D . Then, a lower sub-board is always a ⊥-bounded poset, whereas an upper

sub-board is a union of possibly infinitely large ⊥-bounded posets. In particular, since D is

well-founded, then all lower sub-boards are also well-founded. We only consider posets where

every chain has a maximal element. Moreover, a ‘global position’ in D is an anti-chain D⊆D;

the initial global position is {⊥}. Given a global position D, call any d ∈ D a ‘local position’.

Notation 5.1. Given any d ∈D , write d← for the set of local positions {e | e→ d} and d→ for

the set {d′ | d→ d′}. The sets d← and d→ are the ‘preset’ and ‘postset’ of local positions of d.

Moreover, let SP(d) be the predicate that evaluates to true if, and only if, d is a ‘synchronization

point’, which formally means iff |d←|> 1, or evaluates to false otherwise. /

Now, let ∇ : D→ ϒ be a partial function that assigns players in ϒ = {∃,∀} to local posi-

tions. More precisely, ∇ is a total function on the set B ⊆ D that contains all elements which

are not synchronization points—i.e., B = {d ∈ D | ¬SP(d)}; call the pair (D,∇) a ‘polarised

board’.1 In the following we only consider polarised boards whose synchronization points have

the following uniqueness property: if SP(d) then |d→|= 1 and ∀e ∈ d←.|e→|= 1.

This property will induce a correctness condition when playing the game. It ensures: firstly,

that there are no choices to make in synchronization points (because they are not assigned by

∇ to any player); and secondly, that a synchronization point does not share any element of

its present with any other local position, and therefore, concurrent and local behaviour in the

game—which is defined later on—can be made truly independent.

The distinction between local and global positions will be used to define, respectively, local

and global strategies for the game, which in turn will allow that in a global position both players

make independent local choices (in local positions), leading to a joint global move of the game;

thus, globally, one may think of the players as acting simultaneously on D.

1Clearly, by definition, for any local position d there exists a global position {d}. Yet, it is important to make
clear that they are different since any local position that is not a synchronization point has a ‘polarity’, which can
be either ∃ or ∀, but this is in general not true for global positions.

5.1. Concurrent Games on Partial Orders 81

Strategies. In a CLG a strategy can be local or global. A ‘local strategy’ λ : D→D is a

closure operator partially defined on a board D = (D,≤D). Being partially defined means

that the properties of closure operators are restricted to elements where the closure operator is

defined. In particular, a ≤D a′ implies λ(a) ≤D λ(a′) holds iff λ is defined both in a and in

a′. Let dfn(λ,d) be the predicate that holds iff λ(d) is defined or evaluates to false otherwise.

The reader may think of a local strategy as a function that tells a player how to make a move at

some local positions, independently of the behaviour in other local positions.

The predicate dfn can be defined from a board, for any local strategy, by means of three

rules that realise local strategies λ∀ and λ∃ for Adam and Eve, respectively.

Definition 5.2. (Local strategies) Given a board D = (D,≤D), a local strategy λ∀ for Adam

(resp. λ∃ for Eve) is a closure operator defined only in those elements of D given by the

following rules:

1. The local strategy λ∀ (resp. λ∃) is defined in the bottom element ⊥D .

2. If a local strategy λ∀ (resp. λ∃) is defined in a local position d ∈D , and either ∇(d) = ∃
(resp. ∇(d) = ∀) or SP(d) or d 6→ or d→ e∧ SP(e), then for all d′ ∈ d→ we also have

that λ∀ (resp. λ∃) is defined in d′.

3. If a local strategy λ∀ (resp. λ∃) is defined in d ∈D , and both ∇(d) = ∀ (resp. ∇(d) = ∃)
and |d→| ≥ 1, then there exists only one d′ ∈ d→ in which λ∀ (resp. λ∃) is defined.

And let dfn(λ∀,d) be the predicate that holds whenever λ∀(d) is defined, and similarly for λ∃.

Moreover, the closed elements, i.e., the fixpoints, of λ∀ and λ∃ are as follows:

λ∀(d) = d iff dfn(λ∀,d) and (∇(d) = ∃, or SP(d), or d 6→, or (d→ e∧SP(e)))

λ∃(d) = d iff dfn(λ∃,d) and (∇(d) = ∀, or SP(d), or d 6→, or (d→ e∧SP(e)))

Moreover, let λ1
∀ and λ1

∃ be the identity local strategies of Adam and Eve, respectively, which

are defined everywhere in D; thus, formally: λ1
∀(d) = λ1

∃(d) = d, for all d ∈D . /

Let ΛD be the set of local strategies on D. Since a logic game is played by two players,

then the set of local strategies can be split into two sets of local strategies. Let ΛD = Λ∃D]Λ∀D,

where Λ∃D is the set of local strategies of Eve and Λ∀D is the one of Adam. Due to the rules for

realising local strategies given before, we can assume that for each chain of D there is at least

one local strategy, for each player, that is defined in all elements of such a chain.

Notation 5.3. Write fix∀ and fix∃ for the predicates characterising the fixpoints of the local

strategies for Adam and Eve, respectively, in the following way:

fix∀(λ∀,d) def= dfn(λ∀,d) and (∇(d) = ∃, or SP(d), or d 6→, or d→ e∧SP(e))

fix∃(λ∃,d) def= dfn(λ∃,d) and (∇(d) = ∀, or SP(d), or d 6→, or d→ e∧SP(e))

where d ∈D , λ∀ ∈ Λ∀D, and λ∃ ∈ Λ∃D in a game board D = (D,≤D). /

82 Chapter 5. Concurrent Logic Games

Informally, this means that, provided that a local strategy is defined at d, all local positions

where Eve is to make a move are fixpoints of the local strategies of Adam defined at those

positions as well, and vice versa, i.e., when is the other player’s turn to play. Terminal elements

and synchronization points of the game board also are fixpoints of the local strategies of both

players since in such cases, respectively, there is no next local position to move to and it is up to

the “environment”—whose behaviour is determined by the dynamics of the game2—to make

such a move. In addition, for the same last reason just given, all the elements in the preset of a

synchronization point are also fixpoints of all local strategies for both players.

Let us now move closer to the definition of the dynamics of the game. When playing a

game, Eve and Adam will use a set of local strategies Λ∃a ⊆Λ∃D and Λ∀a ⊆Λ∀D, whose elements

(the local strategies) can be indexed by the elements i and j of the two sets K∃ = {1, ..., |Λ∃D|}
and K∀ = {1, ..., |Λ∀D|}, respectively; by definition, the identity local strategies are always in-

dexed with i = 1 and j = 1, as already presented in the definition of local strategies.

Now, suppose that at the beginning of the game Eve and Adam choose, independently and

at the same time, two sets of indices K∃ ⊆K∃ and K∀ ⊆K∀, and consequently the two sets of

local strategies Λ∃a ⊆ Λ∃D and Λ∀a ⊆ Λ∀D they are going to use to play the game; this means that

both i ∈ K∃ iff λi
∃ ∈ Λ∃a and j ∈ K∀ iff λ

j
∀ ∈ Λ∀a; by definition, the identity local strategies λ1

∃

and λ1
∀ are always included in Λ∃a and Λ∀a. Based on this initial selection of local strategies one

can define the global strategies and global moves for a concurrent logic game, as well as the

set of reachable global positions in a particular game.

But, first, let us define the ordered structure where global strategies are interpreted, namely

the poset induced by the subset order inclusion on the lower sets of D, or more precisely, on

the lower sets characterised by the anti-chains of D. The reason why this is the structure where

global strategies are interpreted is that, by definition, a global position is an anti-chain of D.

We will define A = (A ,≤A) to be such a suitable poset (a space of anti-chains) and call it the

‘arena of global positions’ of D, which is formally defined as follows:

Definition 5.4. (Arena of global positions) Given a board D = (D,≤D), let the poset A =

(A ,≤A) be its arena of global positions, where A is the set of anti-chains of D and E ≤A D iff

↓E ⊆ ↓D, for all anti-chains of D. /

And, moreover, write max for the ‘maximal elements’ set operation, which is defined as

usual: given a poset P = (P ,≤P), the set max P is the anti-chain of maximal elements of P,

i.e., max P = {m ∈ P | ¬∃n ∈ P .m <P n}. Then, finally we have:

Definition 5.5. (Global strategies) Let D = (D,≤D) be a game board. Given two subsets of

indices K∀ of K∀ and K∃ of K∃, and hence, two sets of local strategies Λ∀a and Λ∃a for Adam

2The behaviour of the “environment”, which is deterministic, and hence the behaviour in local positions where
SP(d) holds is formally defined later on when the dynamics of the game is presented.

5.1. Concurrent Games on Partial Orders 83

and Eve, let the closure operators ∂∀ : A → A and ∂∃ : A → A on the poset A = (A ,≤A), where

A is the arena of global positions associated with D, be the global strategies for Adam and Eve

defined as follows:

∂∀(D) def= max
S

d∈D, j∈K∀{λ
j
∀(d) | dfn(λ j

∀,d)}
∂∃(D) def= max

S
d∈D,i∈K∃{λ

i
∃(d) | dfn(λi

∃,d)}

where D⊆D is a global position of D, and therefore an element of A . /

It should be easy to see that ∂∀ and ∂∃ are closure operators indeed. Firstly, they are

extensive because the identity local strategies λ1
∀ and λ1

∃ ensure that both ∂∀(D) and ∂∃(D)

are at least D; secondly, they are monotonic because all λ
j
∀ and λi

∃ are monotonic as well; and

finally, they are idempotent because max chooses only maximal elements, which are already the

fixpoints of idempotent functions—the local strategies that characterise the global strategies ∂∀

and ∂∃. Nonetheless, notice that whereas a local strategy is partially defined on a board D, a

global strategy is totally defined in the arena of global positions A associated with D.

Remark 5.6. (Strategies as closure operators) The intuitions as to why a closure operator

captures the behaviour in a CLG follow those in [1]. Note that as boards are posets, then

the game is played on acyclic structures and therefore there is no reason for a player to make a

move to a previous position since this will result in playing again part of the game that has been

already played. Then, strategies should be extensive functions. They should also be monotonic

so as to preserve the causality of the moves or choices made by the players in the game. Finally,

it is also desirable for a strategy to be idempotent since this avoids the need for unnecessary

sequential steps and alternations between the two players, which obscure the dynamics of the

game, and hide the really interesting points of interaction between the two players. /

Now, the dynamics of a game is captured by the interaction between the two players (to-

gether with an external, deterministic environment). This interaction is given by how the strate-

gies ∂∀ and ∂∃ are played against each other. The most natural way to do so is by defining such

an interaction as their (functional) composition.

Definition 5.7. (Rounds and composition of strategies) Let a (∃◦∀)-round be a global step

of the game such that if D ⊆ D is the current global position of the game, ∂∃ is the strategy

of Eve, and ∂∀ is the strategy of Adam, then the game proceeds first to an intermediate global

position D∃◦∀ such that:

D∃◦∀ = (∂∃ ◦∂∀)(D)

= max
S

d∈D,i∈K∃, j∈K∀{(λ
i
∃ ◦λ

j
∀)(d) | dfn(λ j

∀,d)∧dfn(λi
∃,λ

j
∀(d))}

and then to the next global position D′ given by the interference of the environment:

D′ = (D∃◦∀ \ e←SP)
S

e→SP

84 Chapter 5. Concurrent Logic Games

where

e←SP =
S

e∈D→∃◦∀
{u ∈ e← | SP(e)∧ e← ⊆ D∃◦∀}

e→SP =
S

e∈D→∃◦∀
{v ∈ e→ | SP(e)∧ e← ⊆ D∃◦∀}

and call the transition from the global position D to D′ a a-round of the game. /

This definition of interaction of the strategies of Eve and Adam follows the intuition that in

a verification game, Eve must respond to any possible move of Adam; moreover, if the game

happens to be concurrent, she has to do so in every local position where Adam plays. The

reader acquainted with net theory may have noticed that the transition D→ D′ between global

positions is similar to that of markings—the so-called ‘token game’—in Petri nets.

It is also worth saying that, logically, this behaviour is similar to that of the Henkin quan-

tifier [11, 45], e.g., of the (game for a) Henkin modal formula []〈 〉
[]〈 〉φ, and different from the

behaviour of the (game for an) ATL quantifier [5, 11], say of the ATL formula [][]
〈 〉〈 〉φ (this

notation for ATL formulae follows that for modal quantifiers in [11]).

Plays. The interaction between the strategies of Eve and Adam define a sequence of global

positions {⊥},D1, ...,Dk, ..., and hence, a sequence of posets given by the union of the order

ideals (the lower subsets) determined by each Dk. As usual, the set of plays of a game is

determined once the board where the game is played is given and the strategies are defined.

A play is any finite or infinite union of the elements of such posets. Formally, a play

~ = (H ,≤D) on a board D = (D,≤D) is a (possibly infinitely large) poset such that H is a

downward-closed subset of D . We say that a play can be finite or infinite, and closed or open;

more precisely, a play is:

1. finite iff all chains of ~ are finite;

2. infinite iff ~ has at least one infinite chain;

3. closed iff at least one of the terminal elements of D is in H ;

4. open iff none of the terminal elements of D is in H ;

this classification of plays is used in a further section to define in a concrete way what the

‘winning sets’ of a game are (which are abstractly defined below).3

As said before, a play can be of finite or infinite length, where the length of the play is

the size of H . Therefore, unlike games on interleaving structures, such as trees or graphs, the

length of a play is an upper bound on the maximum number of rounds that has been played

so far rather than the number of times that the players have made a move. This is a direct

consequence of both the plays being partially ordered sets (because different chains can be

3Note that a play being finite or infinite is independent of being closed or open, since an infinitely long chain
can either have or not a top element, which must necessarily be terminal.

5.1. Concurrent Games on Partial Orders 85

independent and have different lengths) and the strategies being closure operators (as they

allow for several sequential moves to be made at once).

Since for any play {⊥},D1, ...,Dk, ... the lower subset defined by a global position Dk

always includes the lower subsets of all other global positions D j such that j < k, then in a

partial order setting any global position D determines a play ~D = (H ,≤D) on a game board

D = (D,≤D) as follows:

H =
S
{e ∈ ↓d | d ∈ D}=

S
d∈D{e ∈D | e≤D d};

finally, let Γ be the set of plays of a game.

Winning Sets and Strategies. Another element of a logic game is the set of winning condi-

tions, which define the ‘winning sets’ for each player. The winning conditions are the rules that

determine when a player has won a play. Let W : Γ→ ϒ be a partial function that assigns a

winner ∃,∀ ∈ ϒ to a play ~ ∈ Γ, and call it the winning conditions of a game. The winning sets

are determined by those plays containing at least one terminal element of the board as well as

those representing infinite behaviour. Therefore, due to the classification of plays given before,

one knows that W is not defined in plays that are both finite and open.

As will be made concrete in a further section, the particular kind of winning conditions, and

therefore of winning sets that are formally defined for each logic game, determines the kind of

verification game to be played, e.g., a (partial order) parity, reachability, safety, or bisimulation

game, just to mention a few simple examples.

On the other hand, once strategies and winning conditions have been defined, a notion of a

winning strategy can also be established. As for verification games on interleaving structures,

a winning strategy is a global strategy which, if followed, guarantees that the player using that

strategy will win all plays of the game. Given these elements, one finally has the following

formulation of the elements which a concurrent logic game for verification is made of:

Definition 5.8. (Concurrent logic games) A tuple a = (ϒ,D,ΛD,∇,W ,Γ) is a concurrent

logic game (CLG) model, where ϒ = {∃,∀} is the set of players, the ⊥-bounded poset D =

(D,≤D) is a board, ΛD = Λ∃D]Λ∀D are two disjoint sets of local strategies, ∇ : D→ ϒ is a

partial function that assigns players to local positions, and W : Γ→ ϒ is a function defined by

the winning conditions of a over its set of plays Γ. /

Once the elements of a CLG a are defined, such a game is played in the following way:

the two players, Eve and Adam, start by choosing, independently and at the same time, a set

of local strategies, i.e., a global strategy for each of them. As mentioned before, the choice of

local strategies is done indirectly by choosing the sets of indices K∀ and K∃, and recall that the

identity local strategies λ1
∀ and λ1

∃ are always chosen.

