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Abstract
In this paper we report on numerical studies of the formation of singularities for
the semilinear wave equations with a focusing power nonlinearityutt−�u = up

in three space dimensions. We show that for generic large initial data that lead
to singularities, the spatial pattern of blowup can be described in terms of
linearized perturbations about the fundamental self-similar (homogeneous in
space) solution. We consider also non-generic initial data which are fine-tuned
to the threshold for blowup and identify critical solutions that separate blowup
from dispersal for some values of the exponent p.

Mathematics Subject Classification: 74H35

1. Introduction

One of the most interesting features of many nonlinear evolution equations is the spontaneous
onset of singularities in solutions starting from smooth initial data. Such a phenomenon,
usually called a ‘blowup’, has been the subject of intensive studies in many fields ranging from
fluid dynamics to general relativity. Given a nonlinear evolution equation, the key question
is whether or not a blowup can occur for some initial data. Once the existence of the blowup
is established for a particular equation, many further questions arise. When and where does
the blowup occur? What is the character of blowup and is it universal? What happens at the
threshold of blowup?

In this paper, we consider these questions for the simplest nonlinear generalization of the
free wave equation: the semilinear wave equation with the power nonlinearity

utt − �u = up, u = u(t, x), x ∈ R3, (1)

where p > 1 is an odd integer. There are many mathematical results for equation (1) concerning
its well-posedness in suitable Sobolev spaces and global existence for small initial data—we
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refer an interested reader to the excellent online overview of the subject together with the
complete bibliography by Colliander et al [1].

Note that the sign of the nonlinear term corresponds to focusing, that is, it tends to magnify
the amplitude of the wave. If u is small this term is negligible and the evolution is essentially
linear (actually, for the values of p we consider, one has scattering for t → ∞). However, if
u is large the dispersive effect of the linear wave operator may be overcome by the focusing
effect of the nonlinearity and a singularity can form. In fact, it is known that if the energy

E[u] =
∫

R3

(
1

2
u2

t +
1

2
(∇u)2 − 1

p + 1
up+1

)
d3x (2)

is negative, then a singularity must form in a finite time [2]. This theorem says only that
the solution cannot be continued beyond certain time but it gives no information on what the
solution looks like as it approaches the blowup time. Another way to learn about the character
of singularities is to look at explicit singular solutions. For equation (1) it is easy to see that

u0 = a

(T − t)α
, a =

[
2(p + 1)

(p − 1)2

]1/(p−1)

, α = 2

p − 1
, T > 0 (3)

is the exact solution which blows up as t → T . This solution is obtained by neglecting the
Laplacian in (1) and solving the corresponding ordinary differential equation utt = up. By
the finite speed of propagation, one can truncate this solution in space to get a solution with
compactly supported initial data which blows up in finite time. The question is how typical
this explicit singular behaviour is. There are several ways to approach this problem. On the
analytical side there are Fuchsian methods developed by Kichenassamy [3] which allow us to
construct open sets of initial data which blowup on a prescribed spacelike hypersurface, with
the leading order asymptotic behaviour being given by the solution u0 [4]. On the heuristic
side there are numerical and perturbative methods which, albeit non-rigorous, allow us to gain
more detailed information about the nature of the blowup. In this paper we take the latter
approach.

Our main goal was to show that the solution u0 determines the leading order asymptotics of
the blowup for generic large initial data and the spatial pattern of convergence to this solution
can be described in terms of the least damped eigenmodes of the linearized perturbations
about u0. We did this in the spherically symmetric case

utt − urr − 2

r
ur = up (4)

for three representative values of p = 3, 5 and 7. These values corresponds to three different
classes of criticality of equation (1). To see this, notice that equation (1) has the scaling
symmetry: if u(t, x) is the solution, so is

uL(t, x) = Lαu

(
t

L
,

x

L

)
, α = 2

1 − p
. (5)

Under this transformation the energy scales as

E[uL] = LβE[u], β = p − 5

p − 1
, (6)

hence equation (1) is subcritical for p = 3 (β < 0), critical for p = 5 (β = 0) and supercritical
for p > 5 (β > 0). Since the energy (2) is not positive definite, this distinction is not very
important as far as the generic character of blowup is concerned, however, as we shall show
below, it is relevant for understanding the behaviour of solutions at the threshold for blowup.

