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Abstract. Predicate encryption is a recent generalization of identity-
based encryption (IBE), broadcast encryption, attribute-based encryp-
tion, and more. A natural question is whether there exist black-box con-
structions of predicate encryption based on generic building blocks, e.g.,
trapdoor permutations. Boneh et al. (FOCS 2008) recently gave a nega-
tive answer for the specific case of IBE.
We show both negative and positive results. First, we identify a combi-
natorial property on the sets of predicates/attributes and show that, for
any sets having this property, no black-box construction of predicate en-
cryption from trapdoor permutations (or even CCA-secure encryption)
is possible. Our framework implies the result of Boneh et al. as a special
case, and also rules out, e.g., black-box constructions of forward-secure
encryption and broadcast encryption (with many excluded users). On
the positive side, we identify conditions under which predicate encryp-
tion schemes can be constructed based on any CPA-secure (standard)
encryption scheme.

1 Introduction

In a predicate encryption scheme [6, 13] an authority generates a master public
key and a master secret key, and uses the master secret key to derive personal
secret keys for individual users. A personal secret key corresponds to a pred-
icate in some class F , and ciphertexts are associated (by the sender) with an
attribute in some set A; a ciphertext associated with the attribute I ∈ A can be
decrypted by a secret key SKf corresponding to the predicate f ∈ F if and only
if f(I) = 1. The basic security guarantee provided by such schemes is that a
ciphertext associated with an attribute I hides all information about the under-
lying message unless one has a personal secret key giving the explicit ability to
decrypt; in other words, if an adversary A holds keys SKf1 , . . . , SKf`

for which
f1(I) = · · · = f`(I) = 0, then A should learn nothing about the message. (A
formal definition is given later.)

By choosing F and A appropriately, predicate encryption yields as special
cases many notions that are interesting in their own right. For example, by taking
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A = {0, 1}n and letting F = {fID}ID∈{0,1}n be the class of point functions
(so that fID(ID′) = 1 iff ID = ID′) we recover the notion of identity-based
encryption (IBE) [19, 4]. Similarly, it can be observed that predicate encryption
encompasses fuzzy IBE [18], forward-secure (public-key) encryption [7], (public-
key) broadcast encryption [9], attribute-based encryption [11, 2, 15], and more
as special cases.

Most (though not all) existing constructions of predicate encryption schemes
rely on bilinear maps. A natural question is: what are the minimal assumptions
on which predicate encryption can be based? Of course, the answer will depend
on the specific predicate class F and attribute set A of interest; in particular,
Boneh and Waters [6] show that if F is polynomial size then (for any A) one can
construct a predicate encryption scheme for (F ,A) from any (standard) public-
key encryption scheme. On the other hand, Boneh et al. [5] have recently shown
that there is no black-box construction of IBE from trapdoor permutations.

1.1 Our Results

The specific question we consider is: for which (F ,A) can we construct a predicate
encryption scheme over (F ,A) based on CPA-secure encryption? We show both
negative and positive results. Before describing these results in more detail, we
provide some background intuition.

A natural combinatorial construction of a predicate encryption scheme over
some (F ,A) from a CPA-secure encryption scheme (Gen, Enc,Dec) is as follows:
The authority includes several public keys pk1, . . . , pkq in the master public
key, and each personal secret key is some subset of the corresponding secret
keys sk1, . . . , skq. Encryption of a message m with respect to an attribute I re-
quires “sharing” m in some way to yield m1, . . . ,mq, and the resulting ciphertext
is Encpk1(m1), . . . , Encpkq (mq). Intuitively, this works if:

Correctness: Let SKf = {ski1 , . . . , skit} be a personal secret key for which
f(I) = 1. Then the “shares” mi1 , . . . ,mit should enable recovery of m.

Security: Let {ski1 , . . . , skik
} =

⋃
f∈F :f(I)=0 SKf . Then the set of “shares”

mi1 , . . . , mik
should leak no information about m.1

Roughly, our negative result can be interpreted as showing that this is essentially
the only way to construct predicate encryption (in a black-box way) from CPA-
secure encryption; our positive result shows how to implement the above for a
specific class of predicate encryption schemes. We now provide further details.

Impossibility results. Our negative results are in the same model used by
Boneh et al. [5], which builds on the model used in the seminal work of Impagli-
azzo and Rudich [12]. Specifically, as in [5] our negative results hold relative to
a random oracle (with trapdoor) and so rule out black-box constructions from
trapdoor permutations as well as from any (standard) CCA-secure public-key
encryption scheme.
1 This is stronger than what is required, but makes sense in a black-box setting where

computational hardness comes only from the underlying CPA-secure scheme.



A slightly informal statement of our result follows. Fix {(Fn,An)}n∈N, a
sequence of predicate classes and attribute sets indexed by the security parame-
ter n. We say that {(Fn,An)}n can be q-covered if for every set system {Sf}f∈Fn

with Sf ⊆ [q(n)] ([q] def= {1, . . . , q}), there are polynomially-many predicates
f∗, f1, . . . , fp ∈ Fn such that, with high probability:

1. Sf∗ ⊆
⋃p

i=1 Sfi .
2. There exists an I ∈ An with f1(I) = · · · = fp(I) = 0 but f∗(I) = 1.

