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Abstract—A system for automated mission planning is 

presented with a view to operate Unmanned Aerial Vehicles 

(UAVs) in the National Airspace System (NAS). This paper 

describes methods for modelling decision variables, for en-

route flight planning under Visual Flight Rules (VFR). For 

demonstration purposes, the task of delivering a medical 

package to a remote location was chosen. Decision 

variables include fuel consumption, flight time, wind and 

weather conditions, terrain elevation, airspace classification 

and the flight trajectories of other aircraft. The decision 

variables are transformed, using a Multi-Criteria Decision 

Making (MCDM) cost function, into a single cost value for 

a grid-based search algorithm (e.g. A*). It is shown that the 

proposed system provides a means for fast, autonomous 

generation of near-optimal flight plans, which in turn are a 

key enabler in the operation of UAVs in the NAS. 1 2 
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1. INTRODUCTION 

Mission planning is an integral component in the integration 

of Unmanned Aerial Vehicles (UAVs) within the National 

Airspace System (NAS). In order to gain access to the NAS, 

it is necessary to demonstrate an Equivalent Level of Safety 

(ELOS) to that of human piloted aircraft [1]. ELOS 

comprises three major requirements: (i) see and avoid 

capability, (ii) compliance with existing aviation rules and 

regulations, and (iii) transparency of operation [1]. Mission 

planning, which comprises pre-flight (strategic) planning 

and in-flight (tactical) replanning, ensures conformance 

with the rules of the air [2], and thus helps to address 

ELOS. 
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UAV mission planning is a complex multi-objective 

decision problem that must consider not just the rules of the 

air, but also mission efficiency objectives and safety 

objectives. Pre-flight planning is necessary in the risk 

management and subsequent approval of flight operations. 

In-flight replanning, on the other hand, is required when 

changes to the operating environment, to the UAV or to 

mission goals, invalidate the strategic plan. Because the 

UAV operates in a dynamic, outdoor environment, it is 

impossible to predict with certainty true operating 

conditions. Replanning is used to mitigate this uncertainty. 

For fixed wing UAVs, there is significant time pressure on 

in-flight planning as the vehicle is in constant motion. 

The benefits of automating the mission planning process 

onboard the UAV are twofold. Firstly, onboard mission 

planning can help increase the level of autonomy of the 

UAV. Onboard replanning ensures continued compliance 

with the rules of the air despite changes to the operating 

environment, even in the event of a communications failure. 

This is crucial for operation in the NAS [1]. In order to 

realise this capability, a level of autonomy is required 

whereby the UAV executes decisions made autonomously 

unless the human operator intervenes [3]. Given the size of 

the search space and the complexity of the decision 

problem, an automated mission planner can also serve as a 

decision support tool to aid the human operator. This can be 

especially beneficial in the scenario where the human 

operator is controlling multiple UAVs.  

This paper presents a framework for UAV mission planning 

that adapts the human operator’s multi-objective decision 

rules in generating a flight plan. For the purposes of 

demonstration, this paper adopts an example mission 

scenario involving delivery of a medical package to a 

remote location, using a small UAV. Such a mission, due to 

the non-standard locale and low altitude ceiling of small 

UAVs [4] is performed under Visual Flight Rules (VFR) 

[5]. Examples of small UAVs include the RQ-2 Pioneer 

(100nm range), RQ-7 Shadow (68nm range), and 

Aerosonde (3000km range), all of which have a ceiling of 

15000ft [4]. However, the proposed framework is 

applicable to en-route flight planning in general. 

Mission planning, in the context of UAV en-route flight 

planning, is a path planning problem. It involves finding a 
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sequence of waypoints (or nodes) in 3D along with the 

estimated time of arrival at each waypoint, that link the start 

waypoint to a specified goal waypoint. In an intelligent 

control architecture, these waypoints are passed to the 

aircraft’s autopilot controller through a sequencer [6]. The 

integration of planning and control is beyond the scope of 

this paper. In determining intermediary waypoints, it is 

necessary to evaluate multiple decision criteria. A mission 

objective is satisfied when that objective’s constituent 

decision criteria are satisfied. For example, satisfaction of 

fuel and flight time criteria leads to satisfaction of the 

mission efficiency objective. 

