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On Bombieri’s Asymptotic Sieve.

JOHN FRIEDLANDER (*) - HENRYK IWANIEC (*)

1. - Introduction.

Let denote a sequence of non-negative reals and let

for x  X where X &#x3E; 2 and the numbers an may depend on X. A basic goal
of the sieve is the estimation of the contribution to the sum A(x) of those
terms for which n has relatively few prime divisors. This information is

usually deduced from information about the sums

ASSUMPTIONS. We assume that the latter sums may be written in the form

subject to the following:

(A1) The function f (d) is multiplicative, f (d) &#x3E; 1 for d &#x3E; 1, and f (d) » d~.

(A2) There exists eo with 0  0o  1 such that, for every B, for every

the implied constant depending on 80, E and B.

(*) Scuola Normale Superiore, Pisa.
Pervenuto alla Redazione il 3 Maggio 1977.
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for some satisfying

There exist a number field K, a real number q with 0  q C 2 ,
an integer N such that and a function f (n), such that:

(i) 7 satisfies and is independent of N and X,

(ii) we always have f (n) &#x3E; 7(n) and, if (n, N) = 1, then f (n) = 

(iii) if G(s) is defined by

then the Dirichlet series for G(s) is absolutely convergent for ~r ~ - r~.

(A6) There exists an integer g&#x3E;2 such that, for 

where the implied constant may depend on g.

NOTE. We stress that, although (a~) and f may depend on X, the parame-
ters 60, do not, nor do the implied constants in the above assumptions.

EXAMPLES. It is a simple matter to construct examples of sequences
which have been treated by the linear sieve and which satisfy the above
assumptions. We mention only three.

EXAMPLE 1. Let b be a non-zero integer and define

where ~1. is the von Mangoldt function. This sequence satisfies the assump-
tions with 60 = 2 and g = 2. The only assumption not trivially verified
is (A2) and this is an immediate consequence of the Bombieri-Vinogradov
theorem,
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EXAMPLE 2. Let H(x) denote an irreducible polynomial in Z[x] of degree h,
with the coefficient of x-h being positive. Let an = 1 if n = H(m) for some
positive integer m and an = 0 otherwise. Here the assumptions hold with
00 = 1/handg = h + 1.

EXAAIPLE 3. Let

where (a, q) = 1 and 1  q  X’. Here one may take 0o = 1- oc and

g = any integer &#x3E; (1 2013 

SOME DEFINITIONS. In a study of integers with few prime factors, it is

often convenient to define the generalized von Mangoldt functions

where p is the Mobius function, * denotes Dirichlet convolution and L is
the function L(n) = log n.

For a vector (k) = (A~ ..., kr) of non-negative integers, y we define

Letting we have (see Lemma 1) :

This fact offers partial justification for the first statement of this paragraph.
Further justification is offered (see the discussion in [2]) by the fact that
linear combinations of the can be used in approximating a rather wide
class of functions whose support is the set of integers with « f ew » prime
factors.

In the sequel we shall denote by ~8(x) a function satisfying

Trivially, we may choose ~(x) c 1 and, in practice, we usually have much
more, e.g. « Ijlog x.

STATEMENT OF RESULTS. Bombieri has proved [2] the following result.
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THEOREM 1 (Bombieri). Assume that (an) satis f ies (A,-A,) with 00 = 1 = N
and K = Q. Assume that we may take - 0 as z - 00. Let (k) be a

fixed vector with max 2. We then have

where

and, in turn,

Our goal is to weaken the assumption 80 = 1, and to simultaneously
give an estimation uniform in (k). This leads to the following result.

THEOREM 2. Let (an) satisfy assumptions (A1-A6). Let 0  0  00 and
d = (6r)16/0. Let I k ~ 2 and de fine a = max kp. There exists a positive con-
stant c depending at most on 0, 00, g, f , K and C, but not on (k), r, or N,
such that, if

then

where and

REMARKS I.