{(Fn,An)}n is easily covered if it is q-covered for every polynomial q. We show:

Theorem If {(Fn,An)}n is easily covered, there is no black-box construction of
a predicate encryption scheme over {(Fn,An)}n based on trapdoor permutations
(or CCA-secure encryption).

Intuitively, if {(Fn,An)}n is easily covered then the combinatorial approach dis-
cussed earlier cannot work: letting q(n) be the (necessarily) polynomial number
of keys for the underlying (standard) encryption scheme, no matter how the se-
cret keys {ski}q

i=1 are apportioned to the personal secret keys {SKf}f∈Fn
, an

adversary can carry out the following attack (cf. Definition 2, below):

1. Request the keys SKf1 , . . . , SKfp , where each SKfi = {sk1, . . . , } ⊆ {ski}q
i=1.

2. Request the challenge ciphertext C to be encrypted using an attribute I for
which f1(I) = · · · = fp(I) = 0 but f∗(I) = 1.

3. Compute the key SKf∗ ⊆
⋃

i SKfi and use this key to decrypt C.

This constitutes a valid attack since SKf∗ suffices to decrypt C yet the adversary
only requested SKf1 , . . . , SKfp , none of which suffices on its own to decrypt C.

Turning this intuition into a formal proof must, in particular, implicitly show
that the combinatorial approach sketched earlier is essentially the only black-box
approach to building predicate encryption schemes from trapdoor permutations.
Moreover, we actually prove a stronger quantitative version of the above theorem
showing, roughly, that if {(Fn,An)}n is q-covered then any predicate encryption
scheme over {(Fn,An)}n must use at least q + 1 underlying encryption keys.

One might wonder whether the “easily covered” condition is useful for de-
termining whether there exist black-box constructions of predicate encryption
schemes over {(Fn,An)}n of interest. We show that it is, in that the following
corollary can be proven fairly easily given the above:

Corollary There are no black-box constructions of (1) identity-based encryp-
tion, (2) forward-secure encryption (for a super-polynomial number of time pe-
riods), or (3) broadcast encryption (where a super-polynomial number of users
can be excluded) from trapdoor permutations.

The first result was shown in [5]; the point is that our impossibility result strictly
generalizes theirs. Moreover, as indicated earlier, we prove a quantitative version
of their result (as well as all other results stated in the above corollary).

Positive result. On the positive side, we show that the combinatorial approach
suggested at the outset can be implemented for {(Fn,An)}n having the following



property: for each I ∈ An there are at most polynomially-many f ∈ Fn for which
f(I) = 0; i.e., for each I there are at most polynomially-many predicates that
are “excluded”. (The positive result from [6], where there are only polynomially-
many predicates, is thus obtained as a corollary.) This is proved by analogy to
broadcast encryption, using the combinatorial techniques from [14].

1.2 Comparison to the Results of Boneh et al.

Our proof relies heavily on the impossibility result from [5]. Our contribution
lies in finding the right combinatorial generalization (specifically, the “easily
covered” property described earlier) of the specific property used by Boneh et al.
for the particular case of IBE, adapting their proof to our setting, and applying
their ideas to the more general case of predicate encryption. Our generalization,
in turn, allows us to show impossibility for several cryptosystems of interest
besides IBE (cf. the corollary stated earlier), as well as to give quantitative
versions of their earlier result. Our positive results have no analogue in [5].

2 Definitions

2.1 Predicate Encryption

We provide a functional definition of predicate encryption, followed by a weak
definition of security that we use when proving impossibility and the standard
definition of security [13] that we use when proving our positive result.

Definition 1. Fix {(Fn,An)}n∈N, where Fn is a set of (efficiently computable)
predicates over the set of attributes An. A predicate encryption scheme over
{Fn,An}n∈N consists of four ppt algorithms (Setup,KeyGen, Enc, Dec) such that:

– Setup is a deterministic algorithm that takes as input a master secret key
MSK ∈ {0, 1}n and outputs a master public key MPK.

– KeyGen is a deterministic algorithm that takes as input the master secret key
MSK and a predicate f ∈ Fn and outputs a secret key SKf = KeyGenMSK(f).
(The assumption that KeyGen is deterministic is without loss of generality,
since MSK may include a key for a pseudorandom function.)

– Enc takes as input the public key MPK, an attribute I ∈ An, and a bit b. It
outputs a ciphertext C ← EncMPK(I, b).

– Dec takes as input a secret key SKf and ciphertext C. It outputs either a
bit b or the distinguished symbol ⊥.

It is required that for all n, all MSK ∈ {0, 1}n and MPK = Setup(MSK),
all f ∈ Fn and SKf = KeyGenMSK(f), all I ∈ An, and all b ∈ {0, 1}, that if
f(I) = 1 then DecSKf

(EncMPK(I, b)) = b.

Definition 2. A predicate encryption scheme over (F ,A) is weakly payload hid-
ing if the advantage of any ppt adversary A in the following game is negligible:



1. A(1n) outputs I∗ ∈ An and (f1, . . . , fp) ∈ Fn such that fi(I∗) = 0 for all i.
2. Choose MSK ← {0, 1}n; let MPK := Setup(MSK) and set SKfi :=

KeyGen(MSK, fi) for all i. Choose b ← {0, 1}, and compute the ciphertext
C∗ ← EncMPK(I∗, b). Then A is given (MPK, SKf1 , . . . , SKfp , C∗).