Existing work (as described in section 2) fails to address the 

simultaneous requirements for computational efficiency, 

and multi-criteria decision making, necessary to on-board 

mission planning. Section 3 discusses the decision criteria 

relevant to en-route flight planning. The proposed 

algorithm, which combines a candidate method for multi-

objective aggregation with an efficient path planning 

algorithm, is presented in section 4. Finally, the simulation 

outcomes are discussed in section 5.  

It is shown through simulation that the proposed multi-

objective planning approach is fast enough to meet the 

requirements of on-board mission planning. This is a key 

enabler in the operation of UAVs in the NAS. 

2. BACKGROUND 

Mission planning belongs to the class of planning problems 

referred to as the weighted region problem [7]. For these 

problems, the transition costs between nodes are non-

binary, i.e. regions of the search space can not be classified 

as purely untraversable or purely free space [8]. This is 

because it is necessary to distinguish between path segments 

which may lie in “free space” (as in free of obstacles), but 

have different degrees of attractiveness when evaluated 

against multiple decision criteria. Note that mission 

planning is a form of path planning [8], as it finds a 

sequence of waypoints that link the start to the goal 

(destination) waypoint. This differs from trajectory planning 

[8], where the solution path is expressed in terms of the 

degrees of freedom of the vehicle and velocity/angle rates.  

Existing methods for UAV flight planning, have focused 

predominantly on finding paths that satisfy vehicle 

dynamics while avoiding obstacles (e.g. [8-16]). This is 

similarly the case for many generic path planning 

algorithms (refer [8] for a comprehensive survey). 

There are many examples of multi-objective path planners 

in the field of HAZardous MATerials (HAZMAT) 

transportation [17-19]. This is due to the need to make 

trade-offs between risk and transportation costs. Existing 

work in HAZMAT route planning almost exclusively 

adopts the approach of combining a multi-criteria cost 

function (typically a weighted sum) with a search algorithm 

(such as A* [20]). This framework is described in [21]. It is 

necessary to aggregate decision variables into a single cost 

value because of “exponential growth in planning time and 

memory usage with dimensionality” [22]. Existing 

HAZMAT route planning methods, however, are 

constrained to 2D environments and do not consider 

variables such as wind. 

Rubio [23] presents a 3D UAV path planner that 

incorporates wind conditions to find a path that minimises 

fuel consumption. However, the rules of the air were not 

incorporated into the planning process. Gu [24] proposes a 

bi-objective UAV flight planner that optimises for risk and 

fuel costs; but wind information is not used.  

There are also generic multi-objective search algorithms 

such as MOA* [25] and Fujimura’s [26] algorithm. MOA* 

only works for acyclic graphs (graphs derived from grids 

are cyclic) and Fujimura’s algorithm is not scalable to large 

search spaces.  

It can be seen that existing work does not adequately 

address the requirements for UAV mission planning. 

Furthermore, it is necessary to minimise the dimensionality 

of the problem due to the intractability of path planning [8, 

22]. A minimum of three spatial dimensions are required for 

UAV flight planning. In addition, because of the presence 

of dynamic obstacles (e.g. weather, other aircraft), variable 

wind conditions, and a need to optimise for flight time, it is 

desirable to include a time dimension. This guarantees 

resolution completeness [8] and path optimality when using 

an algorithm like A*. For the following section on decision 

criteria, it is assumed that the search space is four 

dimensional. 

3. DECISION CRITERIA 

A number of key decision criteria for UAV en-route 

planning under VFR [5] are presented. This section 

discusses, for each criterion, the potential data source, data 

storage structure, and impact on the medical package 

delivery mission. For the planning task at hand, it is 

desirable to find the optimal (or least cost) path, where the 

cost represents the combined degree of satisfaction of all the 

decision criteria. 

Time 

Emergency delivery of a medical package to a remote 

location requires reaching the goal destination in minimal 

time. The time of arrival at each waypoint corresponds to a 

unique node in the 4D search space. This arrival time is 

conditional on the wind vector, selected cruise velocity, and 

the predicted flight trajectory between waypoints. 