We point out that, besides the scaling power ps = 1 + (4/(n − 2)) (ps = 5 for n = 3),
there is another critical power for equation (1), namely the so-called conformal power
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pc = 1+(4/(n − 1)) (pc = 3 for n = 3). For the conformal power equation (1) is conformally
invariant and the homogeneous Sobolev norm ||u||Ḣ 1/2 is dimensionless. Merle and Zaag [5,6]
showed recently that for p � pc the blowup rate is given by solution (3). Although the key
step in their argument—the existence of a Lyapunov functional—breaks down for p > pc,
our results give evidence that in fact there is no qualitative change in the blowup behaviour at
p = pc.

The paper is organized as follows. In section 2 we discuss self-similar solutions of
equation (4) and analyse their stability. In section 3 we present the results of numerical
simulations of the blowup and demonstrate the universality of the blowup profile. Finally, in
section 4 we discuss the behaviour of solutions at the threshold for blowup.

2. Self-similar solutions

In order to set the stage for the discussion of singularity formation we first discuss self-similar
solutions of equation (4). As we shall see below these solutions play an important role in
the process of blowup. By definition, self-similar solutions are invariant under rescaling, see
equation (5), hence in the spherically symmetric case they have the form

u(t, r) = (T − t)−αU(ρ), α = 2

p − 1
, ρ = r

T − t
, (7)

where T is a positive constant, clearly allowed by time translation invariance. Note that each
self-similar solution, if it is regular for t < T , provides an explicit example of a singularity
developing at r = 0 in finite time T from nonsingular initial data—for this reason we shall
refer to T as the blowup time. Substituting the ansatz (7) into equation (4) one gets the ordinary
differential equation for the similarity profile U(ρ)

(1 − ρ2)U ′′ +

(
2

ρ
− (2 + 2α)ρ

)
U ′ − α(α + 1)U + Up = 0. (8)

We consider this equation inside the past light cone of the blowup point (t = T , r = 0), that is
in the interval 0 � ρ � 1. It is easy to see that for any p equation (8) has the constant solution

U0(ρ) =
[

2(p + 1)

(p − 1)2

]1/(p−1)

. (9)

Of course, this solution corresponds exactly to the solution u0 of the original equation (4).
It turns out that besides this trivial solution, for some values of p there exist also nontrivial
profiles. The existence of such solutions can be proved by the shooting technique which goes
as follows. Using Fuchsian methods one first shows [7] that at both endpoints of the interval
0 � ρ � 1 there exist one-parameter families of local analytic solutions which behave,
respectively, as

U(ρ) ∼ c +
1

3

(
p + 1

(p − 1)2
c − 1

2
cp

)
ρ2 for ρ → 0 (10)

and

U(ρ) ∼ b +
1

2

(
1

2
(p − 1)bp − p + 1

p − 1
b

)
(ρ − 1) for ρ → 1, (11)

where b and c are free parameters. Having that, the strategy for finding solutions which
are regular in the interval 0 � ρ � 1 is simple: one shoots the solution satisfying the
initial condition (11) at ρ = 1 towards the centre and adjusts the shooting parameter b so
that U ′(0) = 0. Applying this technique one can show [7] existence for a countable set of
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Figure 1. The first three similarity profiles Un(ρ) for p = 3. The index n counts the number
of zeros of Un(ρ) in the interval 0 � ρ � 1. When continued beyond the past light cone, these
solutions become singular at some ρ > 1.
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Figure 2. The first three similarity profiles Un(ρ) for p = 7. In contrast to p = 3, here all profiles
are monotone and have no zeros. For ρ → ∞ they decay as U(ρ) ∼ ρ−1/3.

parameters bn (n = 0, 1, . . .) which determine analytic similarity profiles Un for p = 3 and all
odd p � 7. The first few similarity profiles Un for p = 3 and 7 are shown in figures 1 and 2.