3. A outputs b′ and succeeds if b′ = b.

The advantage of A is defined as
∣∣Pr[A succeeds]− 1

2

∣∣.
Definition 3. A predicate encryption scheme over (F ,A) is payload hiding if
the advantage of any ppt adversary A in the following game is negligible:

1. A random MSK ∈ {0, 1}n is chosen, and A is given MPK := Setup(MSK).
2. A adaptively requests keys SKf1 , . . . corresponding to predicates f1, . . . ∈ Fn.
3. At some point, A outputs I∗ ∈ An. A random b ∈ {0, 1} is chosen and A is

given the ciphertext C∗ ← EncMPK(I∗, b). A may continue to request keys
for predicates of its choice.

4. A outputs b′ and succeeds if (1) A never requested a key for a predicate f
with f(I∗) = 1, and (2) b′ = b.

The advantage of A is defined as
∣∣Pr[A succeeds]− 1

2

∣∣.
Our construction of Section 5 can be modified to achieve the even stronger

notion of attribute hiding ; we refer to [13] for a definition.

2.2 A Random Trapdoor Permutation Oracle

We assume the reader is familiar with the usual model in which black-box impos-
sibility results are proved; see [12, 17, 5] for further details. We show an oracle O
relative to which trapdoor permutations and CCA-secure encryption exist, yet
any construction of a predicate encryption scheme (for certain (F ,A)) relative
to O is insecure against a polynomial-time adversary given access to O and a
PSPACE oracle. Our oracle O = (g, e, d) is defined as follows, for each n ∈ N:

– g is chosen uniformly from the space of permutations on {0, 1}n. We view g
as taking a secret key sk as input, and returning a public key pk.

– e : {0, 1}n × {0, 1}n → {0, 1}n maps a public key pk and a “message”
m ∈ {0, 1}n to a “ciphertext” c ∈ {0, 1}n. It is chosen uniformly subject
to the constraint that e(pk, ·) is a permutation on {0, 1}n for every pk.

– d : {0, 1}n × {0, 1}n → {0, 1}n maps a secret key sk and a ciphertext c
to a message m. We require that d(sk, c) outputs the unique m for which
e(g(sk),m) = c.

With overwhelming probability O is a trapdoor permutation [10, 5]. Moreover,
since the components of O are chosen at random subject to the above con-
straints (and not with some “defect” as in, e.g., [10]), O implies CCA-secure
encryption [1].

We denote a query α to O as, e.g., α
def= [g(sk) = pk] and similarly for e and

d queries. In describing our attack in the next section, we often use a partial
oracle O′ that is defined only on some subset of the possible inputs. We always
enforce that such oracles be consistent :



Definition 4. A partial oracle O′ = (g′, e′, d′) is consistent if:

1. For every pk ∈ {0, 1}n, the (partial) function e′(pk, ·) is one-to-one.
2. For every sk ∈ {0, 1}n, the (partial) function d′(sk, ·) is one-to-one.
3. For all x ∈ {0, 1}n, and all sk such that g′(sk) = pk is defined, the value

e′(pk, x) = c is defined if and only if d′(sk, c) = x is defined.

3 An Impossibility Result for Predicate Encryption

We define a combinatorial property on (Fn,An) and formally state our impossi-
bility result. We describe in Section 3.1 an adversary A attacking any black-box
construction of a predicate encryption scheme satisfying the conditions of our
theorem; an analysis of A is given in Appendix A and the full version.

Fix a set F and a positive integer q, and let [q] def= {1, . . . , q}. An F-set
system over [q] is a collection of sets {Sf}f∈F where each f ∈ F is associated
with a set Sf ⊆ [q].

Definition 5. Let {(Fn,An)}n∈N be a sequence of predicates and attributes. We
say {(Fn,An)}n∈N can be q-covered if there exist ppt algorithms (A1, A2, A3),
where A2(1n, f) is deterministic and outputs I ∈ An with f(I) = 1, such that
for n sufficiently large:

For any Fn-set system {Sf}f∈Fn over [q(n)], if we compute

f∗ ← A1(1n); I∗ := A2(1n, f∗); f1, . . . , fp ← A3(1n, f∗),

then with probability at least 4/5,
1. Sf∗ ⊆

⋃
Sfi ;

2. fi(I∗) = 0 for all i.

{(Fn,An)}n∈N is easily covered if it can be q-covered for every polynomial q.

Although the above definition may seem rather complex and hard to use, we
show in Section 4 that it can be applied quite easily to several interesting classes
of predicate encryption schemes. Moreover, the definition is natural given the
attack we will describe in the following section.

A black-box construction of predicate encryption is q-bounded if each of its
algorithms makes at most q queries to O. We now state our main result:

Theorem 1. If {(Fn,An)} can be q-covered, then there is no q-bounded black-
box construction of a weakly payload-hiding predicate encryption scheme over
{(Fn,An)} from trapdoor permutations (or CCA-secure encryption).

Since each algorithm defining the predicate encryption scheme can make at most
polynomially-many queries to its oracle, we have

Corollary 1. If {(Fn,An)} is easily covered, there is no black-box construction
of a weakly payload-hiding predicate encryption scheme over {(Fn,An)} from
trapdoor permutations (or CCA-secure encryption).



