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We give some sufficient and necessary conditions for an analytic function f on the unit

ball B with Hadamard gaps, that is, for f (z)=
∑∞

k=1Pnk (z) (the homogeneous polynomial

expansion of f ) satisfying nk+1/nk ≥ λ > 1 for all k ∈N, to belong to the space �α
p(B)=

{ f |sup 0<r<1(1− r2)
α
‖R fr‖p <∞, f ∈H(B)}, p = 1,2,∞ as well as to the corresponding

little space. A remark on analytic functions with Hadamard gaps on mixed norm space

on the unit disk is also given.
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1. Introduction

Let B = {z ∈ Cn : |z| < 1} be the open unit ball of Cn, ∂B = {z ∈ Cn : |z| = 1} its bound-

ary, D the unit disk in C, dv the normalized Lebesgue measure of B (i.e., v(B)= 1), and

dσ the normalized rotation invariant Lebesgue measure of S satisfying σ(∂B) = 1. We

denote the class of all holomorphic functions on the unit ball by H(B).

For f ∈H(B) with the Taylor expansion f (z)=
∑

|β|≥0 aβz
β, let R f (z)=

∑

|β|≥0 |β|aβz
β

be the radial derivative of f , where β = (β1,β2, . . . ,βn) is a multi-index and zβ = z
β1

1 ···z
βn
n .

It is well known that R f (z)=
∑n

j=1 z j(∂ f /∂z j)(z)=
∑∞

k=0 kPk(z), if f (z)=
∑∞

k=0Pk(z).

As usual, we write

∥

∥ fr
∥

∥

p =

(∫

S

∣

∣ f (rζ)
∣

∣

p
dσ(ζ)

)1/p

(1.1)

if p ∈ (0,∞), and where fr(ζ)= f (rζ). If p =∞, then ‖ f ‖∞ = supz∈B | f (z)|.
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Let α > 0. The α-Bloch space �α =�α(B) is the space of all holomorphic functions f
on B such that

bα( f )= sup
z∈B

(

1−|z|2
)α∣
∣R f (z)

∣

∣ <∞. (1.2)

It is clear that �α is a normed space under the norm ‖ f ‖�α = | f (0)|+ bα( f ), and �α1 ⊂

�α2 for α1 < α2. Let �
α
0 denote the subspace of �α consisting of those f ∈�α for which

(1− |z|2)α|R f (z)| → 0 as |z| → 1. This space is called the little α-Bloch space. For α =
1, the α-Bloch space and the little α-Bloch space become Bloch space � and the little

Bloch space �0. Some characterizations of these spaces can be found, for example, in the

following papers [1–6].

We say that an analytic function f on the unit disk D has Hadamard gaps if f (z) =
∑∞

k=1 akz
nk where nk+1/nk ≥ λ > 1, for all k ∈N.

In [7], Yamashita proved the following result.

Theorem 1.1. Assume that f is an analytic function on D with Hadamard gaps. Then for

α > 0, the following two propositions hold:

(a) f ∈�α(D) if and only if limsupk→∞ |ak|n
1−α
k <∞;

(b) f ∈�
α
0(D) if and only if limk→∞ |ak|n

1−α
k = 0.

An analytic function on B with the homogeneous expansion f (z)=
∑∞

k=1Pnk (z) (here,

Pnk is a homogeneous polynomial of degree nk) is said to have Hadamard gaps if nk+1/nk ≥
λ > 1, for all k ∈N. In [8], among others, Choa generalizes the main result in [9], proving

the following result.

Theorem 1.2. Assume that p ∈ (0,∞) and f (z) =
∑∞

k=1Pnk (z) is an analytic function on

B with Hadamard gaps. Then the following statements are equivalent:

(a) ‖ f ‖Xp = (
∫

B |R f (z)|p(1−|z|2)p−1dv(z))1/p <∞;

(b)
∑∞

k=1‖Pnk‖
p
p <∞.

This result motivates us to find some characterizations for certain function spaces of

analytic functions on the unit ball, in terms of the sequence (‖Pnk‖p)k∈N.