The behaviour of solutions Un(ρ) outside the past light cone, that is for ρ > 1, depends
on p. One can show (see [7]) that for p = 3 all n > 0 solutions become singular outside the
past light cone, namely

U(ρ) ∼ d

ρ0 − ρ
for some ρ0 > 1. (12)

In contrast, for p = 7, 9, . . . all solutions Un remain regular outside the past light cone.
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For p = 5 there are no nontrivial self-similar solutions—this can be shown as follows.
Consider the function

Q(ρ) = 1

2
(1 − ρ2)ρ3U ′ 2 +

1

2
ρ2(1 − ρ2)UU ′ +

[
3(5 − p)

4(p − 1)
− 2

(p − 1)2

]
ρ3U 2

+
1

p + 1
ρ3Up+1. (13)

This function was introduced by Kavian and Weissler [8] in their study of equation (4). They
showed that Q′(ρ) = 0 for p = 5, hence, in this case Q is the first integral of equation (8).
Since Q(0) = 0, it follows that Q(1) = 0, from which one gets b = U(1) = (3/4)1/4. This
coincides with U0 so by uniqueness we conclude that U0 is the only similarity profile.

In order to determine the role of self-similar solutions in dynamics it is essential to analyse
their stability. To this end we define the slow time τ = − ln(T − t) and rewrite equation (4)
in terms of the new variable U(τ, ρ) defined by

u(t, r) = eατU(τ, ρ), α = 2

p − 1
. (14)

We get

Uττ + (1 + 2α)Uτ + 2ρUτρ = (1 − ρ2)Uρρ +

(
2

ρ
− (2 + 2α)ρ

)
Uρ − α(α + 1)U + Up.

(15)

The advantage of this formulation is that self-similar solutions of equation (4) now correspond
to τ -independent solutions of equation (15) while the asymptotics of blowup correspond to
the behaviour at τ → ∞. In order to determine the linear stability of solutions Un(ρ) we
seek solutions of (15) in the form U(τ, ρ) = Un(ρ) + eλτ ξ(ρ). After linearization we get the
quadratic eigenvalue problem

(1 − ρ2)ξ ′′ +

(
2

ρ
− 2(1 + α)ρ

)
ξ ′ − 2ρλξ ′ + [pUp−1

n − α(α + 1) − (1 + 2α)λ − λ2]ξ = 0.

(16)

Let us consider first the stability of the constant solution U0. In this case equation (16) becomes

(1 − ρ2)ξ ′′ +

[
2

ρ
− 2

(
p + 1

p − 1
+ λ

)
ρ

]
ξ ′ +

[
2(p + 1)

p − 1
− p + 3

p − 1
λ − λ2

]
ξ = 0. (17)

Near ρ = 0 the admissible solution has the formal power series expansion

ξ(ρ) =
∑
k=0

akρ
2k (18)

with the coefficients satisfying the recurrence relation

ak+1 = λ2 + (4k + (p + 3)/(p − 1))λ + 2k(2k + (p + 3)/(p − 1)) − 2((p + 1)/(p − 1))

2(k + 1)(2k + 3)
ak.

(19)

Since ak+1/ak → 1 as k → ∞, the series (18) diverges for ρ > 1. In order to be able to
continue the solution ξ(ρ) defined by the series (18) analytically through the point ρ = 1 we
must impose the condition that the series truncates at the kth term

λ2 +

(
4k +

p + 3

p − 1

)
λ + 2k

(
2k +

p + 3

p − 1

)
− 2

p + 1

p − 1
= 0. (20)
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This yields two infinite sequences of pairs of real eigenvalues

λk = 1 − 2k, λ̄k = −2(p + 1)

p − 1
− 2k, k = 0, 1, . . . . (21)

There is exactly one positive eigenvalue λ0 = 1. It corresponds to the gauge mode which is due
to the freedom of choosing the blowup time T . All the remaining eigenvalues are negative,
hence, for any p the solution U0 is linearly stable. This suggests that it can appear as an
attractor in generic evolution.

Since we do not know the solutions Un with n > 0 in closed form, their spectrum of linear
perturbations can be computed only numerically. Our numerical calculations indicate that the
solution Un has n unstable modes (apart from the spurious unstable mode corresponding to the
change of blowup time). For this reason the solutions with n > 0 are not expected to appear
in generic evolution. However, as we shall see later, the solution U1 with one unstable mode
appears as the codimension-one attractor in the evolution of specially prepared initial data.