3.1 The Attack

Fix an {(Fn,An)} that can be q-covered, and let PE = (Setup, KeyGen, Enc, Dec)
be a predicate encryption scheme over {(Fn,An)} each of whose algorithms
makes at most q = poly(n) queries to O = (g, e, d). We assume, without loss of
generality, that before any algorithm of PE makes a query of the form [d(sk, ?)],
it first makes the query [g(sk)].

We begin the proof of Theorem 1 by describing an adversary A attacking PE.
Adversary A is given access to O and makes a polynomial number of calls to
this oracle; as described, A is not efficient but it runs in polynomial time given
access to a PSPACE-complete oracle (or if P = NP) and this suffices to prove
black-box impossibility as in previous work [12, 17, 5]. Our description of the
attack is directly motivated by the attacker described in [5].

Let A1, A2, and A3 be as guaranteed by Definition 5, and let p = poly(n)
bound the number of predicates output by A3. Throughout A’s execution, when
it makes a query to O it stores the query and the response in a list L. We also
require that before A makes any query of the form [d(sk, ?)], it first makes the
query [g(sk)]. Furthermore, once the query [g(sk) = pk] has been made then
[e(pk, x) = y] is added to L if and only if [d(sk, y) = x] is added to L.

Setup and challenge. A(1n) computes f∗ ← A1(1n), I∗ := A2(1n, f∗), and
(f1, . . . , fp) ← A3(1n, f∗). Then:

1. If fi(I∗) = 0 for all i, then A outputs (I∗, f1, . . . , fp) and receives the values
(MPK,SKf1 , . . . , SKfp , C∗) from the challenger (cf. Definition 2).

2. Otherwise, A aborts and outputs a random bit b′ ← {0, 1}.
Step 1: Discovering important public keys. For i = 1 to p, adversary A
does the following:

1. Compute Ifi = A2(1n, fi), and choose random b ← {0, 1} and r ← {0, 1}n.

2. Compute DecOSKfi

(
EncOMPK(Ifi , b; r)

)
, storing all O-queries in the list L.

Step 2: Discovering frequent queries for I∗. A repeats the following q · p3

times: Choose random b ← {0, 1} and r ← {0, 1}n; compute EncOMPK(I∗, b; r),
storing all O-queries in L.

Step 3: Discovering secret queries and decrypting the challenge. A
chooses k ← [q · p3] and runs the following k times.

1. A uniformly generates a secret key MSK ′ and a consistent partial ora-
cle O′ for which (1) SetupO

′
(MSK ′) = MPK; (2) for all i it holds that

KeyGenO
′

MSK′(fi) = SKfi ; (3) the oracle O′ is consistent with L; and (4) the

key SK ′
f∗

def= KeyGenO
′

MSK′(f∗) is well-defined.

We denote by L′ the set of queries in O′ that are not in L (the “invented
queries”). Note that |L′| ≤ q·(p+2), since at most q queries are made by Setup
and KeyGen(f) makes at most q queries for each of SKf∗ , SKf1 , . . . , SKfp .



2. A chooses b ← {0, 1} and r ← {0, 1}n, and computes C := EncOMPK(I∗, b; r)
(storing all O-queries in L). For an oracle O′′ defined below, A then does:
(a) In iteration k′ < k, adversary A computes DecO

′′
SK′

f∗
(C).

(b) In iteration k, adversary A computes b′ = DecO
′′

SK′
f∗

(C∗).

Output: A Outputs the bit b′ computed in the kth iteration of step 3.

Before defining the oracle O′′ used above, we introduce some notation. Let
L, O′, and MSK ′ be as above, and note that we can view L and O′ as a tuple of
(partial) functions (g, e, d) and (g′, e′, d′) where g′, e′, and d′ extend g, e, and d,
respectively. Define the following:

– Q′S is the set of pk for which [g′(sk) = pk] is queried during computation of
SetupO

′
(MSK ′).

– Q′K is the set of pk for which [g′(sk) = pk] is queried during computation of
KeyGenO

′
MSK′(f) for some f ∈ {f∗, f1, . . . , fp}.

– Q′K−S = Q′K \ Q′S .
– Lg is the set of pk for which the query [g(sk) = pk] is in L.

Note that A can compute each of these sets from its view. Note further that
Q′S ,Q′K ,Q′K−S ,O′ are fixed throughout an iteration of step 3, but Lg may
change as queries are answered.

Oracle O′′ is defined as follows. For any query whose answer is defined by
O′, return that answer. Otherwise:

1. For an encryption query e(pk, x) with pk ∈ Q′K−S \ Lg, return a random
y consistent with the rest of O′′. Act analogously for a decryption query
d(sk, y) with pk ∈ Q′K−S \ Lg (where pk = g(sk)).

2. For a decryption query d(sk, y), if there exists a pk with [g(sk) = pk] ∈ O′
but2 there exists an sk′ 6= sk with [g(sk′) = pk] ∈ L, then use O′′ to answer
the query d(sk′, y).

3. In any other case, query the real oracle O and return the result. Store the
query/answer in L (note that this might affect Lg as well).

An analysis of A, proving Theorem 1, appears in Appendix A and the full
version of our paper. The analysis is very similar to the one given in [5], with
the main difference being Proposition 1.