Now note that the quantity bα in the definition of the α-Bloch spaces can be written in

the following form:

bα( f )= sup
0<r<1

(

1− r2
)α

sup
ζ∈S

∣

∣R f (rζ)
∣

∣= sup
0<r<1

(

1− r2
)α
M∞(R f ,r). (1.3)

On the other hand, the quantity bα can be considered as the limit case of the following

quantities:

‖ f ‖�
α
p = sup

0<r<1

(

1− r2
)α∥
∥R fr

∥

∥

p, (1.4)

as p→∞. Note that for every f ∈H(B) and p ∈ (0,∞),

sup
0<r<1

(

1− r2
)α∥
∥R fr

∥

∥

p ≤ sup
0<r<1

(

1− r2
)α∥
∥R fr

∥

∥

∞. (1.5)
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Hence, in this paper we also consider analytic functions with Hadamard gaps on the

following spaces:

�
α
p =

{

f | sup
0<r<1

(

1− r2
)α∥
∥R fr

∥

∥

p <∞, f ∈H(B)
}

,

�
α
p,0 =

{

f | lim
r→1

(1− r2)α‖R fr‖p = 0, f ∈H(B)
}

.
(1.6)

Motivated by Theorem 1.1 in this paper, we study analytic functions with Hadamard

gaps, which belong to �α
p or �

α
p,0 space when p = 1,2,∞. Some characterizations for

these classes of functions on the unit ball are given in terms of the sequence (‖Pnk‖p)k∈N.

The following are the main results.

Theorem 1.3. Assume that α > 0, p = 1,2,∞, and f (z)=
∑∞

k=1Pnk (z) is an analytic func-

tion on B with Hadamard gaps. Then the following statements are equivalent:

(a) f ∈�α
p;

(b) limsupk→∞‖Pnk‖pn
1−α
k <∞.

Theorem 1.4. Assume that α > 0, p = 1,2,∞, and f (z)=
∑∞

k=1Pnk (z) is an analytic func-

tion on B with Hadamard gaps. Then the following statements are equivalent:

(a) f ∈�
α
p,0;

(b) limk→∞‖Pnk‖pn
1−α
k = 0.

Throughout this paper, constants are denoted by C, they are positive and may differ

from one occurrence to the other. The notation A ≍ B means that there is a positive

constant C such that B/C ≤A≤ CB.

2. Proof of main results

Before proving the main results of this paper we quote two auxiliary results which are

incorporated in the lemmas which follow (see [9, 10]).

Lemma 2.1. Assume that p ∈ (0,∞). If (nk) is an increasing sequence of positive integers

satisfying nk+1/nk ≥ λ > 1, for all k, then there is a positive constant A depending only on p
and λ such that

1

A

⎛

⎝

∞
∑

k=1

|ak|
2

⎞

⎠

1/2

≤

⎛

⎝

1

2π

∫ 2π

0

∣

∣

∣

∣

∣

∣

∞
∑

k=1

ake
inkθ

∣

∣

∣

∣

∣

∣

p

dθ

⎞

⎠

1/p

≤ A

⎛

⎝

∞
∑

k=1

|ak|
2

⎞

⎠

1/2

(2.1)

for any number ak, k ∈N.

Lemma 2.2. Assume that α > 0, p > 0, n ∈ N0, (an)n∈N0 is the sequence of nonnegative

numbers, In = {k | 2n ≤ k < 2n+1, k ∈N}, tn =
∑

k∈In ak, and g(x)=
∑∞

n=1 anx
n. Then there

is a positive constant K depending only on p and α such that

1

K

∞
∑

n=0

t
p
n

2nα
≤

∫ 1

0
(1− x)α−1g p(x)dx ≤ K

∞
∑

n=0

t
p
n

2nα
. (2.2)
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Proof of Theorem 1.3. (a)⇒(b) (Case p = 1). Let f ∈�
α
1 . Let fζ(w)= f (ζw), ζ ∈ S, where

ζ is fixed and w ∈D, be a slice function. By some calculation we see that

f ′ζ (w)= ζ1
∂ f

∂z1
(wζ) + ···+ ζn

∂ f

∂zn
(wζ)=

1

w
R f (wζ). (2.3)

From (2.3) and since f ′ζ (w)=
∑∞

k=1nkPnk (ζ)wnk−1, we have that

∫

S
nk
∣

∣Pnk (ζ)
∣

∣dσ(ζ)=

∫

S

∣

∣

∣

∣

∣

1

2πi

∫

∂rD

η f ′ζ (η)

ηnk+1
dη

∣

∣

∣

∣

∣

dσ(ζ)

≤
1

2π

∫

∂rD

∫

S

∣

∣R f (ζη)
∣

∣

∣

∣ηnk+1
∣

∣

dσ(ζ)|dη|

≤

∥

∥ fr
∥

∥

�
α
1

(1− r)αrnk
,

(2.4)

which implies that

nkr
nk
∥

∥Pnk
∥

∥

1 ≤
‖ f ‖�

α
1

(1− r)α
, (2.5)

for every k ∈ N and r ∈ (0,1). Choosing r = 1− (1/nk), we obtain n1−α
k ‖Pnk‖1 ≤ C, as

desired.