1) The constant 16 can be improved (and perhaps replaced by 1 -E- E).
It is probably sufficient to take but this would have

required a strengthening of Ag and a surprising amount of extra effort I

2) Although are essentially present in Theorem 1 we have found
it is advisable to introduce the additional Ag for Theorem 2. In the case

where one assumes A~ with 80 = 1, the assumption As with 60 = 1 seems
quite mild. Even in the case where A2 is not known with 80 = 1, it may be
possible to show that A3 holds uniformly for d  x. Such is the case for
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Example 1 and this example has already been investigated by Bombieri
in [1]. It may, however, happen as when A(x) for some E, such as

Example 2, that the assumption of As uniformly for d  x becomes unreal-
istic. It seems that, on the other hand, the assumption of ~3 with d  z°°,
while much more reasonable, is insufficient to the completion of the proof
and that Ag, an assumption which seems reasonable for sequences satisfying
A(x) » x~, is a suitable method for filling this gap. It might be mentioned
that, were we to suppose that the support of an consisted only of square-
free numbers, A6 could be dispensed with and, indeed, the technical details
of the proof of Theorem 2 could be greatly simplified.

3) The other changes in the axioms, the introduction of the field K
and the parameters N, X, were motivated by the wish to include sequences
such as given in Examples 2 and 3 respectively.

4) It should be mentioned that Bombieri [2] uses Theorem 1 to prove
results on Y- ang(n) for a wide class of functions g(n) with support on

« near primes ». Due to the less precise estimates in the case 00  1, we make
no attempt to discuss this. I

5) The proof of Theorem 2 will make it clear that the conclusion of
Theorem 1 remains true even if the assumptions K = Q and N = 1 are
dropped provided, say, that X ~ N and we consider I anA(k)(n)1

nX

CONSEQUENCES OF THEOREM 2. The import of Theorem 2 is that if (k)
ranges through a sequence of vectors and X - oo, then, under suitable
circumstances, one obtains an asymptotic formula for I anA(k)(n). This

is illustrated by the following corollary. 

COROLLARY. Let (an) satisfy and assume = o(l). Let

0  0  9o. There exists a eonstant c, depending at most on 0, 00, 0, .K, g
and f such that if (k) ranges through a sequence of vectors and Ikl -* oo 8itbject to

then we have
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REMARKS II.

1) If (1~) is a scalar, so that r = 1, conditions (ii) and (iii) are trivially
satisfied.

2) If M &#x3E; 1 is fixed and lkl  Ma then condition (ii) is satisfied prov-
ided that

If 0 approaches 0, then the best admissible value of M approaches 1. If 0

approaches 1, then the best admissible value of M approaches oo.

3) For each fixed r, there is a constant 0(r) = 1 - (r -lr-1frr such
that, if 0 &#x3E; 0, k ~  c log log X/log log log X and Ikl  c log (1ffJ(X)), then

the asymptotic formula holds as k ~ -~ 00.

NOTATION. We shall use c, c1, c2, ... to denote positive constants, not

necessarily the same at each occurrence. I These, as well as all implied con-
stants may depend on 1, g, K, 0, 6o and C, but not on (k) or N.

OUTLINE OF CONTENTS. In Section 2 we consider some special sequences
associated with the field K. In this case the sum I may be eval-

nX

uated without reference to the sieve, as an elementary consequence of the
prime ideal theorem. The proof is complicated by the search for a result
uniform in (k). Aside the obvious special interest of the result for these
sequences, this result will be used in the proofs of the theorems.

In Section 3 we prove a fundamental lemma of Halberstam-Richert type
(see [3]). This result will be used repeatedly throughout the paper.

In Section 4 we give a proof of Bombieri’s Theorem 1. Our proof involves
some modifications of that in [2], which we believe simplify the presentation.
The proof also serves as an outline of the essential ideas of the more tech-

nically complicated proof of Theorem 2.
The remaining sections are devoted to the proof of Theorem 2. Section 5

consists of several lemmata to be used in the proof. The sum y anA(k)(n)
nX

is dissected into three parts and these are estimated in Sections 6, 7 and 8.
In Section 9 these estimates are combined and the proof is concluded.

Acknowledgement. We are grateful to Professor Enrico BOMBIERI for

several helpful conversations during the course of this work. We thank
the Scuola Normale Superiore (Pisa) for providing a pleasant atmosphere
in which to work. For their financial support, we thank the C.N.R. and
the Accademia Nazionale dei Lincei.
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2. - Some basic sequences.

Before, commencing with the proof of the main results of this section, y
we list some results from [2], that will be needed.

DEFINITION.