4 Impossibility for Specific Cases

We use Theorem 1 to rule out black-box constructions of predicate encryption
schemes in several specific cases of interest. Specifically, we consider the cases of
identity-based encryption, forward-secure encryption, and broadcast encryption.
We begin with a useful lemma.
2 Although O′ is chosen to be consistent, a conflict can occur since L is updated as A

makes additional queries to the real oracle O.



Lemma 1. Fix q(·), and assume {(Fn,An)}n∈N has the following property: For
sufficiently large n, there exist f1, . . . , f5q ∈ Fn and I1, . . . , I5q ∈ An such that:

For all i ∈ {1, . . . , 5q} it holds that fi(Ii) = 1 but fj(Ii) = 0 for j > i.

Then {(Fn,An)}n∈N can be q-covered. If the above holds for every polynomial q,
then {(Fn,An)}n∈N is easily covered.

Proof. We show that, under the stated assumption, {(Fn,An)}n∈N satisfies Def-
inition 5. Fix q and n large enough so that the condition of the lemma holds,
and let f1, . . . , f5q and I1, . . . , I5q be as stated. Define algorithms A1, A2, A3 as
follows:

1. A1(1n) chooses i ← {0, . . . , 5q} and outputs f∗ = fi.
2. A2(1n, f∗) finds i for which f∗ = fi and outputs I∗ = Ii.
3. A3(1n, f∗) finds i for which f∗ = fi and outputs fi+1, . . . , f5q. (If i = 5q

then output nothing.)

Note that A2(1n, f∗) always outputs I∗ with f∗(I∗) = 1. We show that for any
Fn-set system {Sf}f∈Fn

over [q], the conditions of Definition 5 hold. We begin
with the following claim:

Claim. For any Fn-set system {Sf}f∈Fn over [q], there are at most q values
i ∈ {1, . . . , 5q} for which Sfi *

⋃
i<j≤5q Sfj . (By convention, the union is the

empty set if j = 5q.)

Proof. Define Si
def=

⋃
i<j≤5q Sfj , with S5q = ∅. Note that Si−1 = Si ∪ Sfi , and

so Sfi *
⋃

i<j≤5q Sfj = Si iff Si ( Si−1. Since

S5q ⊆ S5q−1 ⊆ · · · ⊆ S1 ⊆ [q],

there can be at most q indices i where this occurs. ut
Fixing an arbitrary Fn-set system {Sf}f∈Fn over [q], let I ⊂ {1, . . . , 5q}

be the set of indices for which Sfi ⊆
⋃

i<j≤q Sfj ; the claim above shows that
|I| ≥ 4q. If A1 chooses i ∈ I then:

1. Sf∗ = Sfi ⊆
⋃

i<j≤q Sfj .
2. fj(I∗) = fj(Ii) = 0 for all the predicates fi+1, . . . , fq output by A3.

Since A1 chooses i ∈ I with probability 4/5, this proves the lemma. ut
We now apply Lemma 1 to several specific cases.

Identity-based encryption. It is easy to see that IBE for identities {In}
can be viewed as an instance of predicate encryption by setting An = In and
Fn = {fID}ID∈In where

fID(ID′) def=
{

1 if ID′ = ID
0 otherwise .

Let N = |In| denote the size of the identity space. Boneh et al. [5] already
rule out black-box constructions of IBE from trapdoor permutations for N =
ω(poly(n)); the next theorem shows that our Theorem 1 generalizes their result:



Theorem 2. There is no black-box construction (from trapdoor permutations
or CCA-secure encryption) of an IBE scheme for 5N identities where each al-
gorithm makes fewer than N queries to its oracle.

As a corollary, there is no black-box construction of an IBE scheme (from
trapdoor permutations or CCA-secure encryption) for a super-polynomial number
of identities.

Proof. Let In = {ID1, . . . , ID5N}. It is not hard to see that {(Fn,An)}n∈N
can be N -covered: take fID1 , . . . , fID5N

and set Ii = IDi for all i. Then apply
Theorem 1. ut

Forward-secure public-key encryption. In a forward-secure public-key en-
cryption scheme [7] secret keys are associated with time periods; the secret key
at time period i enables decryption for ciphertexts encrypted at any time j ≥ i.
(We refer the reader to [7] for further discussion.) A forward-secure encryption
scheme supporting N = N(n) time periods can be cast as a predicate encryption
scheme by letting An = {1, . . . , N} and Fn = {fi}1≤i≤N where

fi(j)
def=

{
1 if j ≥ i
0 otherwise .

(A forward-secure encryption scheme imposes the additional requirement that
SKfi+1 can be derived from SKfi ; since we do not impose this requirement
our impossibility result is even stronger.) A black-box construction of a forward-
secure encryption scheme from any CPA-secure encryption scheme exists for any
N = poly(n): the master public key contains public keys {pk1, . . . , pkN}, and the
secret key at period i is SKfi = {ski, . . . , skN}; encryption at period j uses pkj .
While such a scheme is trivial as far as forward-secure encryption goes (since
the public/secret key lengths are linear in N), it satisfies the definition. The
next theorem indicates that, in some sense, this trivial construction is almost
optimal as far as black-box constructions are concerned; moreover, there is no
black-box construction supporting a super-polynomial number of time periods.
(In contrast, there exist schemes based on specific assumptions [7, 3] that support
an unbounded number of time periods.)