86 Chapter 5. Concurrent Logic Games

The only other restriction when choosing the local strategies to be used in the game is,

informally, that if the resulting global strategy ∂, for either player, plays some global position

that contains a local position a and such a local position belongs to a chain m which eventually

synchronizes with another chain n, then the global strategy ∂ must play an element b of the

chain n as well. Put another way, this means that if two different chains “cooperate” (by

synchronising with each other) and either Eve or Adam wants to play in one such chains, then

he/she must play in both chains necessarily. Formally, the local strategies in Λ∃a ⊆ Λ∃D and

Λ∀a ⊆ Λ∀D selected by Eve and Adam must ensure the following property (for Adam):

∀d ∈ (↑D∩↓∂∀(D)), if BP(d)∧∇(d) = ∀ then

∀a,b ∈ d→. sync(a,b) implies a,b ∈ ↓∂∀(D).

and similarly for Eve—by changing ∂∀ for ∂∃ and ∇(d) = ∀ for ∇(d) = ∃. Also, the predicates

BP and sync characterise, respectively, the ‘branching points’ of a poset and pairs of elements

that belong to chains that synchronize, i.e., different chains that join at some point in the poset;

these predicates are formally defined as follows:

BP(d) iff | d→ |> 1

sync(a,b) iff ↑a∩↑b 6= U for U ∈ { /0,↑a,↑b}

After this stage of selection of local strategies, Eve and Adam play their global strategies

against each other (possibly forever) until W determines that the play that has been generated

by such an interaction is winning, if at all, for one of the players. There is no reason at this point

to ensure that every play will always have a winner—or even that winning strategies always

exist, i.e., that the game is determined; we postpone the study of this issue for a little longer.

5.1.2 Closure Properties

A concurrent logic game has some closure properties that are both mathematically and algorith-

mically useful when analysing its structure and dynamics: closure under dual properties (called

closure under dual games), closure under lower sub-boards (called closure under ideals), and

its order dual, closure under upper sub-boards (called closure under filters).

Firstly, as for some games on trees, CLG can be composed of subgames. The main differ-

ence is that since in a CLG two independent subgames may synchronise, then that case must

be taken into account. Then, given a CLG a played on a board D, let a ⇓B be the CLG defined

from a where B is a sub-board of D and the other components in a are restricted to B.

But first, let us give a simple, though rather useful, technical lemma, which helps one

ensure that in some special sub-boards a number of functionals (such as those defined by the

strategies and winning conditions of the game) are preserved.

Lemma 5.9. (Unique poset prefixes) Let D be a global position of a board D. There is a

unique poset representing all plays containing D up to such position.

5.1. Concurrent Games on Partial Orders 87

Proof. By contradiction suppose that the global position D is reached and that there are two

posets representing two different plays ~1 and ~2 with which this could be true. Due to the

definition of global strategies this also means that there is at least one local position d ∈ D for

which there is more than one poset representing the way d was reached in the game. But due

to the definition of local strategies and plays such a poset must be the order ideal ↓d, which is

unique for any d; since this property holds for any d ∈ D, then the poset ↓D is unique as well,

and hence ~1 and ~2 must be the same. Hence we get a contradition.

This result facilitates reasoning on games on posets. It implies that regardless of which

strategies the players are using, if a position D ⊆D appears in different plays, then the ‘poset

prefixes’ of all such plays, up to the global position D, are isomorphic. This lemma is a direct

consequence of the restriction imposed on games which states that if a synchronization point

is played by the environment, then all previous elements in the poset (i.e., all smaller elements

with respect to≤D) must have been played already. So, this lemma is, technically, what justifies

such a condition. Similarly, this lemma ensures that if W is a functional operator on the set of

plays in the board D, then it is also a functional operator in the set of plays restricted to the new

board B. So, now we can move on to studying some of the closure properties a CLG enjoys.

Lemma 5.10. (Closure under filters) Let a be a CLG and D a global position of the board D

associated with a. The structure a ⇓B = (ϒ,⊥⊕B,ΛB,∇ ⇓B,W ⇓B,Γ ⇓B) is also a CLG

where B is the upper sub-board of D defined by D.

Proof. The proof is by showing a correct construction of the concurrent logic game a ⇓B =

(ϒ,⊥⊕B,ΛB,∇ ⇓B,W ⇓B,Γ ⇓B), i.e., that indeed a ⇓B defines a CLG. By definition, D

is an anti-chain of local positions, and thus, we can construct the poset given by the union of

filters ↑di of all elements di ∈ D. A bottom element ⊥↑D of B can be adjoined to all chains

starting in every di using the linear sum operator ⊕ so as to construct the poset ⊥↑D⊕B; then,

⊥ = ⊥↑D, and such a structure is a ⊥-bounded board. Also, let ∇ ⇓B be as in a and define

∇(⊥↑D) = ∇(⊥D), so as to preserve the polarity of the bottom element, and hence, who starts

playing the game. Notice that the restriction on D which states that if SP(d) then | d→ | = 1

and ∀e ∈ d←.| e→ | = 1, for all local positions d, is preserved. Also note that due to Lemma

5.9 if two chains containing two different di synchronise in D, then they also synchronise in

⊥⊕B, clearly, provided that such a synchronization point does not belong to ↓D.

Now, the new local strategies in ΛB are defined from the new ⊥-bounded, polarised board

(⊥⊕B,∇ ⇓B) according to Definition 5.2; and likewise, the definition of global strategies

follows from the local strategies in ΛB according to Definition 5.5. Furthermore, let Γ ⇓B be

the set of plays given by the lower posets in B defined by the composition of strategies in ΛB.

Finally, let W ⇓B be restricted in the natural way to the new set of plays Γ ⇓B just defined;

88 Chapter 5. Concurrent Logic Games

this means, W ⇓B(~B) = W (~D) iff (↓D∪ (~B \{⊥B})) = ~D, for all plays ~B ∈ Γ ⇓B.4

This restriction for winning conditions is possible (i.e., it still defines a function) only because

due to Lemma 5.9 the poset given by the union of the order ideals defined by D (which is not

part of the new board⊥⊕B but existed in D) is unique and therefore can be disregarded when

defining the winning conditions for the new game.

The order dual of this result is a closure property under countable unions of ideals.

Lemma 5.11. (Closure under ideals) Let a be a CLG and D a global position of the board D

associated with a. The structure a ⇓B = (ϒ,B,ΛB,∇ ⇓B,W ⇓B,Γ ⇓B) is also a CLG where

B is the lower sub-board of D defined by D.

Proof. The elements of the new game a ⇓B are constructed as follows: the poset B is already

a game board, which can be polarised using the partial function ∇ ⇓B = ∇. Using Definitions

5.2 and 5.5 one can construct the new sets ΛB and Γ ⇓B of strategies and plays of the game.

Finally, W ⇓B is defined to be W restricted to those plays in Γ ⇓B,i.e., W ⇓B(~B) = W (~)

iff ~B = ~, for any ~B ∈ Γ ⇓B and ~ ∈ Γ, or undefined otherwise – since W ⇓B is a partial

function as well.

The previous statements show that the filters of the board D of a define the set of ‘sub-

games’ of a; similarly, the order ideals in D can define a subset of the set of plays of Γ. In

particular, notice that it surely defines a subset of the plays in Γ if synchronisation points are

preserved, which is formalised as follows; a board B = (B,≤B) preserves the synchronization

points of a board D = (D,≤D) iff:

for all a,b ∈D , if syncD(a,b) and a ∈ B ∨b ∈ B , then syncB(a,b)

where syncD and syncB are the sync predicate over the elements of D and B.

Also, notice that games on trees can be trivially reduced to the particular case when D is

always a singleton set and where two chains never synchronise. However, a CLG on a poset

D, even if having a tree-like shape, does not behave exactly as a game on a tree or a graph

unfolding since the definition of strategies as closure operators still allows the players to make

several moves in a single block. The final outcome of the two games is, nevertheless, the same.

Since the CLG models will be used for verification, another useful feature is that of having

a game closed under dual games, this is, a game used to check the dual of a given property over

the same board—i.e., for the same system(s). Formally:

Definition 5.12. (Dual games) Let a = (ϒ,D,ΛD,∇,W ,Γ) be a CLG. The dual game aop of

a is the tuple: (ϒ,D,ΛD,∇op,W op,Γ), such that for all d ∈D and ~ ∈ Γ:

4In order to be clear with our notation, here we use ∪ as set union on posets: e.g., given two posets R = (R ,≤R)
and S = (S ,≤S), we say that R∪S iff R ∪S ; and similarly for set difference “\”.

5.1. Concurrent Games on Partial Orders 89

• if ∇(d) = ∃ (resp. ∀) then ∇op(d) = ∀ (resp. ∃), and

• if W (~) = ∃ (resp. ∀) then W op(~) = ∀ (resp. ∃).

Moreover, let J be a class of CLG where for all a ∈ J there is a dual game aop ∈ J. Then, we

say that J is closed under dual games. /

This definition is based on the fact that changing ∇ for ∇op, i.e., changing each polarity for

its ‘dual polarity’ on every element of D, leaves unmodified the set of strategies and plays of

the dual game, though intuitively each play in a that is winning for one of the players should

be winning for the other player in the dual game aop.

Lemma 5.13. (Closure under dual games) Let J be a class of CLG closed under dual games.

If Eve (resp. Adam) has a winning strategy in a ∈ J, then Adam (resp. Eve) has a winning

strategy in the dual game aop ∈ J.

Proof. Suppose that Eve has a winning strategy ∂W in a. Since for all global positions in the

game a one has that the next global position is initially defined by ∂W ◦ ∂∀, then whenever

Adam has to make a move in aop he can use the winning strategy ∂W of Eve because for all

d ∈ D, if ∇(d) = ∃ then we have that ∇(d)op = ∀. However, notice that in each local position

of the game board Adam must always “play first” both in a and in aop because the global

evolution of the game, which is determined by the rounds being played, is always defined by

pairs of local strategies λi
∃ and λ

j
∀ such that λi

∃ ◦λ
j
∀(d), for any local position d, regardless of

whether we are playing a or aop.

So, there are actually two cases: firstly, consider those d ∈ D, for any global position D,

such that ∇(d) = ∃. In this case ∇op(d) = ∀ and then in aop Adam can simply play Eve’s

strategy in a at position d. The second case is that of those d ∈ D such that ∇(d) = ∀. In this

case, ∇op(d) = ∃ and hence Adam can play d itself, and let Eve decide on the new local position

d′, for which, by hypothesis, Eve has a winning strategy in a and the two previous cases apply

again, though in a new round of the game; moreover, the behaviour at synchronization points,

which are “played” deterministically by the environment, remains as in a. In this way, Adam

can enforce in aop all plays that Eve can enforce in a. Finally, since for all such plays in Γ it

was, by hypothesis, Eve who was the winner, i.e., W (~) = ∃ for all ~ ∈ Γ, then Adam is the

winner in all plays in aop since now for all ~∈ Γ, we have that W op(~) = ∀. The case in which

Adam has a winning strategy in a is dual.

5.1.3 Towards Determinacy

Lemma 5.13 does not imply that concurrent games are determined because the existence of

winning strategies has not yet been ensured; let alone the guarantee that finite and open plays

where D′ = D (for two consecutive global positions D and D′) are not possible, since this

90 Chapter 5. Concurrent Logic Games

immediately implies that the game is undetermined; call stable any play containing two global

positions D,D′ such that D→ D′ and D = D′.

Also notice that another condition that is necessary, though not sufficient, for a game to be

determined is that all plays (that are not finite and open) have a winner. This can be ensured by

requiring the winning conditions to be complete. Let the winning conditions W be complete iff

W is a total function on all plays in Γ that are not finite and open. We say that W is complete

because it covers all possible cases where a winning set has been defined, i.e., those plays that

are closed as well as those that are both infinite and open.

Lemma 5.14. (Unique winner) Let J be a class of CLG closed under dual games for which

plays that are stable, finite and open do not occur. If the W in a ∈ J is complete, then every

play in a and aop has a unique winner.

Proof. The statement holds immediately for a. On the other hand, since a belongs to a class

of CLG that is closed under dual games, then the set of plays in aop is the same as in a, but

with the players making dual choices in aop as described in the proof of Lemma 5.13. As a

consequence, W op must also be a complete set of winning conditions, and hence, every play

~ ∈ Γ of aop has a unique winner as well.

The previous statement does not imply determinacy either, but it takes us one step closer

to it. Determinacy of CLG will be shown as a direct consequence of two other properties

(soundness and completeness), which are more useful from a verification viewpoint; these

properties are shown to hold for a big class of game boards with a semantic property that is

studied in the next section.

Remark 5.15. If a class of games is closed under dual games and has a complete set of

winning conditions, then a constructive proof of determinacy, which does not rely on Martin’s

theorem [59] or on similar results for infinite games with perfect information can be given—

e.g. using the Gale–Stewart theorem [31] for determinacy of two-player infinite games with

perfect information—provided that the game is shown to be sound. This is because, roughly

speaking, the scenario of possible game outcomes becomes symmetric, and disallow any draws.

Hence sound games with these characteristics must necessarily be also complete, and therefore

determined. In this way one can get proofs of completeness and determinacy almost for free!

This property is extremely useful since it considerably reduces reasoning on the games. /

Let us finish this section with a simple counter-example that shows that CLG are undeter-

mined even with the restrictions already imposed. The following result motivates the definition

of a semantics condition that, when satisfied, provides the mathematical properties for the con-

struction of a sound and complete game, which is therefore also determined.

Proposition 5.16. CLG are undetermined in the general case.

5.1. Concurrent Games on Partial Orders 91

Proof. Neither player can have a winning strategy in the game presented in Figure 5.1 since

Eve and Adam can enforce plays for which W is not defined (a stable, finite and open play).

Let us look in detail at how the game is played:

Since Adam loses whenever the local position d∃10 is played, then he must avoid playing

the local position d∀4 as well. That leaves him with only one possible sensible choice to make,

which is to play the local position d∀3 once he reaches the local position d∀1 . Therefore, the best

strategy for Adam tells him to play at once local positions d∀0 , d∀1 , and d∀3 . As d∀3 is a fixpoint

of the local strategies of Adam, then he stops there (in such a chain). In addition, since Adam’s

choices must preserve synchronization points, then he is forced to play d∃2 as well because:

∀d ∈ (↑{d∀0}∩↓∂∀({d∀0})), if BP(d)∧∇(d) = ∀ then

∀a,b ∈ d→. sync(a,b) implies a,b ∈ ↓∂∀({d∀0}).

and we have that d∀0 ∈ (↑{d∀0}∩↓∂∀({d∀0})), and BP(d∀0) holds, and ∇(d∀0) = ∀, and d∀1 ,d∃2 ∈
d∀→0 , and sync(d∀1 ,d∃2) holds, but (so far) d∃2 6∈ ↓∂∀({d∀0}); then, d∃2 must be played as well, i.e.,

∂∀({d∀0}) = {d∃2 ,d∀3}. Then, Eve must respond to Adam’s choices. All local positions different

from d∃2 are fixpoints of her local strategies, so she agrees with Adam’s choices. Then, she

must make a non-trivial move only on d∃2 . As Eve wins whenever d∃10 is played, then her best

strategy tells her to move to d∃6 when playing at d∃2 . Note that she is not forced to play d∃5
because sync(d∃5 ,d∃6) does not hold. Thus, the new global position is {d∀3 ,d∃6}. Then, in all

further rounds neither player can make a move because both local positions are fixpoints of

their local strategies. As a consequence, a stable, finite and open play is generated.

d∀9 d∃10

d7 d8

d∀3

qqqqqqqqq
d∀4

ppppppppp
d∃5

NNNNNNNNN
d∃6

NNNNNNNNN

d∀1

::::
����

d∃2

<<<<
����

d∀0

LLLLLLLLL

qqqqqqqqqq

d∀9 d∃10

d7 d8

d∀3

qqqqqqqqq
d∀4

ppppppppp
d∃5

NNNNNNNNN
d∃6

NNNNNNNNN

d∀1

:
:

����
d∃2

<<<<
�

�

d∀0

L L L L L

qqqqq

a-rounds: {d∀0}→ {d∀3 ,d∃6}→ {d∀3 ,d∃6}→ ...