The predicted flight trajectory is contingent on the structure 

of the search space. Much of the recent work for vehicle 
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planning has focused on techniques in computational 

geometry using a grid [9, 23, 24, 27-35]. However, for 

conventional grid based planning (using a 4/8-connected or 

6/26-connected neighbourhood for 2D or 3D respectively), 

the resultant flight trajectory has limited track angle 

resolution. For example, in 2D planning, the resolution is 

limited to increments of 45°. This can lead to sub-optimal 

paths even after application of path smoothing [28].  

A number of methods have been proposed which increase 

the angular resolution of the search space [27, 28, 30, 32, 

35]. However, [30] does not find the least cost path and [35] 

requires a priori cell decomposition; this is computationally 

infeasible given the presence of dynamic obstacles. As well, 

it is not possible to use the methods described in [27, 28] as 

the track angle is derived from a priori knowledge of path 

costs. This is not possible since, for en-route planning, the 

path cost is itself dependent on the track angle (due to wind 

effects).  

Consider the approach presented in [32] whereby 

predefined trajectory segments are used to connect nodes 

(which are placed in the centre of cells). Unlike the 26-

connected neighbourhood, successive nodes do not 

necessarily lie in adjacent cells (see Figure 1). This is 

sometimes referred to as a vector neighbour [8]. It is 

possible to have arbitrary angular resolution using vector 

neighbours. However, [32] focuses on trajectory planning 

for a 2D vehicle. For the purposes of UAV mission 

planning, it is sufficient to approximate the actual path costs 

by assuming linear trajectories (as in Figure 1). This is 

possible when the cell size is large compared to the 

aircraft’s tracking error and turn radius, and the time spent 

manoeuvring between tracks is small compared to time 

spent on track. Such an assumption forgoes the need for 

inclusion of horizontal and vertical track angle dimensions, 

as turning circles are not considered. In addition, 

computation of ground speed is simplified when using 

linear tracks. This assumption is necessary to avoid “the 

curse of dimensionality” [22]. 

 

Figure 1 – A vector neighbour 

The adopted neighbourhood operator is shown in Figure 2. 

It provides an average horizontal angle increment of 15° 

and allows for flight path angles of up to ±6° in 

approximately 3° increments for cells of size 

1nm×1nm×1000ft (equivalent to 1852m×1852m×304.8m). 

The estimated time of arrival at a node can be expressed as 

a simple recurrence relation: 

 ( ) ( ) ( ),t s t s s sτ′ ′= +  (1) 

where s, s’ are parent and child nodes respectively, t is the 

time of arrival at a node, and τ is the transition time between 

nodes. 

 

Figure 2 – 3D Neighbourhood operator 

Using predefined, linear, flight trajectories, the transition 

time is thus: 

 ( )
( ),

,
c w

d s s
s s

v v
τ

′
′ =

+
 (2) 

where d is the horizontal distance between the nodes, vc is 

the cruise velocity vector and vw the wind velocity. Wind 

and weather forecasts in Australia are obtainable from 

Airservices Australia [36]. For long range flight, wind 

forecasts are available in GRIdded Binary (GRIB) format 

[23] with 1×1.25° resolution. As small UAVs have limited 

engine power [4], the wind can drastically affect flight time 

and constrain potential paths. Therefore, vw can not be 

ignored. 

Fuel 

A decision criterion that is in direct contention with 

minimisation of travel time is minimisation of fuel 

consumption. Calculation of fuel usage is based on a 

specified cruise velocity, traversal time between nodes 

(equation (2)), flight altitude, climb/descent angle, aircraft 

parameters (e.g. fuel mixture, throttle, propeller pitch), and 

atmospheric temperature and pressure. Such fuel 

calculations are platform specific. For the purposes of this 

simulation, a simple look up table is used based on the 

Aerosim fuel model [37].  
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Altitude Above Ground Level (AGL) 

Australian civil air regulation CAR157 stipulates that flight 

must be conducted at altitudes of at least 1000ft Above 

Ground Level (AGL) over populous areas, and 500ft AGL 

otherwise [2]. For each cell in the search grid, AGL is 

calculated by subtracting terrain elevation from the altitude 

of that cell. Because of the relatively short range of small 

UAVs [4], the curvature of the earth can be neglected. Thus, 

it is possible to use the 3D grid discussed previously. The 

altitude levels (on the z axis) on this grid are expressed in 

feet Above Mean Sea Level (AMSL). Terrain elevation 

information can be obtained from a Digital Elevation Map 

(DEM), such as the National Aeronautics and Space 

Administration (NASA) Shuttle Radar Topography Mission 

(SRTM) map [38]. Elevation information is available at a 

resolution 90m for many regions in the world [38]. 