3. Blowup profile

Having learned about the stability of the solution u0 we are now prepared to interpret the results
of numerical simulations. The main goal of these simulations was to determine the asymptotics
of blowup. Before discussing the results let us briefly describe the numerical method we apply
in our simulations. To solve equation (4), we rewrite it as the first-order system in time

ut = v, vt = urr +
2

r
ur + up (22)

and use the standard method of lines. To this end we discretize the space variable and replace the
system (22) of partial differential equations by a corresponding system of ordinary differential
equations. For the discretization we use the uniform fixed grid and approximate the continuous
spatial differential operators by standard five-point, fourth-order accurate, finite difference
operators. At the inner boundary r = 0, the requirement of regularity enforces the boundary
condition ur(0, t) = 0. We note that the formal Taylor series representing the solution at
the origin contains only even powers of r . In order to get the right-hand sides of the first
(i.e. corresponding to the grid point r = 0) equations we fit the right-hand sides of several
neighbouring grid points. Keeping in mind that the function u (and as a consequence the whole
right-hand side) contains only even powers of r we obtain the following, fourth-order accurate,
formula

r(1) = 3

2
r(2) − 3

5
r(3) +

1

10
r(4),

where r(i) denotes the right-hand side of the ordinary differential equation at r = (i−1)h (h is
grid spacing). At the outer boundary we approximate the differential operators by appropriate
five-point forward difference operators and implement the usual outgoing wave condition. To
integrate the resulting system of ordinary differential equations we use the standard fourth-
order Runge–Kutta method. As a result we obtain the stable numerical scheme which is
fourth-order accurate both in space and time.

In most cases the calculations performed on a single grid were sufficient for our purposes.
However, in some cases, especially in the computation of the critical behaviour for p = 7, the
single grid calculation had insufficient resolution. Since high resolution was needed only in the
vicinity of the origin, we used in these cases a system of overlapping fixed grids of progressively
finer resolutions. The basic grid with coarse resolution covers the whole computational domain,
whereas each additional grid starts from the origin and has a resolution of the previous grid
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times a constant refinement factor. All additional grids have fixed number of gridpoints and
cover only the vicinity of the origin. The value of grid points at the outer boundary of additional
finer grids are obtained by interpolation from coarser grids. Using only two additional grids
and the refinement factor equal to 10, we improve the resolution near the centre by a factor of
hundred.

We found that, for sufficiently large initial data, the amplitude u(t, r) becomes unbounded
in a finite time T for some r = rS . More precisely, we have

lim
t→T

(T − t)αu(t, rS) = a =
[

2(p + 1)

(p − 1)2

]1/(p−1)

, (23)

which confirms the expectation that the solution u0 determines the leading order asymptotics
of the blowup. In this section we wish to show that if the blowup point is at the centre, that is
rS = 0, then the spatial pattern of the developing singularity can be described in terms of the
least damped eigenmodes about u0.

Using the results of linear stability analysis we can represent the asymptotic approach to
U0 for τ → ∞ (i.e. t → T ) by the formula

U(τ, ρ) = U0 +
∑
k=1

ck eλkτ ξk(ρ) +
∑
k=0

c̄k eλ̄kτ ξ̄k(ρ), (24)

where ξk(ρ), ξ̄k(ρ) are the eigenmodes corresponding to the eigenvalues λk, λ̄k , respectively,
and ck, c̄k are the expansion coefficients. Keeping the first two least damped eigenmodes we
obtain the following expansions in terms of original variables (using the abbreviation δ = T −t)

p = 3

δu(r, t) =
√

2 + c1δ

(
1 − r2

δ2

)
+ c2δ

3

(
1 − 2r2

3δ2
+

r4

5δ4

)
+ O(δ4), (25)

p = 5

√
δu(t, r) =

(
3

4

)1/4

+ c1δ

(
1 − 2r2

3δ2

)
+ δ3

(
c̄0 + c2

r2

δ2

(
1 − r2

5δ2

))
+ O(δ5), (26)

p = 7

δ1/3 u(t, r) =
(

2

3

)1/3

+ c1δ

(
1 − 5r2

9δ2

)
+ c̄0δ

8/3 + O(δ3). (27)

We claim that these formulae describe accurately the convergence to the blowup profile inside
the past light cone of the blowup point (t = T , r = 0). The numerical evidence for this
assertion is summarized in figures 3 and 4 in the case p = 3 (throughout this section we use
the case p = 3 for illustration—analogous results hold for p = 5 and 7).