Figure 5.1: Graphical representation of an undetermined game. The poset on the left is the board at the

beginning of the game. Nodes in the poset are labelled with their polarities and the dashed lines represent

the play so far, i.e., the choices made by the players. Therefore, the poset on the right is a representation

of the game after the first a-round. In this example W (↓D) = ∃ iff d∃10 ∈ D and W (↓D) = ∀ otherwise,

for all global positions D containing at least one terminal element of the board. Such winning conditions

justify the way Eve and Adam play this game. Clearly, the play is stable, finite and open.

92 Chapter 5. Concurrent Logic Games

5.2 Metatheorems for Verification

We now study a semantic condition that ensures the correctness of a class of CLG models to

which different verification problems for various models of concurrency can be reduced in a

partial order setting. As explained before a CLG can be seen as a game representation of a

verification problem. Then, let aP be the CLG associated with a decision problem V(P), for a

given problem P, and J the class of CLG representing all instances of such a decision problem.

We say that V(P) holds iff such a decision problem has a positive solution (i.e., iff it has

a ‘yes’ answer), and fails to hold iff it has a negative solution; thus, V(P) can be used as a

logical predicate. For instance, suppose that P is a bisimulation problem, denoted by ∼, for

two systems M1 and M2; then V(M1,M2,∼) holds iff M1 ∼M2, and fails to hold otherwise.

As usual for logic games, a game aP is correct iff Eve has a winning strategy in aP whenever

V(P) holds, and conversely, Adam has a winning strategy in aP whenever V(P) fails to hold.

Now, let a ‘local configuration’ of a game aP ∈ J be a local position, and similarly, a

‘global configuration’ be a set of independent local configurations—i.e., an anti-chain of local

configurations. As usual for verification games, a ‘true configuration’ is a configuration, either

local or global, from which Eve can win the game; dually, a ‘false configuration’ is a config-

uration from which Adam can do so. In a CLG a global configuration is logically interpreted

in a conjunctive way; so, we also say that a global configuration is true iff it contains only true

local configurations, and it is a false configuration otherwise.

In order to show the correctness of the family of games J, in this abstract setting, we need

to make sure that the CLG aP associated with a particular verification problem V(P) has two

properties: ω-Symmetry and local correctness. Before presenting such properties let us provide

the definition of some conditions that will be used in the definition of one of such properties:

Definition 5.17. (Parity condition) Let (A ,≤A) be a poset indexed by a finite subset of N,~a a

sequence of elements of A whose order respects≤A and downward-closure, and f ω
min : Aω→N

a function that characterizes the minimum index that appears infinitely often in ~a. Then, the

poset ({b ∈ A | b ∈~a},≤A) is definable by a Parity condition iff f ω
min(~a) is even. /

Definition 5.18. (Büchi condition) Let (A ,≤A) be a poset indexed by a finite subset of N,

B ⊆ N, ~a a sequence of elements of A whose order respects ≤A and downward-closure , and

f ω : Aω→℘(N) a function characterizing the indices that appear infinitely often in ~a. Then,

the poset ({b ∈ A | b ∈~a},≤A) is definable by the Büchi condition B iff (f ω(~a)∩B) 6= /0. /

Definition 5.19. (Rabin condition) Let (A ,≤A) be a poset indexed by a finite subset of N, R a

set of pairs (G,H) such that G,H ⊆N,~a a sequence of elements of A whose order respects≤A

and downward-closure, and f ω : Aω→℘(N) a function characterizing the indices that appear

infinitely often in ~a. Then, the poset ({r ∈ A | r ∈~a},≤A) is definable by the Rabin condition

R iff there exists a pair (Gk,Hk) ∈ R such that (f ω(~a)∩Gk) = /0 and (f ω(~a)∩Hk) 6= /0. /

5.2. Metatheorems for Verification 93

Dually, one also has co-Parity (f ω
min(~a) is odd), co-Büchi ((f ω(~a)∩B) = /0), and Streett (for

all pairs (Gk,Hk) ∈ R, either (f ω(~a)∩Gk) 6= /0 or (f ω(~a)∩Hk) = /0) conditions, respectively.

Property 5.20. (ω-Symmetry: bi-complete ω-regularity) A family J of CLG has Property

5.20 and is said to be bi-complete ω-regular, or ω-symmetric for short, iff:

1. J is closed under dual games;

2. for all aP ∈ J we have that aP has a complete set of winning conditions;

3. the winning set given by those plays such that W (~) = ∃, i.e., those where Eve wins, is

definable by Büchi/Rabin/Parity conditions. /

An immediate consequence of the previous property is the following:

Lemma 5.21. If a CLG aP is ω-symmetric, then it also satisfies that the winning set given by

those plays such that W (~) = ∀ is definable by co-Büchi/Streett/co-Parity conditions.

Proof. Immediate from the fact that since aP is closed under dual games and the set of winning

conditions is complete, then the set of plays such that W (~) = ∀ must be definable as its dual,

i.e., by co-Büchi/Streett/co-Parity conditions.

Note that parts 1 and 3 of Property 5.20 (i.e., ω-symmetry) are given by the particular

decision problem to be solved. It is well known that several game characterisations of many

verification problems have these two properties. On the other hand, part 2 of Property 5.20 is

a design issue. It must be ensured when defining the game since it determines, along with part

3, the particular problem being solved. In addition, Property 5.20 and Lemma 5.21 imply that:

Lemma 5.22. The winning sets of Adam are least fixpoint definable; and dually, the winning

sets of Eve are greatest fixpoint definable.

Proof. The Büchi and Rabin conditions can be reduced to a Parity condition (cf. [38]). More-

over, a Parity condition characterises the winning sets (and winning plays) in Lµ as follows:

infinite plays where the smallest index that appears infinitely often is even (resp. odd) satisfy

greatest (resp. least) fixpoints and belong to the winning sets of Eve (resp. Adam). As in our

setting plays are posets, the order is the one given by the board.

Hereafter, we only consider CLG models that are ω-symmetric and, moreover, for which

the following semantic condition on game boards holds:

Property 5.23. (Local correctness) Let D be the board of a CLG aP. If d ∈ D is a false

configuration, then either ∇(d) = ∃ and all next configurations are false as well or ∇(d) =

∀, i.e., Eve must preserve falsity whereas Adam can preserve it. Dually, if d ∈ D is a true

configuration, then either ∇(d) = ∀ and all next configurations are true as well or ∇(d) = ∃,
i.e., Adam must preserve truth whereas Eve can preserve it. /

94 Chapter 5. Concurrent Logic Games

This local correctness condition implies a global correctness condition:

Corollary 5.24. (Global correctness) Let D be the board of a CLG aP. If D ⊆ D is a false

global configuration, then there exists some d ∈ D such that d is a false local configuration;

and dually, if D⊆D is a true global configuration, then for all d ∈ D we have that d is a true

local configuration.

The game interpretation of Property 5.23 reveals the mathematical property that makes a

CLG logically correct (in a Tarskian context rather than in the sense of Hintikka), since such

a mathematical property will ensure the existence of winning strategies in all cases, and there-

fore every play will always have a winner—i.e., stable, finite and open plays will be avoided.

Specifically, Property 5.23 implies that not only the local positions that belong to a player must

be either true or false local configurations, but also those that belong to the environment, i.e.,

the joins of D. Then, truth and falsity must be transferred to those local positions as well, so

that the statements “Eve must preserve falsity” and “Adam must preserve truth” hold. Formally,

one needs to ensure that the following restriction (which we call ‘a-progress’) holds:

F
D 6= /0⇒

F
d∈D ∂∀({d}) 6= /0F

D 6= /0⇒
F

d∈D ∂∃({d}) 6= /0

where D is a global position and
F

is the ‘join operator’. Call ‘live’ a play that is not stable,

finite and open, as well as games whose strategies only generate live plays; a-progress guaran-

tees that only live plays and games—where truth and falsity are preserved—are generated.

Remark 5.25. Note that in the game presented in Figure 5.1 the strategy of Eve does not satisfy

this condition: on the one hand
F
{d∀3 ,d∃2} = {d7}, and on the other,

F
d∈{d∀3 ,d∃2 }

∂∃({d}) =

∂∃({d∀3})t∂∃({d∃2}) = {d∀3}t{d∃6}= /0. /

With the restriction to strategies that preserve the existence of joins, the game in Figure 5.1

becomes the game in Figure 5.2, for which Adam has a winning strategy. Let us look in detail

at how the game is played this time, and how Adam can enforce a winning play for him.

As before, since Adam loses whenever the local position d∃10 is played, then he must avoid

playing the local position d∀4 as well. He, then, plays as in the game in Figure 5.1, this is,

he plays at once the local positions d∀0 , d∀1 , and d∀3 , together with the local position d∃2 , which

he is forced to play because of the condition that states that ∀d ∈ (↑{d∀0} ∩ ↓∂∀({d∀0})), if

BP(d)∧∇(d) = ∀, then ∀a,b ∈ d→. sync(a,b) implies a,b ∈ ↓∂∀({d∀0}).
Next, Eve must respond to Adam’s choices and since all local positions different from

d∃2 are fixpoints of her local strategies, then she agrees with Adam’s choices again. After

that, she must make a non-trivial move only on d∃2 . As Eve wins whenever d∃10 is played,

then her best strategy tells her to move to d∃6 when playing at d∃2 . However, unlike the game

previously shown in Figure 5.1, Eve is this time forced to play d∃5 because of the following

5.2. Metatheorems for Verification 95

reason: since
F
{d∀3 ,d∃2} = {d7} 6= /0, then it must hold that

F
d∈{d∀3 ,d∃2 }

∂∃({d}) 6= /0 as well,

but
F

d∈{d∀3 ,d∃2 }
∂∃({d}) = ∂∃({d∀3})t∂∃({d∃2}) = {d∀3}t{d∃6}= /0. Therefore, the global strat-

egy of Eve must be changed when playing at d∃2 (from {d∃6} to {d∃5 ,d∃6}) so that ∂∃({d∀3})t
∂∃({d∃2}) is {d∀3}t{d∃5 ,d∃6}= {d7} 6= /0, as desired.

Thus, the new (intermediate) global position is {d∀3 ,d∃5 ,d∃6}. In this case, the environment

can make a deterministic move because SP(d7) holds and d←7 = {d∀3 ,d∃5} ⊆ {d∀3 ,d∃5 ,d∃6}. Then,

the global position after this round is {d∃6 ,d∀9}. In all further rounds neither player can make a

move because both local positions, i.e., d∃6 and d∀9 , are fixpoints of their local strategies. This

play is, however, winning for Adam since W (↓{d∃6 ,d∀9}) = ∀.

d∀9 d∃10

d7 d8

d∀3

qqqqqqqqq
d∀4

ppppppppp
d∃5

NNNNNNNNN
d∃6

NNNNNNNNN

d∀1

::::
����

d∃2

<<<<
����

d∀0

LLLLLLLLL

qqqqqqqqqq

d∀9 d∃10

d7

�
�

d8

d∀3

qqqqq
d∀4

ppppppppp
d∃5

N N N N N
d∃6

NNNNNNNNN

d∀1

:
:

����
d∃2

<
<

�
�

d∀0

L L L L L

qqqqq

a-rounds: {d∀0}→ {d∃6 ,d∀9}→ {d∃6 ,d∀9}→ ...

Figure 5.2: A CLG where Adam has a winning strategy.

Remark 5.26. Note that if the board of the game is a join-semilattice, then the restriction on

strategies is automatically satisfied, and then all usual strategies can be considered. Moreover,

if the strategies preserve the existence of joins, then any play will always have a winner (pro-

vided that the set of winning conditions is complete) since either a terminal element is reached

or an infinite and open plays is generated—i.e., a deadlock in the game never happens. /

Given this new restriction on strategies we can move towards showing the correctness of

this kind of CLG. A simple technical lemma is still needed: a direct application of Lemma

5.14 using Property 5.20 gives us Lemma 5.27, which allows one to show the soundness of this

concurrent game using only pure (deterministic and concurrent) winning strategies.

Lemma 5.27. Every play of a live, ω-symmetric aP has a uniquely determined winner.

Proof. A direct application of Lemma 5.14 using Property 5.20 (ω-symmetry) when restricted

to strategies which preserve the existence of joins (i.e., to live plays).

In the remainder of this chapter we only consider live, ω-symmetric games.

96 Chapter 5. Concurrent Logic Games

Theorem 5.28. (Soundness) If V(P) fails to hold, then Adam can always win aP.

Proof. We show that Adam can win all plays of aP if V(P) fails to hold by providing a winning

strategy for him. The proof has two parts: first, we provide a board where Adam can always

win and show how to construct a game on that board, in particular, the local strategies in the

game—and hence, a strategy for Adam; then, we show that in such a game Adam can always

win by checking that his global strategy is indeed a winning strategy for the game.

Firstly, let aP ⇓B be a CLG on a poset B = (B,≤D), which is a subset of D = (D,≤D), the

initial board of the game. Let the set B be a downward-closed subset of D with respect to ≤D ;

the bottom element ⊥B =⊥D (where the game starts) is, by hypothesis, a false configuration.

The construction of the board is as follows: B contains only the winning choices for Adam,

which preserve falsity as defined by the local correctness semantic property 5.23. After those

elements of the poset have been selected, adjoin to them all possible responses or moves avail-

able to Eve that appear in D. Do this, starting from ⊥, either infinitely often for infinite chains

or until a terminal element is reached in finite chains. This construction clearly ensures that B
is a downward-closed set with respect to ≤D . In addition, as in the proofs of Lemmas 5.10 and

5.11 (closure properties), the polarity function ∇ for B is as in D.

Using the constructions given in the proof of Lemma 5.10, one can define all other elements

of aP ⇓B. In particular, the local strategies for Eve and Adam will be ‘stable’ closure operators;

based on Definition 5.2 such stable closure operators are completely defined once one has

determined what the ‘output’ functions will be (since the fixpoints are completely determined

already in Definition 5.2). Then, each local strategy λ
j
∀ for Adam and each local strategy λi

∃

for Eve – where j ∈ K∀ ⊆K∀ and i ∈ K∃ ⊆K∃, respectively – is defined as follows:5

λi
∃(d) = d∨ f i

∃(d)

λ
j
∀(d) = d∨g j

∀(d)

where:

λi
∃(d) = d , if fix∃(λi

∃,d)

λi
∃(d) = f i

∃(d) , otherwise

λ
j
∀(d) = d , if fix∀(λ

j
∀,d)

λ
j
∀(d) = g j

∀(d) , otherwise

where each ‘output’ function g j
∀ necessarily preserves falsity and each output function f i

∃ must

preserve truth (because B was constructed taking into account Property 5.23). However, since

in B all choices available to Eve were preserved, then the set of local strategies for Eve (i.e.,

Λ∃B) can be safely chosen to be the same set of local strategies in D (i.e., Λ∃D); therefore,

Λ∃B = Λ∃D and Λ∀B ⊆ Λ∀D; moreover, the definition of global strategies immediately follows

from this specification of local strategies as given by Definition 5.5 – of course, subject the

5Recall that i, j > 1 since λ1
∀ and λ1

∃ are the identity local strategies for Adam and Eve, respectively.

5.2. Metatheorems for Verification 97

restriction that any such global strategy must preserve the existence of joins in B. Finally, the

sets of plays and winning conditions are defined from B and the new sets of strategies as done

in the proof of Lemma 5.10.

For the second part of this proof, let us show that the game aP ⇓B is winning for Adam,

i.e., that his strategy in such a game is indeed a winning strategy. Then, let us analyse the

outcome of plays to certify that he indeed wins all plays in such a game. First consider finite

plays, which must be closed because all valid strategies must preserve the existence of joins.