(b)⇒(a) (Case p = 1). Assume limsupk→∞‖Pnk‖1n
1−α
k <∞. We have that

‖ f ‖�
α
1
= sup

0<r<1

(

1− r2
)α
∫

S

∣

∣R f (rζ)
∣

∣dσ(ζ)

= sup
0<r<1

(

1− r2
)α
∫

S

∣

∣

∣

∣

∣

∞
∑

k=1

nkPnk (ζ)rnk
∣

∣

∣

∣

∣

dσ(ζ)

≤ sup
0<r<1

(

1− r2
)α

∞
∑

k=1

nk
∥

∥Pnk
∥

∥

1r
nk

≤ sup
0<r<1

(

1− r2
)α+1

∞
∑

n=1

(

∑

nk≤n

nk
∥

∥Pnk
∥

∥

1

)

rn

≤ C sup
0<r<1

(

1− r2
)α+1

∞
∑

n=1

(

∑

nk≤n

nαk

)

rn

≤ C sup
0<r<1

(

1− r2
)α+1

∞
∑

n=1

nαrn ≤ C,

(2.6)

where we have used the fact that there is a positive constant C independent of n such

that
∑

nk≤nn
α
k ≤ Cnα (here is used the assumption that nk+1/nk ≥ λ > 1) and the following

well-known estimate:

∞
∑

n=1

nαrn ≤ C(1− r)−(α+1), (2.7)

α > 0, r ∈ [0,1); see, for example, [11].
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Case p = 2. Since

‖ f ‖�
α
2
= sup

0<r<1

(

1− r2
)α

(

∞
∑

k=1

n2
k

∥

∥Pnk
∥

∥

2
2r

2nk

)1/2

(2.8)

we have that

sup
0<r<1

(

1− r2
)α
nk
∥

∥Pnk
∥

∥

2r
nk ≤ ‖ f ‖�

α
2
≤ sup

0<r<1

(

1− r2
)α

∞
∑

k=1

nk
∥

∥Pnk
∥

∥

2r
nk , (2.9)

from which the result follows similar to the case p = 1.

Now we show that (a)⇔(b) for case p = ∞. As above, the function fζ(w) =
∑∞

k=1Pnk (ζ)wnk , where w = reiθ , is a lacunary series in D and

(

1− r2
)α

R f (rζ)= reiθ
(

1− r2
)α

f ′ζe−iθ (reiθ), (2.10)

from which by Theorem 1.1 the equivalence follows. �

Proof of Theorem 1.4. (a)⇒(b) (Case p = 1). Let f ∈�
α
1,0, then for every ε > 0 there is a

δ > 0 such that

(

1− r2
)α
∫

S

∣

∣R f (rζ)
∣

∣dσ(ζ) < ε, (2.11)

whenever δ < r < 1. From (2.4), (2.11), and rotational invariance of dσ , we have that

∫

S
nk
∣

∣Pnk (ζ)
∣

∣dσ(ζ)≤
1

2π

∫

∂rD

∫

S

∣

∣R f (ζη)
∣

∣

∣

∣ηnk+1
∣

∣

dσ(ζ)|dη|

≤
1

2π

∫

∂rD

∫

S

(

1− r2
)α∣
∣R f (ζη)

∣

∣

(

1− r2
)α
rnk+1

dσ(ζ)|dη|

≤
ε

(1− r)αrnk
,

(2.12)

which implies that

nkr
nk
∥

∥Pnk
∥

∥

1 ≤
ε

(1− r)α
(2.13)

for every k ∈N and r ∈ (δ,1). Choosing r = 1− (1/nk), we obtain

nk
∥

∥Pnk
∥

∥

1 ≤ Cεnαk , (2.14)

from which (b) follows in this case.