Airspace Classes 

En-route path planning is constrained by the different 

classes of airspace and the requirements for operation in 

each class. For the purposes of simulation, it is assumed that 

the UAV operates under VFR and has access to the NAS. In 

Australia, there are five major categories of airspace, 

namely class A, C, D, E and G [5]. Regions of airspace, as 

shown in Figure 3, are defined using altitudes (e.g. en-route 

airspace, class A and E) or, in terms of altitude and 

proximity to an aerodrome (class C, and D). Class G 

airspace covers all regions not defined otherwise. Only in a 

small number of cases are there more complicated airspace 

designations (such as special use airspace or military 

airspace). Airspace charts can be obtained from Airservices 

Australia [36]. 

 

Figure 3 – Example airspace regions 

The airspace is suited to a polyhedron based representation, 

especially cylinders (for class C, D airspace), and 

rectangular prisms (for class A, E, G). For the mission at 

hand, the en-route flight path avoids restricted airspace, and 

classes A, D and C airspace. These obstacle regions O are 

represented as the conjunction of half-spaces H: 

 0 1 ... nO H H H= ∧ ∧ ∧  (3) 

where Hi is defined based on the cells, x, y, z in the grid 

(which represents the world space) W: 

 ( ) ( ){ }, , , | , , 0
i i

H x y z W W f x y z= ∈ ≤  (4) 

It is beneficial to model half spaces using both flat (6) and 

curved (7) surfaces, due to the presence of cylindrical 

regions. 

 ax by cz d+ + −  (5) 

 ( ) ( )
2 2 2

c cx x y y r− + − −  (6) 

From (6) and (7), it can be seen that only the parameters a, 

b, c, d, r are stored – thus, this is significantly more memory 

efficient than a grid. 

Aircraft Separation Risk 

Another requirement in the design of a flight path is the 

avoidance of other aircraft. By incorporating a priori 

knowledge of aircraft movement, it is possible to 

strategically avoid collision scenarios without activating 

emergency collision avoidance systems. Potentially, this 

information can be obtained from flight plans lodged with 

the regulatory body. Alternatively, it is also possible to 

obtain position and velocity information of other aircraft 

from surveillance systems such as Automatic Dependent 

Surveillance Broadcast (ADS-B) [39]. 

Aircraft must maintain a minimal vertical separation of 

1000ft as part of the Reduced Vertical Separation Minimum 

(RVSM) requirement [40]. However, lateral separation 

standards vary depending on aircraft flight vectors, and 

navigation systems used. For the purposes of simulation, it 

is assumed that the lateral separation is 5nm. This is the 

proposed separation for aircraft in conflict that use ADS-B 

[39]; it is identical to the standard used for operations under 

Route Surveillance Radar (RSR) [40]. It can be seen that 

other aircraft can be modeled as cylindrical obstacles (using 

(4), (5)) with a radius of 5nm, and height of 2000ft. Unlike 

regions of airspace, where the position and extents are static 

and known, there is uncertainty in the predicted position of 

a moving aircraft. This uncertainty grows with time [14]. 

Uncertainty can be modeled using probabilistic methods 

(refer [41]), or approximated probabilistic methods (such as 

[14]). Consider the case where initial position uncertainty is 

purely a result of Global Positioning System (GPS) 

uncertainty. GPS error is typically modeled using the 

Gaussian distribution [42]. Present day GPS systems have a 

horizontal accuracy of 5-10m (95% confidence) and vertical 

accuracy approximately 1.4 times the horizontal accuracy 

[43]. These errors are small when compared to the cell size 

(1852m×1852m×304.8m). However, the accumulated 

position uncertainty can be much greater given uncertainty 

in the predicted velocity vector. Where there is no further 

information regarding the performance, and operator 
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intentions of other aircraft, this uncertainty is assumed to be 

Gaussian.  