All such plays have a global position D f which contains at least one local position that is a

terminal element of B. Due to Property 5.20 (part 2), all those plays are effectively recognised

as winning for one of the players, in this case for Adam: since ⊥ is a false configuration, Eve

must preserve falsity, and Adam is only playing strategies that also preserve falsity, then D f

contains at least one local position d f which also is a false configuration, and therefore D f is

a false configuration as well since it is interpreted conjunctively. As a consequence all finite

plays are winning for Adam. The same argument also applies for infinite, closed plays. The

final case, is that of open, infinite plays.

The correctness of this case is shown by a transfinite induction on a well-founded poset

of sub-boards of B; this technique generalizes the analysis of approximants of fixpoints on

interleaving structures (i.e., on total orders) to a partial ordered setting. So, let (O,≤O) be the

following partial order on sub-boards (i.e., posets):

O = { a ⇓↑D | D is a global position of B}
a ⇓↑D ≤O a ⇓↑D′ iff ↑D′ ⊆ ↑D

The relation≤O is clearly well-founded because all finite and infinite chains in the poset (O,≤O

) have ⊥O = a ⇓↑⊥B
= a ⇓B as their bottom element. Since any particular play in the game

corresponds to a chain of (O,≤O), then let us also define a valuation J·K : O→{true,false} and

a total order on the sub-boards (i.e., posets), and therefore subgames, associated with B. Let

~ be any open, infinite play (an infinite chain of (O,≤O)) and let α,ϖ ∈ Ord be two ordinals,

where ϖ is a limit ordinal. Then:

J~0K = J⊥OK (the base case)

J~α+1K = J→O (~α)K (the induction step)

J~ϖK = J
S

α<ϖ(~α)K (because ϖ is a limit ordinal)

where →O is the accessibility relation of ≤O restricted to the elements of the chain ~. Then,

for Adam, we have the following:

J⊥OK = false (by hypothesis, ⊥O is a false configuration)

J→O (~α)K = J~αK (due to Property 5.23,→O preserves falsity)

J
S

α<ϖ(~α)K =
W

α<ϖ J~αK (because due to Lemma 5.22,

Adam’s winning sets are least fixpoint definable)

98 Chapter 5. Concurrent Logic Games

Due to the principle of (transfinite) fixpoint induction, the result holds for all ordinals, and

therefore for all global positions of any open, infinite play. Note that we can actually repeat

this analysis for all ordinals β < α (and thus for all global positions), due to Property 5.20 (part

3), since winning configurations, and hence winning sets, are fixpoint definable. But, since

the ordinal numbers are well-founded such a process of checking subgames and open, infinite

plays always terminates regardless of which α one chooses. Hence, there can be neither a

global position D nor a game aP ⇓⊥B⊕↑D where Eve wins.

As she cannot win any play in aP ⇓B, and due to Lemma 5.27 all plays have a unique

winner, Adam’s strategy is indeed a winning strategy in aP; in fact, it is a pure and deterministic

winning strategy. Therefore, If V(P) fails to hold then Adam can always win aP.

The last part of the previous proof shows that if, on the contrary, one supposes that Eve

could win from a global position D, i.e., an element ~α for some ordinal α, then one imme-

diately would get a contradiction: α cannot be a limit ordinal because in that case J~ϖK =V
α<ϖ J~αK (as due to Lemma 5.22, Eve’s winning sets are greatest fixpoint definable); and

since ordinals are well-founded, regardless of which α one chooses, there cannot be a descend-

ing chain of global positions that can be used to either satisfy a greatest fixpoint or fail to satisfy

a least fixpoint. Therefore, Eve cannot win from any such global positions/configurations.

A similar proof can be given to show the completeness of the game. Nevertheless, due

to the properties of the game, we can get the proof of completeness almost for free. And,

moreover, determinacy with pure winning strategies—a property not obvious for concurrent

games—follows immediately from the soundness and completeness results.

Theorem 5.29. (Completeness) If V(P) holds, then Eve can always win aP.

Proof. Due to Property 5.20 (part 1) there exists a dual CLG aop
P for the dual verification

problem V(Pop) of V(P) such that V(Pop) does not hold. And, due to Theorem 5.28 Adam has

a winning strategy in the game aop
P for the dual problem Pop. Therefore, due to Lemma 5.13

and Lemma 5.27, Eve can use the local strategies of Adam in aop
P to be the unique winner of

all plays ~ ∈ Γ of aP, and hence the existence of a winning strategy for Eve in aP follows.

Corollary 5.30. (Determinacy) Eve has a winning strategy in aP iff Adam does not have it,

and vice versa.

Proof. Follows immediately from Theorems 5.28 and 5.29.

As said before determinacy is not a common feature for concurrent games with pure (i.e.,

not randomised) strategies as it is the case of CLG. Determinacy is mainly enforced by the

semantic property of the game boards we have considered, which in turn makes oneself to

restrict to join-preserving strategies for Adam. In fact, that semantic condition is necessary if

one is looking for a determined class of games with imperfect information.

5.2. Metatheorems for Verification 99

For instance, the game of ‘Scissors-Paper-Stone’, much simpler than the CLG defined here,

is already undetermined, because its board does not have the local correctness property. That

game has Property 5.20 because the two players can interchange roles and every play has a

unique winner provided that draws are defined as winning for one of the two players. However

the board where the game is played does not have the local correctness semantic property that

is needed to provide a winning strategy for Eve or Adam. That very simple game is therefore

undetermined. This shows that this semantic property is very natural and perhaps the least one

can hope for when designing a concurrent game for verification with pure winning strategies.

Decidability on Finite Posets. Solving a CLG aP using the approach we have presented here

requires the construction of a winning game aP ⇓B (and with it a winning strategy) for either

Eve or Adam, according to Theorems 5.28 and 5.29. This is in general an undecidable problem

because the board D can be infinitely large. However, in many practical cases D can admit

a finite representation of it where all information needed to solve the verification problem is

contained. Before showing particular instances where D can be given a finite representation

(in the following section), let us state the following result:

Theorem 5.31. (Decidability) The winner of any CLG aP can be decided in finite time if the

board D in aP has finite size.

Proof. Since D, by hypothesis, has finite size, then there are only finitely many possible sub-

boards B, and consequently, finitely many subgames aP ⇓B that must be checked before con-

structing a winning one for either player. Moreover, constructing a particular game aP ⇓B

either for Eve or Adam as described in the proofs of Theorems 5.28 and 5.29 can be effectively

done, also due to the fact that D is finite as follows.

Firstly, since B is finite there are finitely many different strategies for Eve and Adam.

Moreover, since those strategies are closure operators in a finite structure (i.e., order-preserving

maps on a finite structure), then their sets of closed elements eventually stabilize. As a con-

sequence, there are finitely many different plays (and game configurations), whose winner can

always be checked—because the game is determined and its set of winning conditions is com-

plete. Therefore, a winning strategy can be chosen from the set of strategies of the game by

exhaustively searching such a set, simply by comparing it against all possible strategies of the

other player. As we assume that Properties 5.20 and 5.23 hold, they need not be verified.

Although decidability on finite systems is not a surprising result, what is interesting is that

several partial order models of concurrency can be given a finite poset representation which, in

a number of cases, can be smaller than their interleaving counter-part. Therefore, the previous

decidability result can have important practical applications since it opens up the possibility of

defining new concurrent decision procedures for different verification problems.

100 Chapter 5. Concurrent Logic Games

5.3 Expressivity

In this section we use the CLG model just defined to represent two different verification prob-

lems, namely bisimulation and model-checking. Although the two decision problems are dif-

ferent, using this generic technique they can be solved in a uniform way. Recall the structure

of a CLG a. From its six components, one needs to determine D, ∇, and W in order to make

it a concrete game since ϒ is fixed and ΛD can be determined by D, and Γ by D and ΛD.

The two reductions rely on a simple observation: both problems can be represented by a

binary relation between the elements of two posets M = (M ,≤M) and T = (T ,≤T). In the

bisimulation case M and T are the poset representations of two systems M1 and M2, whereas

in the mu-calculus model-checking case M is the poset representation of the system being

checked, say M, and T is the poset representation of an Lµ formula φ. Then, in both cases, the

board D where the games are played is a subset of the Cartesian product of M and T.

In Chapter 2 we introduced a reduction from some models of concurrency, namely from

Petri nets and event structures, to TSI models and used TSIs to define a uniform representation

for all such models of concurrency. Let us now define a further reduction from TSI models,

and therefore from Petri nets and event structures as well, to another basic representation that

is adequate for playing concurrent games. Such a uniform representation is a poset representa-

tion of these systems which can be used to recognize computation traces of infinite behaviour.

More importantly, as shown later on, when dealing with finite-state systems this new uniform

representation can also be given a finite poset representation, and therefore allows for the de-

velopment of a number of game-based decision procedures on partial orders.

From Partial Order Models to Posets. Let (S,s0,T, I,Σ) be a concurrent system M.

Sassone, Nielsen, and Winskel [85] showed that M can be unfolded into an event structure

E = (E,4,],η,Σ) (almost) in the same way that a safe Petri net can be unfolded into a prime

event structure, as done by Nielsen, Plotkin, and Winskel [71]. Then, such an event structure

can be translated into a poset of the configurations of E (cf. [98]). Such a ‘configuration

structure’ is actually an edge-labelled event structure U = (C ,4,],η,Σ), where C is the set of

configurations of E , the causality relation 4 is the subset inclusion order⊆, and] is the conflict

relation on configuration states induced by that on events, i.e., forall e1,e2 ∈ E if e1 ∈ q1 ∈ C
and e2 ∈ q2 ∈ C and e1]e2, then q1]q2. So, the main difference between E and U is that in

U the events are “occurrences of states” rather than occurrences of events. Accordingly, the

domain of the labelling function η of U is C ×C rather than only E (as in a normal labelled

event structure) since, clearly, in this new unfolding construction one has to label the elements

of the successor relation given by 4 rathen than the elements of C .

The structure we consider here is an extension of U that allows to recover the information

about the cycles in M, which is lost when looking only at the unfolded structure U. Recall

that any unfolding construction defines an unfolding map fu from the elements of the initial

5.3. Expressivity 101

structure (which we call the ‘kernel structure’) to the elements of the unfolded one (which we

call the ‘replicated structure’) as well as an equivalence relation ∼ fu on the elements of the

replicated structure which identifies different elements of it that are the unfolding of the same

element in the kernel structure. Then if we consider the unfolding construction from M to U

we have that fu : S→ 2C and for all q1,q2 ∈ C we have that q1 ∼ fu q2 if, and only if, there exists

some s ∈ S such that q1,q2 ∈ fu(s), i.e., the elements q1 and q2 are two different occurrences

in the unfolding of the same element s in the kernel structure.

This information can be used to define a recursion relation 	 that identifies cycles, i.e.,

recursive behaviour, in the kernel structure. Such a relation is defined as follows: for all u,v∈ C
we have that u 	 v iff v 4 u and ∃w ∈ C . u→C w∧ v∼ fu w. Using this new binary relation,

let us define a poset structure which provides a uniform poset representation of the models of

concurrency we have consider in this thesis: Petri nets, event structures, and TSI models.

Definition 5.32. A labelled recursive poset structure M is a tuple (Q,η,Σ,	,#Q), where

Q = (Q ,≤Q) is a⊥Q -bounded poset, Σ is a set of labels, η : Q ×Q → Σ is a labelling function,

	 ⊆ Q ×Q is a ‘recursion’ binary relation such that if q,r ∈ Q and q 	 r then r ≤Q q, and

#Q ⊆Q ×Q is an irreflexive and symmetric ‘conflict’ binary relation such that if q1,q2,q3 ∈Q
and q1 #Q q2 ≤Q q3, then q1 #Q q3. /

With the previous definition, the following reduction from concurrent systems to posets

can be defined. Let (S,s0,T, I,Σ) be a system M whose unfolding [85] is the (unlabelled) event

structure U = (C ,4,]). We say that the labelled recursive poset structure M = (Q,η,Σ,	,#Q)

is the poset representation of M iff Q = (Q ,≤Q) is the poset (C ,4), the conflict relation

#Q is], the set of labels Σ is as in M, and the recursive relation 	 as well as the labelling

function η are defined with respect to the (state component fu : S→ 2Q of the) unfolding map

in the following way: we have that u 	 v if, and only if, v is the smallest element of Q which

satisfies that v ≤Q u and ∃w ∈ Q . u→Q w∧ v∼ fu w; and for all (q,r) ∈ (→Q ∪) we have

that η(q,r) = δ(t) where t ∈ T , and q ∈ fu(σ(t)), and r ∈ fu(τ(t)). Taking this reduction into

account, let us show how to use the CLG model to represent a bisimulation checking problem.

5.3.1 Bisimulation

The usual presentation of a bisimulation problem is not given by a class of games closed under

dual games. However, if we consider the more general problem of equivalence-checking, i.e.,

being able to ask whether two systems are bisimilar or are not bisimilar explicitly, then the

game becomes closed under dual games.

Assume we are dealing with two labelled concurrent systems M1 and M2, and let M =

(M ,≤M ,ηM ,ΣM ,	M ,#M) and T =(T ,≤T ,ηT ,ΣT ,	T ,#M) be their labelled recursive poset

structures; moreover, extend the definition of the successor relation → on posets to its la-

102 Chapter 5. Concurrent Logic Games

belled version a∈Σ−−→ in the obvious way. In order to avoid confusion, the relations of different

posets are marked with the name of the corresponding poset; for instance, a−→M for M and
a−→T for T. Also, we write EQ(M1,M2,∼sb) for a bisimulation checking problem V(P), and

EQ(M1,M2, 6∼sb) for its dual V(Pop), or simply ∼ and 6∼ if the two concurrent systems and

equivalences are obvious from the context.

Note that EQ satisfies parts 1 and 3 of Property 5.20 (ω-symmetry) since, on the one hand,

the problem—or its game representation—is now, by definition, closed under dual games, and

on the other hand, it satisfies part 3 too because bisimilarity is the greatest bisimulation relation

between two systems, a property that is mu-calculus definable, and hence parity definable.

Moreover, part 2 of Property 5.20 and Property 5.23 (local correctness) are ensured with the

constructions, i.e., the three sets of rules, given below:

1. Rules for the construction of the (pre)board D = (D,≤D). Let D be the least poset,

whose bottom element is ⊥D = (⊥M ,⊥T), such that:

• if (s,q) ∈D & s→M e & ∇((s,q)) = ∇(⊥D), then

(e,q) ∈D & ((s,q),(e,q)) ∈→D

• if (s,q) ∈D & q→T d & ∇((s,q)) = ∇(⊥D), then

(s,d) ∈D & ((s,q),(s,d)) ∈→D

• if (s,d) ∈D & s a−→M e & ∇((s,d)) 6= ∇(⊥D) & ∃q ∈ T . q a−→T d, then

(e,d) ∈D & ((s,d),(e,d)) ∈→D

• if (e,q) ∈D & q a−→T d & ∇((e,q)) 6= ∇(⊥D) & ∃s ∈M . s a−→M e, then

(e,d) ∈D & ((e,q),(e,d)) ∈→D

provided that there is no p ∈ D where the ideal ↓p contains two elements (u,v) and

(m,n) for which either u #M m or v #T n, i.e., all chains are conflict-free!

2. Rules for the polarisation function ∇:
∇(⊥D) = ∀ (resp. ∃) , if EQ is ∼ (resp. 6∼)

∇(d′) = ∀ (resp. ∃) , if d→D d′ & ∇(d) = ∃ (resp. ∀)
3. Rules for a complete set of winning conditions W :

W (~) = ∃ (resp. ∀) , if inf(~) & EQ is ∼ (resp. 6∼)

W (~) = ∃ (resp. ∀) , if ¬inf(~) & EQ is ∼ (resp. 6∼) &

∃d ∈ ~. d 6→D & ∇(d) = ∀ (resp. ∃)
where inf : Γ→{true,false} is a predicate characterising open, infinite plays.

The poset generated with the rules given above is not yet a valid polarised board since it

does not satisfy that if SP(d) then | d→ |= 1 and ∀e ∈ d←.| e→ |= 1. Thus, in order to play the

game we need to add a few elements to D, so that the condition holds. Graphically, we need to

define the two maps depicted in Figure 5.3.