As shown in figure 4 the formula (25) accurately describes the blowup profile for large τ

(i.e. t close to T ) not only inside the light cone but even slightly beyond. However, the
expansions (25–27) are expected to break down when the linearization is no longer valid; that
is, if r2/δ2 ∼ 1/δ. In this transition region the leading order approximation for any p reads

u(t, r) � 1

δα

(
a + c1d12

r2

δ

)
(28)

with α and a defined as in (3) and d12 equal to the coefficient of the quadratic term of the ξ1

eigenfunction. This indicates the parabolic scaling

u(t, r) = 1

δα
F (z), z = r√

δ
. (29)
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Figure 3. For p = 3 we plot the function 1/u(t, 0) for the solution that blows up at r = 0 as
t → T ≈ 3.466. The solid line shows the fit to the first order analytic approximation δ/(

√
2 +c1δ).
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Figure 4. For the same numerical data as in figure 3 we plot the deviation of the rescaled solution
δu(t, r/δ) from the constant solution U0 = √

2 at time δ = 6.09 × 10−3. The solid line shows the
least damped eigenmode c1(1 − ρ2)δ with the same coefficient c1 as in figure 3.

Substituting this ansatz into equation (4) and dropping the Laplacian (which becomes negligible
as δ → 0) we get the ordinary differential equation

z2F ′′ + (4α + 3)zF ′ + 4α(α + 1)F − 4Fp = 0, (30)

which has a one-parameter family of regular solutions

F(z) = a(
1 + bz2

)α . (31)
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Comparing (28) with (29) and (31) we get the matching condition

b = −d12

αa
c1, (32)

which, for example, for p = 3 gives b = c1/
√

2. The numerical confirmation of this prediction
is shown in figure 5.

We remark that the above result follows immediately from the Fuchsian analysis which
predicts the leading order asymptotics on a spacelike blowup curve T (r) in the form

u(t, r) = a

(T (r) − t)α
. (33)

The blowup time is defined as T = inf T (r). Assuming that this infimum is attained at r = 0,
we have T (r) � T + br2 for some b > 0. Inserting this into (33) we get

u(t, r) = 1

δα

A

(1 + b(r2/δ))α
, (34)

which reproduces (29) and (31).
As the coefficient b becomes negative, the first blowup occurs at rS > 0. By fine-tuning

initial data to the transition between the blowup at rS = 0 and the blowup at rS > 0 we set
b = 0 which means that the first eigenmode in the expansion (24) is tuned away. For such
codimension-one initial data the formula (28) should be replaced by

u(t, r) � 1

δα

(
a + c2d23

r4

δ

)
, (35)

where the coefficient d23 is equal to the quartic term of the ξ2 eigenfunction. This gives another
scaling (see figure 6)

u(t, r) = 1

δα
G(z), z = r

δ1/4
, (36)

where

G(z) = a(
1 + dz4

)α , d = −d23

αa
c2. (37)
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Figure 6. For p = 3 we plot the rescaled solution approaching the blowup time for initial data
fine-tuned to the borderline of blowup at rS = 0 and rS > 0. The solid line shows the fit to the
analytic prediction G(z) = √

2/(1 + dz4).

4. Threshold for blowup

Since solutions of equation (4) disperse for small initial data and blowup for large initial
data, there arises a natural question what happens in between. In the following the boundary
between initial data that lead to dispersion and initial data that lead to singularity formation will
be referred to as the threshold for blowup. The determination of the threshold for blowup and
the corresponding dynamics is of great interest in physical models which predict formation
of singularities, for example in general relativity. This issue can be studied numerically as
follows. Consider a one-parameter family of initial data φ(p) such that the corresponding
solutions exist globally if the parameter p is small or blowup if the parameter p is large. Then,
along the curve φ(p) there must be a critical value p∗ (or an interval [p∗

min, p
∗
max]) which

separates these two scenarios. Given two values p small and p large, it is straightforward
(in principle but not always in practice) to find p∗ by bisection. Repeating this procedure
for different interpolating families of initial data one obtains a set of critical data which by
construction belongs to the threshold for blowup. Having that, one can look in more detail at
the evolution of critical data. The precisely critical data cannot be prepared numerically but
in practice it is sufficient to follow the evolution of marginally critical data. Typically, one
finds that the evolution of such data has a universal (that is family independent) transient phase
during which the solution approaches a kind of an intermediate attractor.