For the purposes of simulation, a simple bivariate Gaussian 

model was employed, extending the approximation 

technique described in [14, 44] to a 3D grid. Given 

independent specifications for GPS horizontal and vertical 

accuracy, the aircraft position density function p can be 

expressed as: 

 ( )

( )( )
2

2

2 22 21
, , ,

2

c

r z

z z tr

r z

r z

p r z e
σ σ

σ σ
πσ σ

⎛ ⎞−⎜ ⎟− +⎜ ⎟⎜ ⎟
⎝ ⎠=  (7) 

where ( )( ) ( )( )
2 2

c c
r x x t y y t= − + − , and σr, σz is the 

standard deviation. The expected position, 

( ) ( ) ( )( ), ,
c c c

x t y t z t  is assumed to be a piecewise linear 

function of the form: 

 ( ) i i

c xx t v t c= +  (8) 

where vi is the predicted velocity vector for segment i. The 

probability density field for the aircraft separation zone 

(5nm by 2000ft cylinder), given independence between r 

and z, can derived from (7) using: 

 

( )

( ) ( ) ( )

( ) ( ) ( )

, , ,

, , ,
       

, , ,

r z

z H r R

R H r z
z H r R

R H r z

r z

r z p r z dr dz

r z p r z dr dz

β σ σ

σ σ

σ σ

− −

+ +

∞ ∞

−∞ −∞

=

′ ′ ′ ′ ′ ′Π Π

′ ′ ′ ′ ′ ′Π Π

∫ ∫
∫ ∫

 (9) 

where Π is the rectangle (or gate) function, R is the radius 

(5nm), and H the half-height RVSM (1000ft). From an 

implementation perspective, (9) can be approximated using 

numerical means. For a given trajectory segment, the risk of 

encroachment (or aircraft separation risk) is the sum of the 

probabilities calculated using (9) for each cell on the 

trajectory. This is possible given that the cell size is small 

relative to 2R and 2H. 

In actuality, the estimated velocity v is also a random 

variable; however, recall that (10) has to be evaluated at 

every iteration in a search. To minimise computational 

complexity, the methodology presented in [14] is adopted 

by modelling σ as some function of time. For example, [14] 

proposes a model for σ based on the acceleration capability 

of the aircraft.  

By applying thresholds to (10), it can be seen that the 

separation zone is cylindrical (refer Figure 4 in section 5). 

Consider the scenario where two risk thresholds (pt, pb) are 

selected. Note that the (pt, pb) do not correspond to the 

likelihood of a fatal event (i.e. midair collision); they 

instead describe the likelihood of encroachment on the 

minimal separation requirement. The safety threshold, pt, is 

the maximum allowable risk for a give flight path (i.e. 

sequence of cells), whereas the risk floor, pb is some 

minimum bound below which the risk is deemed negligible. 

For example, if the UAV never approaches within 2σ of the 

mean, then the maximum risk of encroachment pb is less 

than 0.028. 

Storm Cell Risk 

An important safety consideration for UAV operation is the 

avoidance of storm cells and their associated turbulence. 

Information about storm cells and their movements are 

provided by the Bureau of Meteorology [45]. It is possible 

to model storm cells in the same manner as for aircraft 

(described previously). The primary difference would be a 

higher degree of uncertainty, not just in the velocity vector, 

but the size (radius and height) would also vary with time. 

For simulation purposes, these were assumed to be 

piecewise linear in time. 

Cruising Levels 

In Australia, civil air regulation CAR173 [2] assigns 

cruising altitudes to aircraft operating under VFR based on 

their heading angle. This minimises the risk of head-on 

collisions. Permissible cruising altitudes for aircraft on 

headings from 0° to 179° are at odd multiples of 1000ft plus 

500ft AMSL (e.g. 1500ft, 3500ft, 5500ft AMSL). For 

headings between 180° and 359°, aircraft should cruise at 

even multiples of 1000ft AMSL plus 500ft (e.g. 2500, 4500, 

6500ft AMSL). CAR173 is not mandatory below 5000ft, 

but, for safety purposes, it is preferable to conduct flight in 

accordance with CAR173 where terrain, weather, and traffic 

conditions permit. 

Population Risk 

The two primary safety concerns for operation of UAVs in 

the NAS are that of midair collision and flight termination 

in a populated area [46]. For the simulation studies, the risk 

presented to people on the ground as a result of flight 

termination is incorporated into the decision process. This 

risk value, which can be calculated using [46], is expressed 

as the number of ground casualties per flight hour.  