Then, as the reader can see (from Figure 5.3), the following transformations on D, which

we denote by “:=”, do the intended job:

5.3. Expressivity 103

di

 A
AA

dx

d

>>}}}

 @
@@

... =⇒

d j

>>~~~
dz

di
""E

EE
dx

d1
// d∗

==zzz

!!C
CC

...

d j

==zzz
dz

if SP(d) then | d→ |= 1

di
##GG

GG

d // dm =⇒

d j

;;xxxx
// dn

di
$$HH

H

d∗ // d1
// dm

d j //

;;xxx
dn

if SP(d) then ∀e ∈ d←.| e→ |= 1

Figure 5.3: Maps which guarantee that if SP(d) then | d→ |= 1 and ∀e ∈ d←.| e→ |= 1.

1. if SP(d) and | d→ |> 1, then:

• D := D ∪{d1,d∗}\{d}
• →D :=→D ∪{(d1,d∗)}∪{(u,d1) | u→D d}∪{(d∗,v) | d→D v}

\{(u,v) | d = u∨d = v}
• ∇(d∗) = ∇(d)

2. if SP(d) and ∃e ∈ d←.| e→ |> 1, then:

• D := D ∪{d∗,d1}\{d}
• →D :=→D ∪{(e,d∗),(d∗,d1)}∪{(u,d1) | u→D d∧u 6= e}

∪{(d1,v) | d→D v}\{(u,v) | d = u∨d = v}
• ∇(d∗) = ∇(e)

Now the poset D is a valid polarised board, and the following statement holds:

Theorem 5.33. (Correctness) Let V(P) be a bisimulation checking problem. The CLG aP

associated with V(P) is sound, complete, and determined.

Proof. Showing that the game aP is closed under dual games and have a complete set of win-

ning conditions is immediate from the construction of V(P) given above. So, we only have to

show that the rules to construct D are locally correct.

First, suppose the two systems being compared are bisimilar. Then, Eve cannot lose in

⊥D because ∇(⊥D) = ∀; and, by hypothesis, she cannot lose in any local position d such that

d 6→D , because in all such local positions it must be the case that ∇(d) = ∀ as well. Then, ⊥D

and all local positions such that d 6→D are locally correct. Finally, let ∇(d) = ∃; in this case, Eve

must respond to a choice just made by Adam (due to the initial strictly alternating construction

of the (pre)board), and then, by hypothesis, there exists some d′ such that d →D d′ that Eve

can choose. Thus, she cannot lose in any of those positions either, and hence, all such positions

104 Chapter 5. Concurrent Logic Games

must be locally correct as well. The case when the systems are not bisimilar is dual. Therefore,

the conditions for applying the Theorems 5.28 and 5.29 hold, and the result follows.

Although this concurrent bisimulation game is sound, complete, and determined, up to this

point one cannot effectively decide which of the two players of the game has a winning strategy

since a board can be infinitely large. However, as shown by McMillan [63], one can construct a

finite, though “complete”, representation of a possibly infinitely large poset structure modelling

the behaviour of a concurrent system by using the unfolding technique [25].

The unfolding technique introduced by McMillan was initially defined for a class of Petri

nets (cf. Chapter 6 of McMillan’s PhD thesis [63]), but later extended to many other models

of concurrency, chiefly by Esparza and collaborators (see [25] for a good introduction). Such

a technique constructs a partially ordered structure which is finite and has the property that

it contains all the states and transitions of the ‘reachability graph’ associated with the initial

(folded) system. This partially ordered structure is called a finite complete prefix.

The construction of a finite complete prefix (as done in [63]) is based on the recognition of

a set of so-called ‘cut-off’ events/actions/transitions which do not introduce any new behaviour

to the prefix already constructed. This set of cut-off elements relate different states of the initial

system and are the only sources of infinite behaviour. In our setting, the set of cut-off events is

the set of elements that define the recursive relation 	, in the obvious way: if t = u→ w and

t is a cut-off event/action/transition, then there exists some state v such that u 	 v such that,

by the definition of cut-off events, w and v represent the same state in the original system and

moreover v belongs to the prefix already constructed.

Therefore, in order to play the concurrent bisimulation game defined before, one only needs

to consider a board which contains no more than the pairs of states that correspond to the

elements in the Cartesian product of the finite complete prefixes of the two systems M1 and

M2 under consideration. More precisely, let D′ be the smallest finite board whose terminal

elements are either the terminal elements of the original board D or ‘cut-off local positions’

d = (s,q)∈D such that there exists a local position e = (m,n)∈D for which e≤D d and either

s 	 m and q 	 n, or s = m and q 	 n, or s 	 m and q = n. And, since in this new board D′

(arguably, a finite complete prefix of D) all plays will be of finite length due to the cuts, then

let the predicate inf be redefined as follows: for any play ~ in D′ we have that inf(~) iff for

all terminal elements d = (s,q) of ~ we have that d is a cut-off local position of D.

Proposition 5.34. (Termination) Let V(P) be a bisimulation checking problem for two finite

systems M1 and M2. The winner of aP can be decided in finite time.

Proof. Follows from Theorem 5.31 since the two systems M1 and M2 can be given finite poset

representations as described before.

5.3. Expressivity 105

5.3.2 Model-Checking

In order to construct a CLG for Lµ model-checking we need to give a poset representation T
of Lµ formulae. We do so by representing Lµ formulae as event structures. The construction

also uses the subformulae relation given by the Fischer–Ladner (FL) closure of Lµ formulae

(cf. Chapter 2) and the semantic equivalence between the denotations of fixpoint variables and

the denotations of their unfoldings.

Thus, we first define a poset representation of a Lµ formula, and then show how to construct

a concrete CLG for this verification problem. We write MC(M,φ,|=) for a Lµ model-checking

problem V(P), and MC(M,φ,6|=) for its dual V(Pop), which is equivalent to model-checking

the negated formula ¬φ; similar to the bisimulation case, we write |= and 6|= if the the system

and Lµ formula are obvious from the context.

Let Sub(φ) be the subformula set of a Lµ formula φ. According to the FL closure of Lµ

formulae, at the end of the (tree) unfolding of an Lµ formula there are only fixpoint variables.

Let F be the set of all subformulae in the infinite unfolding of an Lµ formula and vµ the

partial order on such a set, such that ψvµ φ, i.e., ψ is a subformula of φ, iff Sub(ψ)⊆ Sub(φ).

Moreover, let #∨µ be a binary relation on Lµ formulae, such that (ψ1,ψ2) ∈ #∨µ iff there exists φ

such that φ = ψ1∨ψ2. Now, define #µ as the irreflexive and symmetric conflict relation on Lµ

formulae such that, as usual, if ψ1,ψ2,ψ3 ∈ F and ψ3vµψ2#∨µ ψ1, then ψ3#µψ1.

Definition 5.35. (Partial order Lµ specifications) Let φ be an Lµ formula. A poset model of

φ is a poset T = (F ,vµ) such that F is the set of subformula sets in the unfolding of φ, and

vµ is the subformula set inclusion ordering given by the FL closure of Lµ formulae such that

any two occurrences Zi
1 and Zi

2 of the same fixpoint variable Z at the same unfolding level i are

mapped to the same subformula set {Zi} if, and only if, (Zi
1,Z

i
2) 6∈ #µ. /

Lemma 5.36. (Lµ Poset specifications) For any Lµ formula φ there is a labelled event structure

E = (E,4,],η,Σ) that represents it. Moreover, to such an event structure a recursion relation

	⊆ E×E can be associated. Then, a poset specification of an Lµ formula is a node-labelled

recursive poset structure.

Proof. There is a simple reduction from the poset model of an Lµ formula φ to a labelled event

structure, as follows: let E be F , 4 be v−1
µ , and] = #µ. Moreover, let Σ be a set of formula

labels, and η be a labelling function from elements of the set of subformula sets E to Σ. Then

E is an event structure. Finally, the recursion relation 	 is defined with respect to the fixpoint

variables since they are the only formulae that increase the size of an Lµ formula, and therefore

allow for infinitely large poset representations. So, let ψ be a fixpoint variable; we say that

ψ 	 ϕ iff ϕ is the smallest (resp. biggest) subformula with respect to 4 (resp. vµ) such that

ϕ 4 ψ (resp. ψvµ ϕ) and, moreover, ϕ corresponds to the Lµ formula to which ψ unfolds.

106 Chapter 5. Concurrent Logic Games

Parities and Types. Since Lµ model-checking is equivalent to solving a parity game, let

χ : F → ϒ be a function typing the elements of T = (F ,vµ) as expected: ∃ is assigned to

disjunctions, diamond modalities, greatest fixpoint operators, and their corresponding fixpoint

variables; and ∀ is assigned to the dual operators. Using this information, ∇ can be defined

according to χ. On the other hand, in order to define W , one has to assign parities to D , which

can be done in the usual way through the parities associated with the formulae in F .

Let κ : D → N be a function that assigns natural numbers to local positions according to

the Lµ formula associated with a local position d ∈D , this is, even numbers iff ∇(d) = ∃, odd

numbers iff ∇(d) = ∀, and the priorities respect the ranks of the fixpoint operators in the usual

way (as in a parity game for Lµ model-checking). Also, let rnk : Γ∞→ N be a function from

the set of infinite plays Γ∞ to the least priority seen infinitely often in a given play ~ according

to κ. Since rnk is undefined for finite plays, it is therefore a partial function on Γ.

Finally, a concurrent game for Lµ model-checking is easily shown to be closed under dual

games since Lµ is closed under negation and, moreover, it is equivalent to a parity game, i.e.,

the set of winning conditions is parity definable. Therefore, parts 1 and 3 of Property 5.20 are

satisfied. Let us now show the construction of the other parts of the CLG model for Lµ model-

checking, namely of D, ∇, and W . Thus, for a verification problem MC(M,φ,|=), let M =

(S ,≤S ,ηS ,ΣS ,	S ,#S) be the poset representation of M and T = (T ,≤T ,ηT ,ΣT ,	T ,#T) be

the (node-labelled) poset representation of φ:

1. The construction of D = (D,≤D), whose bottom element is⊥D = (⊥S ,⊥0
T), is given by

the rules that determine the satisfaction relation of Lµ formulae (see Chapter 2 or [14]).

As in the bisimulation case, D is the least poset such that:

• if (s,{Zi}) ∈D & ν
µZi.φ, then

(s,{φi+1}) ∈D & ((s,{Zi})(s,{φi+1})) ∈→D

• if (s,{ν
µZi.φ}) ∈D , then

(s,{φi}) ∈D & ((s,{ν
µZi.φ})(s,{φi})) ∈→D

• if (s,{φ1∧i φ2}) ∈D , then

(s,{φi
1}) ∈D &

((s,{φ1∧i φ2}),(s,{φi
1})) ∈→D & ((s,{φ1∧i φ2}),(s,{φi

2})) ∈→D

• if (s,{[a]i φ}) ∈D & s→a
S s′, then

(s′,{φi}) ∈D & ((s,{[a]i φ}),(s′,{φi})) ∈→D

and likewise for ‘∨’ and ‘〈a〉’; moreover ν
µ ∈ {µ,ν}

2. Rules for the polarisation function ∇:
∇((s,q)) = ∀ (resp. ∃) , if MC is |= (resp. 6|=) & χ(q) = ∀ (resp. ∃)
∇((s,q)) = ∃ (resp. ∀) , if MC is |= (resp. 6|=) & χ(q) = ∃ (resp. ∀)

provided that | (s,q)← |= 1, i.e., that (s,q) is not a synchronization point.

3. Rules for the complete set of winning conditions W :

5.3. Expressivity 107

W (~) = ∃ (resp. ∀) , if inf(~) & MC is |= (resp. 6|=) &

rnk(~) is even (resp. odd)

W (~) = ∃ (resp. ∀) , if ¬inf(~) & MC is |= (resp. 6|=) &

∃d ∈ ~. d 6→D & ∇(d) = ∀ (resp. ∃)
W (~) = ∀ (resp. ∃) , if inf(~) & MC is |= (resp. 6|=) &

rnk(~) is odd (resp. even)

W (~) = ∀ (resp. ∃) , if ¬inf(~) & MC is |= (resp. 6|=) &

∃d ∈ ~. d 6→D & ∇(d) = ∃ (resp. ∀)

And, as in the bisimulation case, the elements of the board must satisfy that there is no

p ∈ D where the ideal ↓p contains two elements (u,v) and (m,n) for which either u #S m or

v #T n, i.e., all chains are conflict-free! The only final consideration is that in order for the

board D to satisfy the condition that if SP(d) then | d→ |= 1 and ∀e ∈ d←.| e→ |= 1, we need

to consider only Lµ formulae in ‘guarded form’ 6 [54] as well as transformations which are

similar to those used in the bisimulation case.

The reasons are that, due to the construction of poset Lµ specifications, for all synchro-

nization points (s,ψ) ∈D we have that ψ is always a fixpoint variable. Then, this ensures that

∀e ∈ d←.| e→ |= 1, as the formula component of e can never be a boolean operator. Moreover,

since a fixpoint variable unfolds to a unique Lµ formula, it is always true that | d→ |= 1. Since

the conditions to instantiate metatheorem 5.28 hold, then we have the following result:

Theorem 5.37. (Correctness) Let V(P) be a mu-calculus model-checking problem. The CLG

aP associated with V(P) is sound, complete, and determined.

Proof. Again, Property 5.20 is satisfied because closure under dual games is given by the fact

that Lµ is closed under negation, the winning conditions of an Lµ model-checking problem are

parity definable, and the rules given before ensure that the set of winning conditions given by

W is complete. So, we only need to show that the rules for the construction of the board are

locally correct, i.e., that Property 5.23 also holds.

The local correctness condition follows from the fact that the elements in →D that relate

different local positions are exactly the rules that define the semantics of Lµ formulae, i.e.,

the one-step rules for the satisfaction relation |= of Lµ, which are necessarily locally correct.

Then, given a local position (s,ψ), we can ensure that the rules to define any (s′,ψ′) such that

(s,ψ)→D (s′,ψ′) are locally correct by checking all possible cases for ψ following the usual

case analysis for Lµ formulae [14].

Firstly, regardless of whether a local configuration is false or true, if it corresponds to a

fixpoint formula or a fixpoint variable, then it unfolds to a unique Lµ formula (in the same

6Roughly speaking, an Lµ formula φ is in guarded form if every occurrence of a fixpoint variable in φ is within
the immediate scope of a modal operator; since any Lµ formula can be translated into an equivalent one in guarded
form, considering only formulae in guarded form is by no means a restriction.

108 Chapter 5. Concurrent Logic Games

state) and therefore true or false is preserved—i.e., neither Adam nor Eve has any influence on

the truth value of the new configuration; the same happens if the local configuration is a join

in the poset, which, according to our constructions, has to correspond to a local configuration

associated with a fixpoint variable.

Now, suppose that a local configuration is true and it is none of the previous cases. Then,

if it is assigned to Adam, it must correspond to a conjunction or a box modality (whenever

MC is |=) and since the local configuration is true then either all successor local positions

that eventually synchronize with independent choices of Eve are true as well (because Eve

can preserve truth). As a consequence Adam must preserve truth as well. This is the reason

why preservation of the existence of join is needed in a concurrent setting. Now, if, on the

other hand, such a true local configuration has been assigned to Eve, then it corresponds to a

disjunction or a diamond modality and hence she can simply choose the successor that makes

the next global configuration true as well; therefore, truth is also preserved in this case.

The case when the local configuration is false is dual (by exchanging values and roles

above). Also, if MC is 6|= the arguments are the same but with the roles of Eve and Adam

exchanged. As a result, the semantic local correctness condition holds, and Theorems 5.28 and

5.29 and Corollary 5.30 apply here as well.

As in the bisimulation case, the board D to be constructed for this verification problem can

be bounded as well provided that M is the poset representations of a finite system. In this case,

any infinitely large poset T can be reduced to its finite poset representation which contains only

terminal elements of D or ‘cut-off local positions’ as the terminal elements of the new finite

board where the game is played. It is well known that such a board is actually bounded by the

size of the system M or rather of its poset representation in this setting. In more traditional

techniques this upper bound can be used to ensure that the number of fixpoints approximants

that must be calculated before knowing that either a greatest fixpoint has been satisfied or a

least fixpoint has failed has been reached, and therefore that no more computations are needed.