DEFINITION. Let (k) = ... , kr) and (h) = ..., hr). We say (h)  (k)

if  kv for each v and denote I the « binomial» coefficientY Bw/

LEMMA 1. We have

PROOF. All of these are to be found in [2]. The latter inequality of (ii),
which is not specifically mentioned, follows from (iii).
We define the integers bl(n) and b2(n) by their generating functions:

where the two products run over those prime ideals of ~ which are of the
first degree. I
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The following properties will be frequently used.

and all of these are multiplicative, y

and hence I

PROOF. For k = 1, these are well known elementary results on the
distribution of prime ideals. We assume that both results hold for k. From
Lemma 1,

Since and we have Y- b(p) log plp  log 2k, and (A)
vim

follows from the induction hypothesis as did (B), but with slight additional
complications.
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LEMMA 3. There exists a constant

such that
, depending only on the field K,

PROOF. I We assume k  log log x, since otherwise the result is trivial.

We first consider the case where k is scalar. For b, a positive integer we have

Assume that ck &#x3E; k log 2k, and we have

and

where 1. For k = 1, the prime ideal theorem gives such a result. Wre
have, by partial summation, y

and the same estimate holds

Since the error term is
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by partial summation and the induction hypothesis. Also,

We write this last sum as

(The same is done for We omit the dye

tails for this sum which are entirely similar).
By the prime ideal theorem, y

which, by Lemma 2 is

By the induction hypothesis,

By the induction hypothesis

Collecting together we get the result for k + 1 with Ck+l I which com-

pletes the proof for scalar k.

Assume that

and that
If

satisfies the same estimate.
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We have

If a = 1, the error term is estimated as in the scalar case. If ac ~ 2, we
write n = ps, where and Lemma 1 gives

The sum over s was estimated in the scalar case and so the above is

The error term is thus

This sum is estimated by partial summation and the induction hypothesis,
making the error

We turn now to the main term. (We omit the details for b2(m). The main
term is similar, y using and there is no error term cor-

responding to the above).
By partial summation,
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Hence

Collecting the estimates together gives the final result.

LEMMA 4. The sequence satisfies the assumptions (Al-A6) for every X,
1vith 00 = N = 1.

PROOF. We denote by a an ideal of g (all our ideals will be integral), y
g an ideal which is square-free and free of prime ideals of degree &#x3E; 1, ~* a
sum over ideals of this type, b an ideal free of primes of degree &#x3E; 1, 1 **
a sum over ideals of this type, and p a prime ideal.

We note that there exists 6 &#x3E; 0 such that

and

where the implied constants depend only on K and 6, where

and res ~K is the residue at s = 1 of the simple pole of ~K(s). (We omit the
proof of these estimates which follow from a routine application of Cauchy’s
theorem, using the estimate
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Thus

We are now in a position to evaluate the function f (d) for the special se-

quence bl(n) and to estimate R(x, d), thus verifying the assumptions. We may
take d to have no prime factors which are not norms in the field, since for
other d we take f (d) = oo and have R(r, d) = 0.

r

Let d = fl pfz, and let g, be the product of all gl prime ideals of
I=i r

norm Note that gz = QJI Let g = I1 gl . For a vector

(a) = («1, ..., ocr), we have 
t-1

where ()(a denotes a subset of primes

and

47 - Annali della Scuola Sup. di Pisa
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This formula makes it clear that f is multiplicative, y that

that

and that

Noting that the error satisfies

it is now easy to check the remaining assumptions. We give only the details
for (A2). Letting q = [K : Q],

3. - A fundamental lemma.

The following lemma is essentially due to Halberstam and Richert (see
p. 82 of [3]). We, however, shall have need of a somewhat different for-
mulation of their result.

There exist two sequences real numbers such that
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(iii) for all multiplicative f unctions f (d) satisfying the condition

we have

where the implied constant depends only on Ko and x.

REMARK. As in [3], the error term e-8 can be improved.

PROOF. Let ¡3"&#x3E; 21 We choose as the characteristic functions of

the sets D~;

It is easy to see that

For

where p(D) is the smallest prime divisor of D. Hence, we get (ii).
We have
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where

appears in the sum (3), then PI .11 p2t
induction on 1) and hence

Similarly, if appears in the sum (4), then

Hence

and

From (1) we have

so, the sums (5) and (6) are less than

and

respectively. Note that, for s &#x3E; 3 -E- 2r, the sum (5) and, for 

-E- 2r - 1, the sum (6) are empty. Thus,
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since for sufficiently large absolute# the series Y- converges. I
r&#x3E;1

We can do the same with (4). This completes the proof.

4. - A Theorem of Bombieri.

In this section we shall give a modified proof of Theorem 1 of Bom-

bieri [2]. Hence, we assume that axioms (AcAs) hold for -Y = 00 =: 1.
Axiom A6 will not be needed. We also assume ~(x) -70 oo and K = Q.