The heuristic explanation of this behaviour is sketched in figure 7. According to this
picture the threshold for blowup is given by the codimension-one stable manifold WS(u

∗) of
an intermediate attractor u∗, called the critical solution. The critical initial data, corresponding
to intersections of WS(u

∗) with different interpolating one-parameter families of initial data,
converge4 along WS(u

∗) towards the critical solution. The marginally critical data, by
continuity, initially remain close to WS(u

∗) and approach u∗ for intermediate times but
eventually are repelled from its vicinity along the one-dimensional unstable manifold. Within
this picture the universality of marginally critical dynamics in the intermediate asymptotics
follows immediately from the fact that the same unstable mode dominates the evolution of all

4 It should be stressed that for conservative wave equations, such as (1), the convergence (which is due to radiation
of energy to infinity) is always meant in the local sense.
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Figure 7. A schematic phase space picture of dynamics at the threshold for blowup.

solutions. The nature of the critical solution itself depends on a model—typically u∗ is a static
or a self-similar solution with exactly one unstable mode.

To apply the numerical strategy outlined above we solved equation (4) for various one-
parameter families of initial conditions which interpolate between small and large initial
data. The results described below do not depend on the particular choice of the family—
for concreteness we present them for the initial data of the form

u(0, r) = Ar2exp

[
−

(
r − R

σ

)4
]

, ut (0, r) = 0 (38)

with adjustable amplitude A and fixed parameters σ and R. Since the initial data are
time symmetric, the initial profile splits into ingoing and outgoing waves travelling with
approximately unit speed. Except for very large initial amplitudes for which the singularity
forms very fast, before the separation into ingoing and outgoing wave occurs, the evolution
of the outgoing wave does not affect the singularity formation so we shall ignore it. The
behaviour of the ingoing wave depends on the amplitude A. For large amplitudes we observe
the formation of singularity at some rS > 0 in finite time T . As A decreases, the blowup
point rS decreases also and reaches5 rS = 0 for some value A0. As we keep decreasing the
amplitude below A0 we eventually reach a critical value A∗ below which solutions do not
blowup. The asymptotic pattern of blowup described in section 3 applies to solutions with
amplitudes A∗ < A < A0. The character of the threshold for blowup at A∗ depends on p so
we discuss three values of p separately.

p = 7:
In this case we identify the critical solution as the n = 1 self-similar solution

u1(t, r) = (T − t)−(1/3)U1(ρ). (39)

The numerical evidence for the criticality of solution u1 is presented in figure 8.

5 The behaviour of the function rS(A) depends on p. As A → A0 from above, the function rS(A) decreases
continuously to zero for p = 3 but for p > 3 it jumps from some rS > 0 to rS = 0.
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Figure 8. For p = 7 the time derivative ut (t, r) of marginally critical solutions is plotted for two
moments of time during the transient phase of evolution and compared to the theoretical prediction
∂u1/∂t = (T − t)−4/3(U1/3 + ρU ′

1). The parameter T is the same for both curves.

According to the picture of critical behaviour described earlier, the marginally critical
solutions have the following form in the intermediate asymptotics

u(t, r) = (T − t)−1/3U1(ρ) + C(A)(T − t)−λ1−(1/3)ξ1(ρ) + damped modes, (40)

where ξ1 is the single unstable mode about u1 with the eigenvalue λ1 = 11.6442. A small
constant C(A), which is the only vestige of initial data, quantifies an admixture of the unstable
mode—for precisely critical data C(A∗) = 0. We show in figure 9 that the departure from the
critical solution proceeds in agreement with equation (40).

p = 5:
We know from section 2 that in this case there are no nontrivial self-similar solutions. However,
since for p = 5 the energy is scale invariant, static solutions with finite energy are possible.
Indeed, it is well known that equation (4) has the finite energy solution

uS(r) = (
1 + 1

3 r2
)−1/2

. (41)