Moreover, as in the bisimulation checking, the recognition of infinite plays is redefined in

the same way. And finally, the definition of the rank function rnk, which depends only on plays

of infinite length is redefined as follows: let ~ be a play such that inf(~) holds. Then, due to

the new definition of the function inf there exist two sets of local positions, namely dom()

and codom(), that characterise, respectively, the terminal elements of the new board D′ that

allow for infinite behaviour and the returning points to previous elements in the new board.

Since the priorities between the elements of such sets are the ones that are seen infinitely often,

then rnk has to evaluate to the least number in such a set. More precisely, it has to evaluate to

min{κ(d) | d ∈ ~∩ (↑codom()∩↓dom())}. Then, one has the following result:

Proposition 5.38. (Termination) Let V(P) be a mu-calculus model-checking problem for a

finite system M. The winner of aP can be decided in finite time.

5.3. Expressivity 109

Proof. Follows from Theorem 5.31 and the effective construction of the finite poset represen-

tations given above.

Example 5.39. (A CLG model for Lµ model-checking) Let us finish this section with an

example of a CLG model for Lµ model-checking. Let M be the Petri net in Figure 5.4 and T a

partial order representation of the Lµ formula µZ. [−]Z∨〈c〉tt. The poset D in Figure 5.5 is the

board of the CLG aP associated with MC(M,φ,|=). The type {∃,∀} given by ∇ is shown as a

superscript, whereas the parity given by κ is shown as a subscript in each element of D.

Notice that Eve and Adam can play concurrently in the (sub)chains that are independent

in D. Eve wins the game, and her winning choices are defined by the poset ↓({c},Y)∃2 ∪
↑({c},Y)∃2 . In Figure 5.5, the superscripts of Lµ formulae are omitted. Moreover, we only

depict explicitly the board D that is generated if one considers the recursive poset structures

associated with the poset representations of the Petri net M and the Lµ formula φ. Notice that

independent subgames can be analysed independently, and therefore distributed in practice.

Moreover, some subgames are joined and, as a consequence, need not be re-evaluated. /

//'&%$!"#• // a //'&%$!"#
##F

FF
FF

F

c •

//'&%$!"#• // b //'&%$!"#
;;xxxxxx

µZ0

∨0

lllllllllll
NNNNNNN

∧0

||
|| CC

CC
〈c〉0

[a]0

DDD
D

[b]0 [c]0

zz
zz

νY 0

Z0 Y 0

∨1

zz
zz EEE

E Y 1

∧1 〈c〉1

Figure 5.4: A Petri net M and the poset representation of the Lµ formula φ = µZ. [−]Z∨〈c〉tt. We only

depict the main operators in φ and omit the conflict relation #µ beneath the logical disjunctions ∨i, for

i ∈ N. In this case, the poset is depicted downwards, i.e., the bottom element of the poset is µZ0.

110 Chapter 5. Concurrent Logic Games

({
},

µZ
)∀ 1

({
},
∨)
∃ 1

ff
ff

ff
ff

ff
ff

ff
ff

YYYYYYYYYYYYYYYYYY

({
},
∧)
∀ 1

ll
ll

l
RRRRR

({
},
〈c
〉)
∃ 1

({
},

[a
])
∀ 1

({
},

[b
])
∀ 1

({
},

[c
])
∀ 1

({
a}

,Z
)∀ 1

({
b}

,Z
)∀ 1

\\

({
a}

,∨
)∃ 1

mm
mm

RRRR
({

b}
,∨

)∃ 1
kk

kk
k

SSSSS

({
a}

,〈
c〉

)∃ 1
({

a}
,∧

)∀ 1
ll

ll
RRRR

({
b}

,〈
c〉

)∃ 1
({

a}
,∧

)∀ 1
ll

ll
l

RRRR

({
a}

,[
a]

)∀ 1
({

a}
,[

b]
)∀ 1

XXXXXXXXXXXXXX
({

a}
,[

c]
)∀ 1

({
b}

,[
a]

)∀ 1

ee
ee

ee
ee

ee
ee

ee
ee

({
b}

,[
b]

)∀ 1
({

b}
,[

c]
)∀ 1

({
a,

b}
,Z

) 1

({
a,

b}
,∨

)∃ 1

ff
ff

ff
ff

ff
ff

f
YYYYYYYYYYYYYYY

({
a,

b}
,〈

c〉
)∃ 1

({
a,

b}
,∧

)∀ 1
kk

kk
SSSS

({
c}

,ν
Y

)∃ 2
({

a,
b}

,[
a]

)∀ 1
({

a,
b}

,[
b]

)∀ 1
({

a,
b}

,[
c]

)∀ 1

({
c}

,Y
)∃ 2

({
c}

,Z
)∀ 1

Fi
gu

re
5.

5:
Th

e
bo

ar
d

D
of

th
e

C
LG

a P
fo

r
M

C
(M

,φ
,|=

).
Th

e
st

at
es

of
M

ar
e

re
pr

es
en

te
d

by
se

ts
of

(‘p
rin

ci
pa

l’)
ev

en
ts

in
M

.

5.4. Prime Concurrent Games 111

5.4 Prime Concurrent Games

A powerful feature of the CLG model, which in turn makes it easier to analyse, is that each

global position D of a board D determines the history ~ of the game up to such a position; this

is, the union of all order ideals given by each local position d ∈ D. What is not determined is

the set of local strategies, and hence global strategy, that has been used to reach such a position.

This is due to the fact that two different local strategies λ and λ′ may behave the same

up to some point in the game, say up to a local position d, but operate differently after it.

For instance, suppose that two different local strategies λ and λ′ are defined at d. Notice that

although for both strategies could have been used to reach d, it is also possible that λ(d) = e

and λ′(d) = e′, such that e 6= e′; otherwise reaching global positions different from singleton

sets, i.e., playing concurrently, would not be possible.

This fact, namely that a local position d determines its own ‘history’ ↓d, explains why in

a partial order setting, unlike for games on graphs, a strategy can be defined from a single

position to a next position of the game, rather than from the whole history of a play to a next

position, i.e., to a set of nodes in the graph, without really depending on whether the strategy

is positional or not in the traditional sense. This feature of games on posets raises a natural

question: ‘what exactly is a history-free winning strategy in a concurrent game on a poset?’. A

useful fact for answering this question is the following result for usual sequential games:

Fact 5.40. (Closure under history-free strategies) The union of history-free strategies is a

history-free strategy.

Then, in order to answer the question given before, one needs to introduce a notion that

formally ensures that a local strategy really is history-free (positional or memoryless). Let

us consider an equivalence relation ∼ on positions of a game board D given by a quotient

set (D/∼). We say that a local strategy λ is history-free or memoryless if, and only if, for all

d,d′ ∈ [d0]∼, if λ(d)= e and λ(d′)= e′, then e,e′ ∈ [e0]∼, where d0 and e0 are two representative

local positions of the equivalence classes under consideration.

In this way, even though ↓d 6= ↓d′, we can ensure that λ behaves uniformly on all elements

of the equivalence class [d0]∼, i.e., independently of the history of the game. This means that

under this restriction and with respect to the quotient set (D/∼), a local strategy λ defined at

d really depends only on d rather than on the whole order ideal ↓d. It should be easy to see

that in our setting a local strategy is memoryless, in the traditional setting, if we let ∼ be the

equivalence relation on elements of an unfolding, i.e., if ∼≡∼ fu .

A poset ↓d is sometimes called a prime ideal (instead of an order ideal) and d its ‘prime’

element. Thus, since a memoryless local strategy λ must behave uniformly in all d,d′ ∈ [d0]∼,

then the prime elements of a board can be used to characterise the memoryless strategies for the

game. Since such strategies are desirable, let us define the following subclass of logic games: a

112 Chapter 5. Concurrent Logic Games

‘prime concurrent game’ is the subclass of concurrent games on partial orders where the local

strategies in ΛD are memoryless, i.e., characterised by the prime elements in D. From a prac-

tical viewpoint, further investigations into problems that can be reduced to prime concurrent

games are desirable since, by the definition of prime concurrent games, the following holds:

Fact 5.41. Prime concurrent games have memoryless winning strategies, if any.

5.5 Summary

We have defined a sound, complete, and determined concurrent logic game model which can

be played directly on partial orders, and showed that in such a setting different decision

problems—which include bisimulation and model-checking—and concurrent systems can be

analysed uniformly. This approach makes easier the design of different logic games for ver-

ification by focusing on simple local correctness conditions, and is well suited for reasoning

about partial order models, such as Petri nets, event structures, or TSI models, since poset

representations are considered rather than interleaving graph representations.

This chapter generalises to a partial order setting previous work on games both for bisim-

ulation and for Lµ model-checking, in a uniform way, while embracing well-known traditional

sequential techniques. Moreover, through the use of concurrent games we have provided an

implicit method for reducing the state space to be analysed since independent subgames (and

their sub-boards) are analysed only once; as a consequence, some—though not all—irrelevant

interleavings are avoided, and identical subgames are not unnecessarily re-evaluated.

Also, the lift to a partial order setting allowed us to define some metatheorems that can

provide, in a number of cases, reusable solutions for different problems and systems by using

general and powerful order-theoretic techniques, which, to the best of our knowledge, had not

been previously investigated in order to formalize a concurrent logic game for verification.

Chapter 6

Conclusions and Further Work

The results of this thesis are related to three connected topics: mu-calculi, bisimulation equiv-

alences, and model-checking problems; then, the conclusions, most relevant related work, and

ideas for further research are given accordingly. As we were interested in mu-calculi as fix-

point extensions of modal logic as well as in bisimulation and model-checking problems from

a games perspective, our results mainly relate to work on these topics with respect to partial or-

der models. However, as our framework also embraced interleaving systems, at times, pointers

to similar work in the interleaving context are given along with our concluding remarks.

6.1 Logics with Partial Order Models

Our work on mu-calculi can be related to modal and temporal logics with partial order models

at large, not only to mu-calculi for true concurrency. Work on logics with partial order mod-

els dates back to the 1980’s soon after the introduction of temporal logics for verification. In

the most traditional approaches, formulae of logics with partial order semantics were usually

given denotations that considered the one-step interleaving semantics of a particular partial

order model. Following this approach no new logical constructions had to be introduced; un-

fortunately, in this case, the explicit notion of concurrency in the models is completely lost.

As a result, a common solution when defining logics with partial order models was to

introduce operators that somehow capture the independence information on the partial order

models. In most cases that kind of logical independence is actually a sequential interpretation

of concurrency, which is based on the introduction of past operators sensitive to concurrent

transitions and a mixture of forwards and backwards reasoning; however, this can lead to unde-

cidability results with respect to the decision problems related to such logics, e.g., with respect

to their satisfiability, equivalence, or model-checking problems, cf., [70, 75, 76, 78].

Several logics with the characteristics described above whose semantics are given using

partial order models (as well as their related decision problems) can be found in [76, 78], and

113

114 Chapter 6. Conclusions and Further Work

the references therein. Other logics with partial order semantics that do not appear there can

be found, e.g., in [6, 70], but the literature includes many, many more references. It is worth

saying that not all such logics are extensions of modal logic or even other kinds of mu-calculi.

In some cases, they are variations of usual temporal logics, such as LTL, CTL, and CTL∗.

More recently, partly motivated by preliminary results of this thesis (presented in [39] and

contained in Chapters 3 and 4), Baldan and Crafa [7] introduced a logic for true concurrency

where independence is captured without the use of backwards modalities. Instead, they intro-

duced of a novel logical characterisation of the concepts of observation and execution over the

elements of an event structure. Their interest was to define a logic to capture several equiva-

lences for true concurrency; they succeeded in different directions as some syntactic fragments

of their logic capture various equivalences for (true) concurrency: strong, step, pomset, hp, and

hhp bisimilarity. Therefore, the equivalence induced by the full logic is undecidable [52].

At a more philosophical level, our study on logics for true concurrency is also similar to

that of Bradfield and Fröschle [11, 12]—a work primarily on mathematical logic using game

logics for true concurrency. Bradfield and Fröschle’s main goal was to explicitly capture what

we call model independence, i.e., explicit concurrency in the models, in a logical way with the

use of ‘Henkin quantifiers’ (which are partial order generalisations of the usual quantifiers in

classical logic). More precisely, in [11] different properties of a number of fixpoint logics based

on Hintikka and Sandu’s ‘Independence-Friendly’ (IF) logic [47] are discussed, and in [12] the

bisimilarity induced by one of such logics, namely of ‘IF modal logic’ (IFML), is thoroughly

studied. Their main motivation closely relates to ours, especially because of their interest in

the bisimulation equivalences induced by such logics as well as the use of games.

However, the mu-calculi original to this thesis have mathematical foundations different

from all the examples above. Here, we have given a logical characterisation to the dualities

that are found when analysing locally the relationships between concurrency and conflict as

well as concurrency and causality. This characterisation aims at defining connections between

equivalences that take into account the notion of independence when considering partial or-

der semantics, and which can be defined at the level of the models (then, capturing a model

independence) as well as at the level of the logics (then, capturing a logical independence).

A key ingredient of our work on logic is that we allowed a free interplay of fixpoints and

local monadic second-order power in the mu-calculi we have presented. Our results, together

with the analysis of some of the related work, suggest that restricting the quantification power

to conflict-free sets (of transitions) in partial order models may be a sensible/plausible way of

retaining decidability while still having a high expressivity. In fact, as our mu-calculi are at

least as expressive as Lµ in an interleaving context, nothing is lost with respect to the main ap-

proaches to logics for concurrency with interleaving semantics. Instead, logics and techniques

for interleaving concurrency are extended to a partial order setting in our framework.

6.2. Logics for Local Reasoning 115

6.2 Logics for Local Reasoning

The mu-calculi developed here can be related to logics for local reasoning. In particular, the use

of separation properties for local reasoning has been investigated elsewhere and successfully

applied in many settings. Separation as disjointness of resources was an idea introduced to

computer science in the 1970’s in order to reason independently about program components.

However, the “revolution” came many years later when this idea was recast by Reynolds et al.

[73, 83] to address the problem of verifying the correctness of programs with pointers.

Since then, due to the success of this approach, a great deal of work has been done in

different areas by applying the notion of separation of resources to reason independently about

different systems. For instance, to specify safety properties of concurrent programs [15, 44], to

verify while programs with no concurrent behaviour [86], to reason about proofs [81], to model

resource-sensitive processes [80], etc. At present, the literature includes many more examples.

In [73], some of these works are discussed and several open problems are presented. One

of them, which had not been addressed until now, was that of using this kind of local reasoning

to specify and verify both linear-time and branching-time temporal properties. In this thesis

we do so. The task required a heavy use of a mixture of concepts of true concurrency and fix-

point theory, besides the introduction of a new concept of locality, namely that of support sets.

Locality and concurrency are therefore connected in our framework in terms of specification.

6.3 On Bisimulation

Bisimulation equivalences have been intensively studied in concurrency in the last thirty years

because they are ‘observational equivalences’, perhaps the most natural behavioural equiva-

lence notions for concurrent systems. In this thesis we have argued that the problem of ob-

serving concurrency and nondeterminism, as initially studied by Milner and Hennessy [46] on

interleaving models, can be refined to a problem of observing concurrency, causality, and con-

flict in a partial order context. Consequently, we studied bisimilarities that were introduced to

reason about concurrent systems with partial order semantics. In particular, we focused our

attention on the two strongest bisimilarities in [26, 35], namely on hpb [82] and hhpb [51].

Closely related to our results is the work of Joyal, Nielsen, and Winskel [51] on bisimula-

tion from ‘open maps’. Whereas in [51] they proposed a categorical approach to defining an

abstract or model independent notion of bisimulation equivalence for several concurrent sys-

tems, here we have proposed a logical one, following the way of reasoning used in [46, 69],

but in a partial order setting instead of in an interleaving one.