Theorem 3. There is no black-box construction (from trapdoor permutations or
CCA-secure encryption) of a forward-secure encryption scheme for 5N periods
where each algorithm in the scheme makes fewer than N queries to its oracle.

As a corollary, there is no black-box construction of a forward-secure encryp-
tion scheme (from trapdoor permutations or CCA-secure encryption) supporting
a super-polynomial number of time periods.

Proof. {(Fn,An)}n∈N can be N -covered, as taking f1, . . . , f5N and setting Ii = i
for all i satisfies the conditions of Lemma 1. Then apply Theorem 1. ut

Broadcast encryption. Finally, we look at the case of (public-key) broadcast
encryption [9]. Here, there is a fixed public key and a set of users U = {1, . . . , U}



each with their own personal secret key; it should be possible for a sender to
encrypt a message in such a way that only some subset U ′ ⊂ U of users can
decrypt. Consider the case where at most k = k(n) < U users are excluded;
we refer to this as k-exclusion broadcast encryption. This can also be modeled
by predicate encryption, if we let An = {U ′ ⊆ U | |U ′| ≥ U − k} and define
Fn = {fi}i∈U where

fi(U ′) def=
{

1 if i ∈ U ′
0 otherwise .

Theorem 4. There is no black-box construction (from trapdoor permutations or
CCA-secure encryption) of a (5k)-exclusion broadcast encryption scheme where
each algorithm in the scheme makes k or fewer queries to its oracle.

As a corollary, there is no black-box construction of a k-exclusion broadcast
encryption scheme (from trapdoor permutations or CCA-secure encryption) for
super-polynomial k.

Proof. We show that {(Fn,An)}n∈N can be k-covered. Take f1, . . . , f5k and de-
fine

Ii
def= U \ {i, . . . , 5k}

for i ∈ {1, . . . , 5k}. (So I5k = U .) Note that |Ii| ≥ U − 5k always, and these
satisfy the conditions of Lemma 1. Applying Theorem 1 concludes the proof. ut

5 A Possibility Result for Predicate Encryption

Here we show that for the class of predicates and attributes {(Fn,An)} where
(roughly) for each I ∈ An there are at most polynomially-many f ∈ Fn with
f(I) = 0, there is a black-box construction of a predicate encryption scheme
over {(Fn,An)} based on any CPA-secure encryption scheme. We remark that
while we only prove payload hiding, our construction can in fact be shown to be
attribute hiding [13] as well.

Our construction relies on the notion of an (N, k)-cover free family [8]:

Definition 6. An (N, k)-cover free family over [U ] is a family S = {S1, . . . , SN},
with Si ⊆ [U ], such that for any distinct sets S, S1, . . . , Sk ∈ S it holds that
S \⋃k

i=1 Si 6= ∅.
For any k = poly(n) and N = 2poly(n) there exist [14, 16] explicit, polynomial-

time constructions of an (N, k)-cover free family over [U ] with |U | = poly(n).
(The specific results of [14, 16] can be used to improve the efficiency of the
construction that follows, but our only goal here is to show a construction that
can be implemented in polynomial time.)

Theorem 5. Fix {(Fn,An)} and set NegI
def= {f ∈ Fn : f(I) = 0} for I ∈ An. If

there is a poly-time algorithm ListNeg for which ListNeg(1n, I) = NegI , then there
is a black-box construction of a predicate encryption scheme over {(Fn,An)}
from any CPA-secure encryption scheme.



Proof. Since ListNeg runs in polynomial time, there is a polynomial k for which
|NegI | ≤ k(n) for all I ∈ An. Say predicates in Fn can be represented using
`(n) = poly(n) bits. Let {Un} be such that Un = poly(n) and such that, for
each n, there is an explicit (2`(n), k(n))-cover free family S = {S1, . . . , S2`(n)}
over [Un]. Identifying Fn with a subset of [2`(n)], we can view the cover-free
family as S = {Sf}f∈Fn

.
Let (Gen′, Enc′, Dec′) be a CPA-secure encryption scheme. Our construction

of a predicate encryption scheme over {(Fn,An)} is as follows:

– Setup, on input 1n and a sufficiently long random string MSK, runs Gen′(1n)
a total of U = Un times to generate keys (pk1, sk1), . . . , (pkU , skU ). The
master public key is {pk1, . . . , pkU}.

– KeyGen, given the secret keys {ski}U
i=1 and a predicate f ∈ Fn, outputs the

subset {ski}i∈Sf
.

– Enc, given the public key, an attribute I ∈ An, and a message m, computes
NegI = ListNeg(I) and sets Ū = [U ] \

(⋃
f∈NegI

Sf

)
. The ciphertext is

(I, {Ci}i∈Ū ) where Ci ← Enc′pki
(m).

– Dec, given the secret key {ski}i∈Sf
for a predicate f and a ciphertext

(I, {Ci}i∈Ū ) for which f(I) = 1, first finds an index i for which i ∈ Sf ∩ Ū .
(Such an index must exist, since

Sf \ Ū = Sf \
⋃

f ′:f ′(I)=0 Sf ′ ,

and there are at most k predicates f ′ that the union is taken over.) The
output is Dec′ski

(Ci).