4. MULTI-OBJECTIVE PATH PLANNING 

The preceding section highlighted the numerous decision 

criteria and constraints involved in UAV mission planning. 

These extend beyond simply finding a shortest path that 

avoids obstacles. It can be seen that the decision space 

comprises 9 dimensions: x, y, z, t, fuel, aircraft separation 

risk, storm cell risk, heading angle, and population risk. 

Clearly, this highlights the intractability of path planning 

[8]. However, it can be noted that, based on the models 

presented in section 3, it is possible to derive all decision 

variables uniquely, given a waypoint x, y, z, t. An 

aggregated cost value can then be calculated based on the 
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previously described decision variables using a Multi-

Criteria Decision Making (MCDM) cost function. 

Planner Architecture 

The proposed planner adopts the approach of combining a 

heuristic search algorithm with a MCDM cost function [17-

19, 21]. Heuristic search algorithms are based on the 

dynamic programming equation [8]: 

 ( ) ( ) ( ),g s g s c s s′ ′= +  (10) 

where s, s’ are parent and child nodes, g(s) is the total cost 

of the least cost path P from the start node to s, and c is the 

cost incurred by the trajectory segment between s and s’. 

Each node, s, is located in the centre of a grid cell in a four 

dimensional search space. Using the adopted planner 

architecture, c is a MCDM cost function. When using A*, c 

must be non-negative, and non-zero [20].  

A* [20] has been selected as a suitable heuristic search 

algorithm as it finds the least cost path efficiently [8]. 

Despite the need for in-flight re-planning, a heuristic re-

planning algorithm (e.g. D* Lite [29]) was not selected 

because of the presence of dynamic elements. For example, 

changing wind conditions and storm cell or aircraft 

movements can invalidate prior search results for a large 

number of nodes in the search space. In these scenarios, re-

planning algorithms are less efficient than planning from 

scratch using A* [47]. 

Decision Function 

Mission planning is a task that is performed proficiently at 

present by human experts [48]. Therefore, by capturing the 

decision strategies and preferences of a human expert, it is 

possible to find paths that best satisfy mission objectives. 

The decision variables, also referred to as attributes, are 

incommensurate; for example, a fuel consumption of 0.2kg 

is not comparable with a storm cell risk of 0.03. One 

approach for calculating a cost from such incommensurate 

variable values is to use Multi-Attribute Utility Theory 

(MAUT) [49].  

MAUT provides a methodology for modelling decision 

maker preferences where preferences are represented as 

binary relations between objects (i.e. prefer A to B). The 

methodology comprises a two step process: (i) mapping of 

all decision variables onto a common scale using a set of 

value (or utility) functions, and (ii) computation of a single 

cost or utility value on the common scale. Typically, the 

output utility value is defined on (0,1). Methods for 

implementing step (ii) include the Choquet integral and 

weighted sum aggregation. The Choquet integral is a 

powerful, generic aggregation function that degenerates into 

the weighted sum when all decision variables are 

independent. However, weighted sum aggregation was 

chosen over the Choquet integral due to the computational 

complexity of evaluating a Choquet integral at every 

iteration, for every candidate child node. [49]  

5. SIMULATION AND DISCUSSION 

Preliminary analysis of the proposed planning framework 

for UAV mission planning was conducted in simulation. 

The planning algorithm was evaluated on a number of 

randomly generated UAV medical delivery scenarios to 

ascertain performance (Figure 4). This was measured in 

terms of computation time and path cost (when comparing a 

near-optimal to the optimal path). Each scenario has a 

search space size of 100nm×100nm×20000ft×250min. All 

simulations were run in Matlab on a 3.3GHz Intel Core 2 

Figure 4 – Simulated mission planning scenario showing moving aircraft separation zones
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Duo CPU with 4GB of RAM running 32-bit Windows XP.  

An example of the decision criteria for a simulated scenario 

is depicted in Figure 4, Figure 5 and Figure 6. Note the 

complexity of the planning problem, which is compounded 

by an operating environment that contains dynamic 

elements, such as weather and other aircraft. Despite the 

presence of multiple path constraints and decision criteria, 

the planner finds always finds a path that meets these 

constraints (when one exists). The planned path tends to 

follow that of a straight line connecting the start and the 

goal waypoints. This is to be expected as A* finds the least 

cost path, and all trajectory transition costs between nodes 

are non-zero and non-negative. 