This was done by defining the semantics of our mu-calculi by an intermediate mathematical

structure—namely through a process space—which was intended to be used as a common

bridge between the particular models of concurrency under consideration. Then, two partial

116 Chapter 6. Conclusions and Further Work

order models, possibly of different kinds, can be compared within the same framework by

comparing logically their associated process spaces. Thus, following this approach one can

study different models of concurrency uniformly, even interleaving ones.

Moreover, the strongest bisimilarities introduced in this thesis are decidable, and thereby

their associated logical and game characterizations. Nielsen and Clausen [70] have also studied

logics and games for other bisimilarities for concurrency, namely of hhpb, a concretization of

the abstract notion of bisimulation defined in [51]. Since hhpb is undecidable, computing

the winner in such games is also an undecidable problem. However, our result holds over

Ξ systems, whereas Nielsen and Clausen’s work considers arbitrary systems without auto-

concurrency. Presently, we do not know whether hhpb is decidable on the class of Ξ systems.

As mentioned before, Bradfield and Fröschle [12] also studied the equivalence induced by

IFML using game-theoretic techniques. They followed a logical approach, which is in spirit

quite close to our work. Unfortunately, albeit being a very interesting work, the bisimilarity

induced by IFML did not coincide, in most cases, with the standard bisimilarities for partial

order models, not even for classes of systems with very restricted concurrent behaviour.

Finally, although our results apply to classes of Petri nets, event structures, and TSI mod-

els, we believe that they also apply to other models of concurrency provided that in such mod-

els the local dualities we study here can be defined too. For instance, interleaving equiv-

alences, say, for transition systems (and their unfoldings) appear as particular cases in our

framework. Indeed, strong bisimilarity—the standard bisimulation equivalence for interleaving

concurrency—is captured by both syntactic and semantics means in our framework. Therefore,

nothing is lost with respect to the main approaches to bisimulation for interleaving concurrency.

6.4 On Model-Checking

In the past three decades model-checking has emerged as a remarkably powerful technique

for verification which has had a big impact in practical applications. Not surprisingly, Clarke,

Emerson, and Sifakis won in 2007 the ‘Alan M. Turing award’ (the “Nobel prize” in com-

puter science) for their seminal work and contributions to the development of model-checking,

recognizing in this way how important this verification technique has become nowadays.

Indeed, several techniques (not only game-theoretic ones) for model-checking concurrent

systems both with interleaving and with partial order semantics have been studied elsewhere;

see [17, 25, 32, 36, 37, 55, 63, 89] for many different examples. As our main motivation was to

develop games (and induced decision procedures whenever decidability followed) to analyse

concurrent systems with partial order semantics, only the techniques considering these kinds

of systems directly relate to our work, though, as mentioned before, not all such techniques are

game-theoretic. Thus, let us talk a little more about games approaches to model-checking.

6.4. On Model-Checking 117

As shown in [37, 97], model-checking games have been studied for both theoretical and

practical reasons in the last few years. For instance, in order to formally pin down their logical

and mathematical properties [38, 55, 90] or to construct tools for verification, e.g., [33, 88].

Most approaches based on games have considered either interleaving models or the one-step

interleaving semantics of partial order models.

Our work differs from these approaches in that we deal with games played on partial order

models rather than on interleaving structures. This difference makes the landscape algorithmi-

cally harder since in a partial order setting most model-checking problems are computationally

more complex [24]—some of which even undecidable over finite concurrent systems [56]. The

games developed in this thesis are all decidable in the finite case; moreover, although we did

not study complexity issues, our games are clearly exponential and so not better than the best

decision procedures for interleaving systems from a theoretical complexity point of view.

Regarding the temporal verification of event structures, previous studies have been done

on restricted classes. Closer to our work in Chapter 4 is [56, 77]. Indeed, model-checking

regular trace event structures has turned out to be rather difficult and previous work has shown

that verifying MSO logic properties on these structures is already undecidable. For this reason

weaker (classical, modal, and temporal) logics have been studied. Unfortunately, although very

interesting results have been achieved, especially in [56] where CTL∗ temporal properties can

be verified, previous approaches have not managed to define decidable theories for a logic with

enough expressive power to describe all usual temporal properties as can be done with Lµ in

the interleaving case, and hence with SFL and Lµ when considering partial order models.

Recall that one of the reasons why Lµ is more expressive than CTL∗ is that Lµ can express

properties about “moments” in computation paths, whereas CTL∗ in general cannot do so.

Similarly, one can think of simple properties that talk about moments in traces (i.e., posets) of

partial order models. Those kinds of properties are not expressible in logics whose expressive

power equals that of CTL∗ on interleaving models, e.g., [67]. This means that there are tem-

poral true concurrency properties that are not definable with logics (over partial order models)

whose temporal expressive power on traces equals that of CTL∗ on (infinite) trees or graphs.

The main difference between the logics and decision procedures in [56] and the approach

we followed here is that in [56] a global second-order quantification on conflict-free sets in the

partial order model is permitted, whereas only a local second-order quantification in the same

kind of sets is defined here, but such a second-order power can be embedded into fixpoint spec-

ifications, which in turn allows one to express more temporal properties. In this way we were

able to improve, in terms of temporal expressive power, previous results on model-checking

infinite, regular trace event structures against a branching-time logic for true concurrency.

Finally, our results on model-checking (along with those on bisimulation) suggest that there

is hope in developing a very general approach to verification, as we have defined a unified

118 Chapter 6. Conclusions and Further Work

framework, for both model-checking and bisimulation, which applies to several kinds of con-

current systems, not only those with partial order semantics—an approach that is investigated

in more detail in Chapter 5. Indeed, this claim is also supported by the fact that in different

cases we got almost for free various decision procedures for interleaving concurrency.

6.5 Sequential & Concurrent Games

Most games have been defined to be played sequentially, i.e., it is not the case that two players

make a move at the same time because either they take turns or alternate their actions in the

game. This setting has changed in the last years so as to address some problems in concurrency.

For instance, Abramsky and Melliès [1, 64] defined various classes of concurrent and asyn-

chronous games in which players can have strategies where several moves can be made inde-

pendently and at the same time. Such games are, however, not for verification; their main

application is in the area of formal programming language semantics. Also, Henzinger et al.

[4, 5] have studied concurrent games. In this case, such games are played on so-called ‘con-

current game structures’, which are graphs where several players can interact synchronously

in order to model the behaviour of reactive systems regarded as ‘open’ ones. These concur-

rent games, and also variants of them, have been used to study ω-regular properties of reactive

systems [4] as well as to give semantics to a number of logics for multi-agent systems, e.g., [5].

This thesis also studies concurrent games and, in particular, provides alternative, order-

theoretic foundations of the mathematics of concurrent games with respect to interleaving

approaches—e.g., with respect to the work presented in [4] and related concurrent games

played on interleaving structures. Whereas concurrent games on graphs provide a natural

framework for reasoning about systems with interleaving semantics, the CLG model devel-

oped here was especially designed so that it could be used directly in a partial order setting.

In fact, when considering a CLG on (the unfolding of) a graph structure or an infinite

tree, the game no longer needs to be concurrent. However, in this case, the CLG model is

a generalization of sequential games played on such structures, e.g., it generalises Stirling

games for bisimulation and Lµ model-checking [90] (and therefore also related tableau-based

techniques). Roughly, the generalization is similar to the way that infinite partially ordered

structures generalize infinite trees (as tableaux and sequential games can be seen as potentially

infinite trees). As in most parts of this thesis, this was done by keeping the information about

independence and locality in the partial order models of concurrency that we considered here.

It is also worth saying that the CLG model is inspired by the semantic concurrent games

model for Linear Logic [34] of Abramsky and Melliès [1] above mentioned. However, the

mathematics of the model presented in [1] have been drastically reformulated (in the quest

towards the answer of algorithmic questions), and only a few technical features were kept.

6.6. Further Work 119

6.6 Further Work

There are still many questions to be asked and answered for concurrent systems with partial

order semantics. Some of them already existed before this work and some others have been

risen more recently due to the development of this thesis.

Logic. We believe that the problem of looking for the logic for concurrency is perhaps as

difficult as looking for the model of concurrency. And, indeed, several authors regard some

particular logic as natural for concurrency whenever such a logic fits (mathematically) well

with a particular model of concurrency that is considered as natural already. Thus, we believe,

the answer for the question as to whether there is a natural logic for concurrency will be open

until some agreement can be reached with respect to what the model of concurrency should be.

However, some work can still be done with the aim to find a natural logic for concurrency. One

direction could be to look for a logic with as many of the following properties as possible:

• size: small in the number of basic constructs, but highly expressive;

• syntax: with operators for locality and independence (i.e., for true concurrency);

• semantics: provided with models that allow for local and modular reasoning;

• equivalence: preserved by composition and decomposition of sub-systems;

• decidability: achievable in as many models of concurrency as possible;

• complexity: hopefully not too difficult to check in real applications (though the theoreti-

cal complexity of the usual decision problems is expected to be high);

• usability: intuitive for humans, so either not a fixpoint logic as, in general, humans find

mu-calculi difficult to understand or with a suitable “syntactic sugar”.

In this thesis we developed logics which try to capture some of the properties above men-

tioned, but much work remains to be done. New and better logical formalisms can be studied

based on the experience we have gain with the development of this work—especially through

the use of support sets but in other logical contexts.

Another interesting idea is the study of independence logics, such as the family of IF logics

of Hintikka and Sandu in restricted settings. Bradfield and Fröschle [12] showed that in some

classes of systems IFML captures a very strong bisimulation equivalence for true concurrency.

It would be nice to see what happens when the very permissive notion of independence of

IFML is semantically restricted in order to capture only the information about concurrency that

a suitable support set of IFML formulae gives. Some inspiration can also be drawn from the re-

cent work of Baldan and Crafa [7] on a logic for true concurrency—where several equivalence

relations for concurrency are given a logical characterization.

A final idea is to look for a logic for posets as an indirect strategy. In this case, the logic

should allow for reasoning about fundamental elements of posets, e.g., about meets and joins

120 Chapter 6. Conclusions and Further Work

of particular kinds. To the best of our knowledge this idea has not been investigated yet as

posets have been thoroughly studied from an algebraic point of view, but not from a logical

one. This third avenue of further research seems to be a reasonable way to get some insights

into what the logic for posets should be like, and thereby, the logic for partial order models.

Bisimulation. A lesson to learn from the development of this work is that a potentially inter-

esting bisimulation equivalence for concurrency must be composable and decomposable with

respect to “prime” components of concurrent systems, i.e., a congruence with respect to a suit-

able set of operators for concurrency, causality, and conflict. There are already several equiva-

lences for concurrency that are preserved by refinement (causality and some forms of concur-

rency) and conflict (nondeterministic choices or branching behaviour), e.g., history-preserving

bisimilarities, but it is far more difficult to find equivalences which are congruences with re-

spect to operators for arbitrary forms of communication (i.e., for interdependent concurrency).

There are two main reasons for this: firstly, that communication is defined in very different

ways in different formalisms for concurrency; in fact, the way a particular language or model of

concurrency defines its communication mechanisms drastically affects the way a natural equiv-

alence for such a model or language is defined (e.g., bisimilarity for Milner’s CCS processes

[66]). Due to this, we wonder what the most natural notion of equivalence, say, for Petri nets or

for event structures is; some experts in the field believe that such an equivalence could be hhpb,

though the author’s personal view is that the issue is still open. One of the reasons to believe

this is that a decidable notion, e.g., n-hhpb [29] or a similar bisimilarity, is algorithmically more

adequate and hence computationally more attractive.

The second reason is that there is not a definite answer for the question of what a “prime”

concurrent module should be. Fröschle [28] has already addressed this problem and given a

initial answer; her work found interesting theoretical results as well as applications to the anal-

ysis of bisimilarities for true concurrency [28, 30]. However, the present author believes that

further work in this direction should be done as research on this topic can produce very positive

results. Again, the notion of support sets we introduced may shed light on new mathematical

formulations of the concept of primality for concurrent components.

Another possibility for future work is the study of bisimulation equivalences for true con-

currency with the concurrent logic games model introduced in Chapter 5. Time restrictions

allowed us to make only a preliminary study of bisimilarities up to interleaving concurrency.

Logic games for stronger bisimulation equivalences should be naturally definable in such a

partial order setting, but this is yet work to be done.

A final issue is that of complexity features. Neither for bisimulation nor for model-checking

complexity bounds were investigated, and this could be done in the years to come—though,

as mentioned previously, such bounds are not expected to be low, and thus perhaps not very

6.6. Further Work 121

interesting from a complexity viewpoint (unless restricted to “easy” classes of systems). In fact,

the author’s view is that for true concurrency complexity issues should be addressed mainly on

restricted classes of systems of practical usability. An initial idea for such a study is to analyse

the class of concurrent systems studied in Chapter 3 for which the global notion of causality is

fully captured by a simpler local one. This class of systems can be of practical usability since

it can model synchronization mechanisms as well as mutual exclusion protocols, arguably, the

two most important kinds of control “devices” when studying communicating systems.

Model-Checking. As in the bisimulation case, one obvious avenue of further research is that

of complexity issues, especially since new decision procedures have been found for special

classes of partial order models. However, even more interesting, is to consider some problems

related to the expressivity and decidability of, respectively, logics and their associated model-

checking problems for particular classes of concurrent systems. Two initial ideas are the fol-

lowing: on the one hand, regarding expressivity issues, an interesting problem is to look for

logics for true concurrency stronger than SFL and Lµ but still with a decidable model-checking

problem on hard families of partial order models. On the other hand, regarding decidability

issues, another interesting problem is to look for easier (but still interesting) classes of systems

for logics that are already known to be undecidable on certain partial order models of concur-

rency. In this direction Madhusudan et al. [57] have already done some work which can serve

as a borderline for comparisons or as a different starting point for further investigations.

Another idea for future work is to analyse model-checking problems for concurrent systems

with partial order semantics in a much simpler setting. In this thesis we focused on properties

expressible with fixpoint modal logics that extend the mu-calculus, and therefore, rather pow-

erful winning objectives could be defined since the very beginning. However, one could think

of simpler winning conditions, such as Büchi, reachability, or safety, which, despite their sim-

plicity, are quite interesting from a practical point of view. In these cases, even more complex

classes of partial order models can be considered, e.g., ‘parallel pushdown systems’ [60] or

‘higher-order dimensional automata’ [79] (just to mention a few examples) which due to their

richer expressivity are easy to have undecidable model-checking problems, cf., see [61] for a

survey of various decidability results with respect to several models of concurrency.

A third avenue of further research is in adapting ideas for the definition of partial order

methods and unfolding techniques for verification. These investigations should be carried out,

especially, over the CLG model as in such a setting the games are played in posets. Perhaps

more importantly, where we see better prospectus for further research, in terms of model-

checking, is in adapting ideas of compositional reasoning that were originally studied by the

games semantics community in a sequential context. Indeed, the CLG model was an attempt to

do so, and some improvements have been foreseen already. Let us elaborate on this idea next.

122 Chapter 6. Conclusions and Further Work

From Semantic to Verification Games in Concurrency. Let us start by giving a brief ex-

planation of what ‘semantic games’ are and how their underlying mathematics can be used as

the basis for the definition of verification games, e.g., for bisimulation or model-checking. A

semantic game is also played by two players; in a semantic game a computation is represented

by the interaction, i.e., exchange of moves, between the two players. In this kind of games one

of the players represents a program or a system and the other player represents its environment.

Semantic games have been successfully used, in their sequential form, to provide highly precise

models for a wide range of languages and programming features of interest to the semantics

community. This approach is general enough to embrace different programming paradigms,

including functional, imperative, and concurrent. This remarkable feature of semantic games

distinguishes them from other approaches, which lack a comparable robustness.

Semantic games have also been used to define decision procedures for verifying temporal

properties of systems, and in the last few years yielded algorithms for program analysis and

verification. In particular, the semantic games approach focuses on the observable patterns

of behaviour exhibited by a system when interacting with its environment, rather than in the

explicit representation of the program’s state space. As a consequence, program components

intended to live within a concurrent and distributed environment can be modelled as simple

‘open systems’ and verified following a compositional approach. This feature suggests that

well-known techniques for the verification of concurrent systems (especially with partial order

semantics) can be enhanced by the use of ideas initially developed with semantic purposes.