It is easy to see that the above construction satisfies correctness. We now
prove security (in the sense of Definition 3). Let A be an adversary attacking
the scheme. We may assume without loss of generality that A never requests a
secret key for a predicate f for which f(I∗) = 1 (where I∗ is the attribute used
to encrypt the challenge ciphertext), since A cannot succeed if that occurs.

For simplicity we prove security in a non-uniform model, but the proof can be
modified easily to hold in the uniform model in the standard way. We consider
U+1 hybrid experiments H0, . . . , HU+1, where H0 corresponds to the experiment
of Definition 3 when b = 0 is encrypted, and HU+1 corresponds to the experiment
of Definition 3 when b = 1 is encrypted. Let δi denote the probability that A
outputs ‘0’ in Hi. We show that |δi − δi+1| is negligible for all i; since U = Un

is polynomial in n, this proves that |δ0 − δU+1| is negligible and thus completes
the proof.

Experiment Hi is defined as follows: Steps 1 and 2 are exactly as in Defi-
nition 3. In step 3, however, when encrypting the challenge ciphertext for the
attribute I∗, let Ū∗ = [U ] \NegI∗ and set the ciphertext equal to

(
I, {Cj}j∈Ū∗

)
,

where

Cj ←
{

Enc′pkj
(1) j < i

Enc′pkj
(0) j ≥ i

.

A may continue to request secret keys as in Definition 3.



We now prove that |δj − δj+1| is negligible for any j. Fix j and consider the
following adversary A′ attacking the underlying encryption scheme (Gen′, Enc′,
Dec′). Given public key pk and ciphertext C (which is either an encryption of 0
or 1), the adversary A′ proceeds as follows:

1. Set pkj = pk. For i 6= j, compute (pki, ski) ← Gen′(1n). Give the master
public key {pk1, . . . , pkU} to A.

2. When A requests a secret key for a predicate f , then if j 6∈ Sf give to A the
secret keys {ski}i∈Sf

. Otherwise, abort and output a random bit.
3. When A outputs I∗, compute NegI∗ = ListNeg(I∗) and then set

Ū∗ = [U ] \

 ⋃

f∈NegI∗

Sf


 .

If j 6∈ Ū∗ then abort and output a random bit. Otherwise, give A the ci-
phertext (I, {Ci}i∈Ū∗) where

Ci ←




Enc′pki
(1) i < j

C i = j
Enc′pki

(0) i > j
.

4. Subsequent secret key queries made by A are answered as before. Finally,
A′ outputs whatever bit is output by A.

Let Prj [·] denote the probability of an event in experiment Hj . We have
∣∣Pr[A′ outputs 0 | C ← Enc′pk(0)]− Pr[A′ outputs 0 | C ← Enc′pk(1)]

∣∣
=

∣∣Pr
[
j ∈ Ū∗] · Prj

[A outputs 0 | j ∈ Ū∗]

− Pr
[
j ∈ Ū∗] · Prj+1

[A outputs 0 | j ∈ Ū∗]∣∣ ,

using the facts that (1) Pr[j ∈ Ū∗] is independent of whether C is an encryption
of 0 or 1 and (2) when C is an encryption of 0 (resp., 1) then the view of A
(assuming j ∈ Ū∗) is identical to its view in Hj (resp., Hj+1). Note further that

Prj [A outputs 0 | j 6∈ Ū∗] = Prj+1[A outputs 0 | j 6∈ Ū∗]

since the challenge ciphertext is distributed identically in each case. It follows
that

∣∣Pr[A′ outputs 0 | C ← Enc′pk(0)]− Pr[A′ outputs 0 | C ← Enc′pk(1)]
∣∣

=
∣∣Pr

[
j ∈ Ū∗] · Prj

[A outputs 0 | j ∈ Ū∗]

−Pr
[
j ∈ Ū∗] · Prj+1

[A outputs 0 | j ∈ Ū∗]∣∣
= |δj − δj+1| ,

concluding the proof. ut
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A Proof Details

We analyze the success probability of the adversary A from Section 3.1. Due to
space limitations, the proof cannot be reproduced here in its entirety; we have
instead aimed to describe those parts of our proof that differ most prominently
from the proof of Boneh et al. [5]. The most significant new element in our proof
is Proposition 1.

Toward analyzing the success probability of A, we describe a series of ex-
periments, the first of which corresponds to adversary A interacting in the ex-
periment from Definition 2. We show that, as long as no “bad” events (to be
defined later) occur, the statistical distance between the transcripts generated in
each of these experiments is not too large. This allows us to bound A’s success
probability by comparing it to an appropriate event in the final experiment.

Expt0: This corresponds to A interacting in the experiment from Definition 2.

Expt1: This is the same as Expt0 except that O′′ (as defined after the kth repe-
tition of step 3) is used instead of O to compute the challenge ciphertext C∗.

Expt2: This is the same as Expt1 except that O′′ never queries O (cf. step 3 in
the definition of O′′); instead, any such queries are answered randomly (subject
to ensuring that O′′ remains consistent).

Expt3: This is the following experiment with no adversary and using the real
oracle O:

Setup and challenge.

1. Compute f∗ ← A1(1n), I∗ = A2(1n, f∗), and {f1, . . . , fp} ← A3(1n, f∗).
2. Choose at random MSK ← {0, 1}n and compute MPK := SetupO(MSK).