 

Figure 5 – Illustration of restricted airspace 

The use of a multi-objective decision function enables the 

planner to find a path that addresses multiple, disparate, 

decision objectives. Consider for instance Figure 5 where 

the planner selects a path that does not overfly highly 

populated regions (darker region) whilst avoiding restricted 

airspace. Simultaneously, the path also meets the altitude 

requirements as per the cruising levels rule where the flight 

is operated at altitudes of 3500, 5500 and 7500ft given a 

north-easterly heading (Figure 4). Additionally, the flight 

path also takes into account wind and storm cells (Figure 6) 

in the minimisation of flight time and fuel consumption.  

Finding a path that satisfies multiple objectives is just one 

aspect of on-board UAV mission planning. The planner 

itself must be fast enough to meet the time constraints 

imposed on in-flight replanning. To analyse the 

computational efficiency of the algorithm, a number of 

complex mission scenarios were simulated; the simulation 

cases are complex in terms of the number of and movement 

of dynamic obstacles, terrain shape, and varying wind 

conditions.  

 

Figure 6 – Illustration of wind and storm cells (gray 

cylinders) over green terrain 

An optimal solution, calculated using A* is compared with 

a near-optimal solution using an inflated heuristic [50]. A 

statistical box plot of computation time is shown in Figure 

7. 

 

Figure 7 – Algorithm computation time 

It is clear that inflating the heuristic drastically reduces 

computation time. Over 184 different simulations, a near-

optimal solution is obtained with a mean computation time 

of 0.104s and an inter-quartile range of 3.3ms. This 

compares with a mean time of 32.1s and inter-quartile range 

of 17.8s for the optimal solution. The near-optimal solution 

is, on average, 30% more costly (in terms of the unit-less, 

aggregated cost) than the optimal. An increase in path cost 

is traded for a significant saving in computation time. The 

near optimal solution is obtained, by inflating (multiplying) 

the heuristic term in the optimal algorithm (e.g. A*), by a 

constant factor ε. It has been shown that total cost of the 

near-optimal solution is at most ε times the optimal [47]. 

The proposed algorithm not only meets the requirements of 

multi-objective en-route planning, but also meets the time-

constraints of in-flight re-planning. Selection of an optimal 

or near-optimal solution is dependent on the time available 
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for planning, which in turn depends on the current position, 

flight trajectory, and environmental conditions. Given the 

neighbourhood operator defined in section 3, all path 

waypoints have a minimum displacement of 3nm, which, at 

50m/s, is traversed in 111.1s. Hence, it may be possible to 

find an optimal solution. There are no such time constraints 

on pre-flight planning. 

6. CONCLUSION 

This paper presented a system for automated, on-board 

mission planning for the purpose of operating UAVs in the 

NAS. In order to meet the rules of the air, safety objectives 

and mission efficiency objectives, it is shown that multi-

objective planning is required. For the purposes of UAV en-

route planning under VFR, the relevant planning criteria 

were found to be time, fuel, AGL altitude, airspace type, 

aircraft separation, the cruising levels rule, storm cells and 

population risk. To improve the modelling of time and fuel, 

a 3D vector neighbourhood operator was proposed to enable 

arbitrary angular resolution. Additionally, it was shown that 

airspace is suited to geometric modelling using cylinders 

and polyhedrons. This concept is extensible to the 

modelling of other aircraft and storm cells.  

Through simulation studies, it was found that the proposed 

planner, which combines a weighted sum MCDM cost 

function with A*, is efficient, and finds a path that satisfies 

multiple decision objectives. This algorithm finds a near-

optimal solution (with a cost that is on average 30% greater 

than the optimal) in a mean time of 0.104s, and an optimal 

one in 32.1s. Hence, the algorithm is suited to meeting the 

mission planning requirements for operation of UAVs in the 

NAS.  

Ongoing work includes improving existing probability 

density field approximations (equation (9)), and application 

of the algorithm to different planning scenarios. Of 

particular interest are missions conducted in windy 

conditions over mountainous terrain (updrafts and 

downdrafts). This is of interest due to the significant impact 

of wind on the safety and fuel efficiency of a small UAV.  
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