(b)⇒(a) (Case p = 1). Assume that limk→∞‖Pnk‖1n
1−α
k = 0, then for every ε > 0 there

is a k0 ∈N such that

∥

∥Pnk
∥

∥

1 ≤ εnα−1
k , for k ≥ k0. (2.15)



6 Abstract and Applied Analysis

We may assume that k0 = 1. From this and by the proof of Theorem 1.3, (b)⇒(a) (Case

p = 1), we have that

(

1− r2
)α∥
∥R fr

∥

∥

1 ≤ sup
0<r<1

(

1− r2
)α+1

∞
∑

n=1

(

∑

nk≤n

nk
∥

∥Pnk
∥

∥

1

)

rn

≤ Cε sup
0<r<1

(

1− r2
)α+1

∞
∑

n=1

(

∑

nk≤n

nαk

)

rn

≤ Cε sup
0<r<1

(

1− r2
)α+1

∞
∑

n=1

nαrn ≤ Cε,

(2.16)

from which the implication follows.

Case p = 2. By using (2.9) the result follows similar to the Case p = 1. The proof is omit-

ted.

Finally, in view of (2.10) and employing Theorem 1.1(b) it is easy to see that (a)⇔(b)

for case p =∞. �

3. The case of mixed norm space

In this section, we give a note concerning analytic functions with Hadamard gaps on the

mixed norm space. The mixed norm space Hp,q,α(B), p,q > 0, and α ∈ (−1,∞), consists

of all f ∈H(B) such that

‖ f ‖p,q,α =

(

∫ 1

0

∥

∥ f (rζ)
∥

∥

q
p(1− r)αdr

)1/q

<∞. (3.1)

From [12, Theorem 4] the following result holds.

Theorem 3.1. Assume that p ∈ (0,∞), α >−1 and f (z)=
∑∞

k=1 akz
nk is an analytic func-

tion on D with Hadamard gaps. Then f (m) ∈Hp,q,α(D) if and only if
∑∞

k=0n
qm−α−1
k |ak|q <

∞.

Proof. First we consider the case m = 0. Similar to the proof of [12, Theorem 4] and by

Lemmas 2.1 and 2.2, we have that

‖ f ‖
q
Hp,q,α

=

∫ 1

0

⎛

⎝

1

2π

∫ 2π

0

∣

∣

∣

∣

∣

∣

∞
∑

k=1

akr
nkeinkθ

∣

∣

∣

∣

∣

∣

p

dθ

⎞

⎠

q/p

(1− r)αdr

≍

∫ 1

0

⎛

⎝

∞
∑

k=1

∣

∣ak
∣

∣

2
r2nk

⎞

⎠

q/2

(1− r)αdr

≍

∫ 1

0

⎛

⎝

∞
∑

k=1

∣

∣ak
∣

∣

2
ρnk

⎞

⎠

q/2

(1− ρ)αdρ

≍

∞
∑

k=0

1

2(α+1)k

⎛

⎝

∑

m∈Ik

∣

∣am
∣

∣

2

⎞

⎠

q/2

≍

∞
∑

k=0

∣

∣ak
∣

∣

q

nα+1
k

,

(3.2)

from which the result follows in this case.
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Since f has Hadamard gaps and f (m)(z)=
∑∞

k=1 aknk(nk − 1)···(nk −m+ 1)znk−m, it

follows that f (m) has Hadamard gaps too. Applying the just proved result to the function

f (m), we obtain that f (m) ∈Hp,q,α(D) if and only if

∞
∑

k=0

∣

∣nk
(

nk − 1
)

···
(

nk −m+ 1
)

ak
∣

∣

q

nα+1
k

≍

∞
∑

k=0

∣

∣ak
∣

∣

q

n
α+1−mq
k

<∞, (3.3)

finishing the proof. �

Remark 3.2. Motivated by [12, Theorems 3 and 4], we can conjecture that if p ∈ (0,∞),

α > −1, and f (z) =
∑∞

k=1Pnk (z) is an analytic function on B with Hadamard gaps, then

R(m) f ∈Hp,q,α(B) if and only if
∑∞

k=0n
qm−α−1
k ‖Pnk‖

q
p <∞. Note that the result is true for

the case of the weighted Bergman space, that is, when p = q, see [12, Corollary 1]. It is

also expected that Theorems 1.3 and 1.4 hold for every p ∈ [1;∞] (for the case n= 1, see

[13]).
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[13] D. Girela and J. A. Peláez, “Integral means of analytic functions,” Ann. Acad. Sci. Fenn., vol. 29,

pp. 459–469, 2004.
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