If fi(I∗) = 1 for some i, abort and output a random bit.



3. For every predicate f ∈ {f∗, f1, . . . , fp} compute SKf := KeyGenOMSK(f).

Step 1: Discovering important public keys. For i = 1 to p do:

1. Compute Ifi
← A2(1n, fi), and choose random bi ← {0, 1} and ri ← {0, 1}n.

2. Compute DecOSKfi
(EncOMPK(Ifi

, bi; ri)).

Step 2: Decrypting the challenge.

1. Choose r ← {0, 1}n, b ← {0, 1} and compute C∗ := EncOMPK(I∗, b; r).
2. Compute b′ := DecOSKf∗ (C

∗) and output b′. Note that b′ = b always.

This completes the description of Expt3.

For i ∈ {0, 1, 2} we will be interested in the following transcripts defined in the
course of Expti. These transcripts contain, in particular, all oracle queries/answers.

– transi
setup: The transcript of the setup phase. This includes the computation

of MPK and SKf1 , . . . , SKfp
, as well as the computation of SKf∗ for the

f∗ chosen by the adversary. (Even though SKf∗ is not computed in the
experiment, SKf∗ is well defined given f∗, MSK, and O.)

– transi
pks: The transcript of step 1 (“discovering important public keys”).

– transi
freq: The transcript of step 2 (“discovering frequent queries for I∗”).

– transi
sim-setup: This is the transcript defined by the adversary’s choice of

MSK ′ and O′ in the kth repetition of step 3, and can be viewed as the
adversary’s “guess” for transi

setup.
– transi

∗: The transcript of the encryption of C/decryption of C∗ in the kth

repetition of step 3.
– transi = (transi

setup, transi
pks, transi

sim-setup, transi
∗).

For Expt3 we define

– trans3sim-setup: The transcript of the “setup and challenge” step.
– trans3pks: The transcript of step 1 (“discovering important public keys”).
– trans3∗: The transcript of step 2 (“decrypting the challenge”).
– trans3 = (trans3pks, trans3sim-setup, trans3∗).

For a given transcript, we partition the set of public keys used (i.e., the set
of pk’s for which [g(·) = pk] ∈ trans) into the following sets:

– We let QS(trans) denote the public keys queried during execution of Setup:

QS(trans) def= {pk | the query [g(·) = pk] ∈ trans is asked by Setup}.
Intuitively, these are the pk’s whose corresponding sk’s are “useful” for de-
crypting ciphertexts.

– We let QK(trans) denote the public keys queried by the KeyGen algorithm
when some personal secret key is derived:

QK(trans) def= {pk | [g(·) = pk] ∈ trans is asked by KeyGenMSK(·)}
QK−S(trans) def= QK(trans) \ QS(trans).



– Finally, we will also look at the public keys “discovered” during encryption
and decryption (cf. step 3 of the experiments):

QENC+DEC(trans, I, f) def= {pk | [g(·) = pk] asked by DecSKf
(EncMPK(I, ·; ·))}

A.1 Bounding Probabilities of Bad Events

Fixing the master secret key MSK and the oracle O (this fixes MPK as well
as {SKf}f∈F ), we define four “bad” events and bound the probabilities of each
of them. Here, we will only describe and bound one of these events; we refer to
the full version of our paper for the remainder of the proof.

Let Ei
NC be the event that either of the following is true (in Expti):

1. ∃fi ∈ {f1, . . . , fp} such that fi(I∗) = 1.
2. The following condition holds:

QENC+DEC(transi
∗, I

∗, f∗)
⋂
QS(transi

sim-setup)

*


 ⋃

f∈{f1,...,fp}
QENC+DEC(transi

pks, If , f)


⋂

QS(transi
sim-setup),

where If := A2(1n, f).

Intuitively, the second condition above is the event that the public keys that are
“useful” for f1, . . . , fp does not contain the public keys that are “useful” for f∗.

We bound the probability of E3
NC using the assumed easily-covered property

of {(Fn,An)}; this is the crux of our proof, and is what motivates Definition 5.

Proposition 1. Pr[E3
NC ] ≤ 1/5.

Proof. Fix O and MSK ∈ {0, 1}n, thus fixing trans3sim-setup. If for each f ∈ Fn

we fix a random tape rf that is sufficiently long to run DecSKf
(EncMPK(I, b; r))

(where I
def= A2(f)), then this defines, for each f , the set

Sf

def=
{

pk | [g(·) = pk] asked by DecSKf
(EncMPK(I, b; r))

}
∩QS(trans3sim-setup).

Numbering the (at most q) public keys in QS(trans3sim-setup) in lexicographic
order, we can view these {Sf}f∈Fn as an Fn-set system over [q]. The fact that
{(Fn,An)} can be q-covered implies that there exists a polynomial p such that

Pr




∀f ∈ Fn : rf ← {0, 1}∗
f∗ ← A1, I∗ := A2(1n, f∗)
{f1, . . . , fp} ← A3(f∗)

:

(
Sf∗ ⊆

p⋃

i=1

Sfi

) ∧(
∀i : fi(I∗) = 0

)

 ≥ 4

5
.

The above is a lower bound on the probability that E3
NC does not occur. ut