Rescalings of this solution generate the orbit of static solutions uL
S = L−1/2uS(r/L). To

determine the linear stability of this solution we plug u(t, r) = uS(r) + eiktv(r) into (4) and
linearize. We get the eigenvalue problem in the form of the radial Schrödinger equation

−v′′ − 2

r
v′ + V v = k2v, V = − 5

(1 + (1/3)r2)2
. (42)

Notice that the perturbation induced by rescaling

v0(r) = − d

dL
uL

S (r)

∣∣∣∣
L=1

= (1/2) − (r2/6)

(1 + (1/3)r2)3/2
, (43)

satisfies equation (42) for k2. This is the so-called zero mode. Since the zero mode has one
node, it follows by the standard result from Sturm–Liouville theory that the potential V has
exactly one bound state, k2

1 < 0, which means that there is exactly one growing mode eλ1t v1(r),

where λ1 =
√

−k2
1 . Numerical calculation gives λ1 ≈ 1.1.
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Figure 9. We plot u−3(t, 0) for the pair of marginally critical solutions corresponding to initial
data (38) with A = A∗ ± 10−31. Initially these solutions are indistinguishable but eventually
they split and depart from the critical solution towards blowup and dispersal, respectively. The
theoretical curves, corresponding to equation (40) for r = 0, with two different fitted coefficients
C are superimposed.

Thus, according to our preceding discussion, the solution uS is a candidate for a critical
solution. To verify this, Szpak [9] has investigated the nonlinear evolution of the growing
mode. For initial data of the form u(0, r) = uS(r) + εv1(r), ut (0, r) = ελ1v1(r), he found
that depending on the sign of the amplitude ε, the solution either disperses or blows up in finite
time. This confirmed the expectation that in fact uS is the critical solution sitting on the saddle
separating the blowup from dispersal. Applying bisection to the family of initial data (38) we
have obtained the solution uS as the intermediate attractor with pretty long lifetime. We refer
the reader to [9] for more details, in particular the analysis of convergence to uS .

p = 3:
In this case we were not able to identify a critical solution because of two reasons. First, in
contrast to the cases described above, in p = 3 we do not have a good candidate for the critical
solution. The only potential candidate is the self-similar solution u1 with one unstable mode,
however, as mentioned in section 2, this solution is singular outside the past light cone of
the blowup point and, therefore, cannot be a bona fide critical solution. Second, we face the
following difficulty when trying to determine A∗. As we approach the expected value of A∗

from above, the wave initially shrinks but at some later time t1 it bounces back and expands
outside with decreasing amplitude. During this period of evolution the amplitude of outer wave
front decreases faster than the amplitude of the solution at the centre, so a flat central region
that slowly decreases with time develops. After some time t2 this central part of the solution
returns and starts growing again to form a singularity at r = 0. If we decrease A further,
the time of bounce t1 almost does not change but the return time t2 increases significantly.
Therefore, approaching A∗ we have to evolve the solution longer and longer on larger and
larger grids. Since the numerical grid is always finite, we cannot tell if an expanding wave
which leaves the grid represents a genuine dispersion or a singular solution with large return
time t2. Figures 10 and 11 illustrate this difficulty.
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Figure 10. For p = 3 we plot the snapshots from the evolution of the wave that has bounced back
from the centre. After the bounce the amplitude at the centre initially decreases but later the wave
returns and the amplitude starts growing again.
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Figure 11. The same data as in figure 10. The first minimum of 1/umax corresponds to the bounce.
The second local maximum corresponds to the return.

5. Conclusions

We have studied the formation of singularities for the spherically symmetric semilinear wave
equation with the focusing power nonlinearity up for three representative values of the exponent
p: p = 3 (subcritical case) p = 5 (critical case), and p = 7 (supercritical case). We
showed that in all these cases the asymptotic behaviour of the blowup can be understood in
terms of decaying perturbations about the fundamental (homogeneous in space) self-similar
solution. We showed also that the nature of the critical solution, whose codimension-one stable
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manifold separates the blowup from dispersal, depends on p: for p = 7 the critical solution
is self-similar while for p = 5 it is static. For p = 3 we were not able to identify a critical
solution—determining the character of the threshold for blowup in this case remains an open
problem.
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