This final idea for further work is, therefore, about the development of decision procedures

for a number of key questions about concurrent games, perhaps building on the work presented

in Chapter 5. Such questions relate to the existence and computability of winning strategies:

e.g., ‘is the game determined?’; if so, ‘are winning strategies computable?’; and if so, ‘how can

we compute such winning strategies?’. As one would be looking for winning strategies with

finite partial order representations, such strategies may be considerably smaller than those for

traditional sequential games, and hence very attractive from a synthesis point of view.

6.7 Epilogue

In this Ph.D. thesis we have argued for the naturalness of partial order semantics in the unified

study of different models and problems in concurrency. We believe that the results herein help

support the following idea: that a key to deeper our understanding of the semantic foundations

of concurrency is the formal description of the notions of locality and independence in con-

current systems. We also think that a mathematical and logical study of these two notions can

eventually provide the tools for the development of a unified theory of concurrency.

Bibliography

[1] Abramsky, S., Melliès, P.A.: Concurrent games and full completeness. In: LICS. 431–
442, IEEE Computer Society (1999)

[2] Abramsky, S.: Sequentiality vs. concurrency in games and logic. Mathematical Structures
in Computer Science 13(4), 531–565 (2003)

[3] Aceto, L.: History preserving, causal and mixed-ordering equivalence over stable event
structures. Fundamenta Informaticae 17(4), 319–331 (1992)

[4] Alfaro, L.D., Henzinger, T.A.: Concurrent omega-regular games. In: LICS. 141–54,
IEEE Computer Society (2000)

[5] Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of
the ACM 49(5), 672–713 (2002)

[6] Alur, R., Peled, D., Penczek, W.: Model-checking of causality properties. In: LICS. 90–
100, IEEE Computer Society (1995)

[7] Baldan, P., Crafa, S.: A logic for true concurrency. In: CONCUR. LNCS 6269, 147–161,
Springer (2010)

[8] Benthem, J.V.: Modal Correspondence Theory. Ph.D. thesis, University of Amsterdam
(1977)

[9] Benthem, J.V.: Logic games, from tools to models of interaction. In: Logic at the Cross-
roads. 283–317, Allied Publishers (2007)

[10] Bradfield, J.C.: The modal µ-calculus alternation hierarchy is strict. Theoretical Computer
Science 195(2), 133–153 (1998)

[11] Bradfield, J.C.: Independence: logics and concurrency. Acta Philosophica Fennica 78,
47–70 (2006)

[12] Bradfield, J.C., Fröschle, S.B.: Independence-friendly modal logic and true concurrency.
Nordic Journal of Computing 9(1), 102–117 (2002)

[13] Bradfield, J.C., Stirling, C.: Local model checking for infinite state spaces. Theoretical
Computer Science 96(1), 157–174 (1992)

[14] Bradfield, J.C., Stirling, C.: Modal mu-calculi. In: Handbook of Modal Logic. 721–756,
Elsevier (2007)

[15] Brookes, S.D.: A semantics for concurrent separation logic. In: CONCUR. LNCS 3170,
16–34, Springer (2004)

123

124 Bibliography

[16] Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching-time temporal logic. LNCS 131, 52–71, Springer (1981)

[17] Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)

[18] Dam, M.: CTL∗ and ECTL∗ as fragments of the modal mu-calculus. Theoretical Com-
puter Science 126(1), 77–96 (1994)

[19] Degano, P., Nicola, R.D., Montanari, U.: A distributed operational semantics for CCS
based on condition/event systems. Acta Informatica 26(1/2), 59–91 (1988)

[20] Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer
Science 40, Cambridge University Press (1995)

[21] Emerson, E.A.: The beginning of model checking: A personal perspective. In: 25 Years
of Model Checking. LNCS 5000, 27–45, Springer (2008)

[22] Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model checking for the µ-calculus and its
fragments. Theoretical Computer Science 258(1-2), 491–522 (2001)

[23] Emerson, E.A., Lei, C.L.: Efficient model checking in fragments of the propositional
mu-calculus. In: LICS. 267–278, IEEE Computer Society (1986)

[24] Esparza, J.: Decidability and complexity of petri net problems - An introduction. In: Petri
Nets. LNCS 1491, 374–428, Springer (1998)

[25] Esparza, J., Heljanko, K.: Unfoldings - A Partial-Order Approach to Model Checking.
EATCS Monographs in Theoretical Computer Science, Springer (2008)

[26] Fecher, H.: A completed hierarchy of true concurrent equivalences. Information Process-
ing Letters 89(5), 261–265 (2004)

[27] Fröschle, S.B.: Decidability and Coincidence of Equivalences for Concurrency. Ph.D.
thesis, Univeristy of Edinburgh (2004)

[28] Fröschle, S.B.: Composition and decomposition in true-concurrency. In: FOSSACS.
LNCS 3441, 333–347, Springer (2005)

[29] Fröschle, S.B., Hildebrandt, T.T.: On plain and hereditary history-preserving bisimula-
tion. In: MFCS. LNCS 1672, 354–365, Springer (1999)

[30] Fröschle, S.B., Lasota, S.: Causality versus true-concurrency. Electronic Notes in Theo-
retical Computer Science 154(3), 3–18 (2006)

[31] Gale, D., Stewart, F.M.: Infinite games with perfect information. Annals of Mathematics
Studies 28, 245–266 (1953)

[32] Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branching time
logic model checking. Information and Computation 150(2), 132–152 (1999)

[33] Ghica, D.R.: Applications of game semantics: From program analysis to hardware syn-
thesis. In: LICS. 17–26, IEEE Computer Society (2009)

[34] Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)

[35] Glabbeek, R.J.V., Goltz, U.: Refinement of actions and equivalence notions for concurrent
systems. Acta Informatica 37(4/5), 229–327 (2001)

Bibliography 125

[36] Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems - An
Approach to the State-Explosion Problem. LNCS 1032, Springer (1996)

[37] Grädel, E.: Model checking games. Electronic Notes in Theoretical Computer Science
67:15–34 (2002)

[38] Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS
2500, Springer (2002)

[39] Gutierrez, J.: Logics and bisimulation games for concurrency, causality and conflict. In:
FOSSACS. LNCS 5504, 48–62, Springer (2009)

[40] Gutierrez, J.: Logics and games for true concurrency. Informatics Report Series, Techni-
cal Report EDI-INF-RR-1393, University of Edinburgh (2010)

[41] Gutierrez, J.: Concurrent logic games on partial orders. In: WoLLIC. LNCS 6642, 146–
160, Springer (2011)

[42] Gutierrez, J., Bradfield, J.C.: Model-checking games for fixpoint logics with partial order
models. In: CONCUR. LNCS 5710, 354–368, Springer (2009)

[43] Gutierrez, J., Bradfield, J.C.: Model-checking games for fixpoint logics with partial order
models. Information and Computation 209(5), 766–781 (2011)

[44] Hayman, J., Winskel, G.: Independence and concurrent separation logic. Logical Meth-
ods in Computer Science 4(1) (2008)

[45] Henkin, L.: Some remarks on infinitely long formulas. In: Infinitistic Methods. 167–183,
Pergamon Press (1961)

[46] Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal
of the ACM 32(1), 137–161 (1985)

[47] Hintikka, J., Sandu, G.: A revolution in logic? Nordic Journal of Philosophical Logic
1(2), 169–183 (1996)

[48] Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Sys-
tems. Cambridge University Press (2004)

[49] Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional mu-
calculus with respect to monadic second order logic. In: CONCUR. LNCS 1119, 263–
277, Springer (1996)

[50] Jategaonkar, L., Meyer, A.R.: Deciding true concurrency equivalences on safe, finite nets.
Theoretical Computer Science 154(1), 107–143 (1996)

[51] Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Information and Com-
putation 127(2), 164–185 (1996)

[52] Jurdzinski, M., Nielsen, M., Srba, J.: Undecidability of domino games and hhp-
bisimilarity. Information and Computation 184(2), 343–368 (2003)

[53] Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three prob-
lems of equivalence. Information and Computation 86(1), 43–68 (1990)

126 Bibliography

[54] Kozen, D.: Results on the propositional mu-calculus. Theoretical Computer Science 27,
333–354 (1983)

[55] Lange, M.: Games for Modal and Temporal Logics. Ph.D. thesis, Univeristy of Edinburgh
(2002)

[56] Madhusudan, P.: Model-checking trace event structures. In: LICS. 371–380, IEEE Com-
puter Society (2003)

[57] Madhusudan, P., Thiagarajan, P.S., Yang, S.: The MSO theory of connectedly communi-
cating processes. In: FSTTCS. LNCS 3821, 201–212, Springer (2005)

[58] Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Speci-
fication. Springer (1992)

[59] Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)

[60] Mayr, R.: Process rewrite systems. Information and Computation 156(1-2), 264–286
(2000)

[61] Mayr, R.: Decidability of model checking with the temporal logic EF. Theoretical Com-
puter Science 256(1-2), 31–62 (2001)

[62] Mazurkiewicz, A.W.: Introduction to trace theory. In: The Book of Traces. 3–42, World
Scientific (1995)

[63] McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers (1993)

[64] Melliès, P.A.: Asynchronous games 2: The true concurrency of innocence. Theoretical
Computer Science 358(2-3), 200–228 (2006)

[65] Milner, R.: A Calculus of Communicating Systems. LNCS 92, Springer (1980)

[66] Milner, R.: Communication and Concurrency. Prentice-Hall (1989)

[67] Moller, F., Rabinovich, A.M.: On the expressive power of CTL∗. In: LICS. 360–369,
IEEE Computer Society (1999)

[68] Nicola, R.D., Ferrari, G.L.: Observational logics and concurrency models. In: FSTTCS.
LNCS 472, 301–315, Springer (1990)

[69] Nicola, R.D., Vaandrager, F.W.: Three logics for branching bisimulation. Journal of the
ACM 42(2), 458–487 (1995)

[70] Nielsen, M., Clausen, C.: Games and logics for a noninterleaving bisimulation. Nordic
Journal of Computing 2(2), 221–249 (1995)

[71] Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, Part I.
Theoretical Computer Science 13, 85–108 (1981)

[72] Nielsen, M., Winskel, G.: Models for concurrency. In: Handbook of Logic in Computer
Science. 1–148, Oxford University Press (1995)

[73] O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theoretical Computer Sci-
ence 375(1-3), 271–307 (2007)

Bibliography 127

[74] Park, D.M.R.: Concurrency and automata on infinite sequences. LNCS 104, 167–183,
Springer (1981)

[75] Penczek, W.: On undecidability of propositional temporal logics on trace systems. Infor-
mation Processing Letters 43(3), 147–153 (1992)

[76] Penczek, W.: Branching time and partial order in temporal logics. In: Time and Logic: A
Computational Approach. 179–228, UCL Press (1995)

[77] Penczek, W.: Model-checking for a subclass of event structures. In: TACAS. LNCS 1217,
145–164, Springer (1997)

[78] Penczek, W., Kuiper, R.: Traces and logic. In: The Book of Traces. 307–390, World
Scientific (1995)

[79] Pratt, V.R.: Modeling concurrency with geometry. In: POPL. 311–322, ACM (1991)

[80] Pym, D.J., Tofts, C.M.N.: A calculus and logic of resources and processes. Formal As-
pects of Computing 18(4), 495–517 (2006)

[81] Pym, D.J., O’Hearn, P.W., Yang, H.: Possible worlds and resources: the semantics of BI.
Theoretical Computer Science 315(1), 257–305 (2004)

[82] Rabinovich, A.M., Trakhtenbrot, B.A.: Behavior structures and nets. Fundamenta Infor-
maticae 11, 357–403 (1988)

[83] Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS.
55–74, IEEE Computer Society (2002)

[84] Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Transactions on
Programming Languages and Systems 31(4) (2009)

[85] Sassone, V., Nielsen, M., Winskel, G.: Models for concurrency: Towards a classification.
Theoretical Computer Science 170(1-2), 297–348 (1996)

[86] Sims, É.J.: Extending separation logic with fixpoints and postponed substitution. Theo-
retical Computer Science 351(2), 258–275 (2006)

[87] Smith, E.: On the border of causality: Contact and confusion. Theoretical Computer
Science 153(1&2), 245–270 (1996)

[88] Stevens, P., Stirling, C.: Practical model-checking using games. In: TACAS. LNCS 1384,
85–101, Springer (1998)

[89] Stirling, C.: Local model checking games. In: CONCUR. LNCS 962, 1–11, Springer
(1995)

[90] Stirling, C.: Bisimulation, modal logic and model checking games. Logic Journal of the
IGPL 7(1), 103–124 (1999)

[91] Stirling, C.: Modal and Temporal Properties of Processes. Texts in Computer Science,
Springer (2001)

[92] Stirling, C., Walker, D.: Local model checking in the modal mu-calculus. Theoretical
Computer Science 89(1), 161–177 (1991)

128 Bibliography

[93] Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics 5(2), 285–309 (1955)

[94] Thiagarajan, P.S.: Regular trace event structures. BRICS Report Series, Technical Report
RS-96-32, University of Aarhus (1996)

[95] Valmari, A.: The state explosion problem. In: Petri Nets. LNCS 1491, 429–528, Springer
(1998)

[96] Vogler, W.: Deciding history preserving bisimilarity. In: ICALP. LNCS 510, 495–505,
Springer (1991)

[97] Walukiewicz, I.: A landscape with games in the background. In: LICS. 356–366, IEEE
Computer Society (2004)

[98] Winskel, G.: Events in Computation. Ph.D. thesis, University of Edinburgh (1980)

[99] Winskel, G.: Event structure semantics for CCS and related languages. In: ICALP. LNCS
140, 561–576, Springer (1982)

List of Notations

Sets/Models/Concurrency
(A,≤A),⊥A A poset and its bottom element
↓,↑,⇓,◦ Order ideal, order filter, restriction, composition
[a]∼ ,(A/∼) Equivalence class, quotient set (∼ is an equivalence relation and a ∈ A)
A → B,A→ B Map between categories A and B , function between sets A and B
⊕,],℘,

F
Linear sum, disjoint union, powerset, and join operators

min,max Minimal and maximal elements set operators
dom,codom Domain and codomain
•n,n•,d←,d→ Preset and postset (of a node n of a net and of an element d of a poset)
t−→,

a−→,
e−→ Transition relations (Petri net actions, TSI transitions, and events)

−→∗ Transitive closure of a transition relation (either kind)
par, I,co Independence relations (Petri nets, TSI models, and event structures)
∼,4,],cfs,	 Equivalence, causal, conflict, confusion, and recursion relations
θ,η Labelling functions on actions and events
σ(t),τ(t),δ(t) Source, target, and label of a transition t
∼xb Bisimilarity of type x (e.g., strong, hp, hhp, ihp, thp)
π,ρ(π) Run (or sequence of transitions π) and last transition of π

⊗,#,	,≤ Local duality relations
X ,P Sets of maximal supsets and support sets
v Inclusion ordering for complete supsets and support sets
X(s) Maximal set at a state s
S,S A process space and a stateless maximal process space

Logic
〈 〉, [] ,µ,ν Logical operators (diamond,box, and least and greatest fixpoints)
〈 〉c, []c ,〈 〉nc, []nc Causal (c) and non-causal (nc) diamond and box modalities
∗,1,〈⊗〉, [⊗] Structural operators and idempotent diamond and box modalities
Sub(φ),vµ Subformula set of a fixpoint formula φ and its inclusion ordering
Var,V Set of fixpoint variables and its valuation function
V [Z := Q] Updated valuation of a fixpoint variable Z ∈ Var
Zα Fixpoint approximant indexed by an ordinal number α

φ [Zα/Z] Syntactic substitution
|= Semantic satisfaction relation
∼L Logical equivalence induced by a logic L

Games
SP,BP,sync Predicates on elements of a game board
dfn,fix Predicates on local strategies (defined, fixpoint)
inf,rnk Predicates on plays (infinite,rank)
λi
∃,λ

j
∀,∂∃,∂∀ Local and global strategies for Eve (∃) and Adam (∀) in a CLG

129