We begin by dividing the sum I into three parts as follows:
nx

Let (1~) _ ((k’), a), where a = max kv (The order of the components is clearly
immaterial). I

Here, y and z will be chosen later and.

REMARK.. I In the case when (k) is scalar, ~(k,~ is just the M6bius function.
The division of the sum into ~1 and 1:2 corresponds to Bombieri’s division,

while the introduction of 27o allows us to avoid Bombieri’s use of a sup-
plementary set of coefficients Âd, at the same time enabling us to estimate ~2
much more simply. Each device makes it possible to estimate ~2 at the right
order of magnitude. In comparison withe,, of [2], ours is complicated slightly
by the condition (n, P(z)) = 1. In practice the choice of z will be suffi-

ciently small so that, with the aid of the fundamental lemma, we can see
that the asymptotic formula is not destroyed.

LEMMA 6. Let g3 be defined by
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Then, for

PROOF. One checks readily that, by 

is absolutely convergent for

LEMMA 7. ..For we have

where

REMARK. The same method shows that, if f is replaced by f, this result
holds for z ~ 2. From this, restriction (iii) of Lemma 5 follows easily for P,
the set of all primes, and, a fortiori, for P* any subset thereof, with x = 1.

PROOF. We have

We assume z &#x3E; c( f , K), so log S is meaningful (for smaller z the result is

trivial) and hence

if 8 is sufficiently small, since the second sum is « log N/(z log z).
This gives the first half of the result, the latter half being well-known. I
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LEMMA 8. ~ we 

PROOF. We have I and

LEMJBIA 9. Denote

For we have

PROOF.

Moreover,

The former sum is log x by lemma 6.

The latter sum is

The result now follows from Lemmata 7 and 8.
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LEMMA 10. For fixed (k)

PROOF. This follows from Lemmata 1 and 2 of [2] where the same
bound is given for an obviously larger sum.

This proof can also be simplified by means of the fundamental lemma.
We shall not do this as, in the sequel, we shall be giving a bound uniform in (k).

LEMMA 11. It zy  x and  y  x1-e, then

where the implied constant may depend on f, C, and 8.

PROOF. Using Lemma 1 we get

By Lemma 5 we get

The result follows from (A2), and Lemmata 7 and 8.

LEMMA 12. Let s &#x3E; 0. If s ~ 2, z&#x3E;2 and zv y c xlw, then

where c(8) depends only on s and

PROOF. We have
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The sum over has upper and lower bounds given by

Partial summation (twice) gives

By Lemmata 5 and 7

By partial summation

n -x

and hence

Using Lemma 9 we can remove the dependence on f from the main term,
getting

This completes the proof of Lemma 12.

CONCLUSION OF PROOF OF THEOREM 1. Choose y = Xl-2-1, Z = X6’13 and
8 = E-1~3. . (This is clearly not an optimal choice, but is sufficient). We have
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and

(since a&#x3E; 2) provided (8, (k)). Thus

Since the sequence a,, =-= I satisfies the axioms, the above result holds also
for it and with the same F. Combining this with Lemma 3,

and hence the result follows.

5. - Auxiliary lemmata.

This section contains various lemmata whih will be needed for the proof
of Theorem 2.

LEMLVIA 13. There exists a constant c such that, it x &#x3E; 1 and k  -1 17 log x
then

PROOF. We have f (n) ~ f (n) and

Let m = bhu, where (u, 6) = 1 and i.e. h divides some power of 6.

This gives

For the term j = 0, the only non-zero contribution comes when 6 = h =1
and by Lemma 2,
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Since choosing

for 8  ~/l2. Hence

Since

by (A,) and the assumption on k, S is less than

LEMMA 14. There exists a constant c such that, for

PROOF. For any 01(1) and k &#x3E; 01 log x/(log log 3x)(log log 3N), the result
is trivial. For smaller k it is clearly sufficient to prove that, for some 
we have

We have

which gives the result for k = 1.

Assuming the result for k, we get
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Since n is divisible by at most k distinct primes, the expression in paren-
theses is at least log x - c2(log 2k)(log log 3N) which we may assume is

positive. This completes the proof.

LEMMA 15. For we have

PROOF. We have the trivial estimate

so the result holds for Iki &#x3E; 11] log x. For smaller Iki the result is proved b~T
induction on r. For r = 1, it follows from Lemma 13. We have

Also

Hence

which gives the result.
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COROLLARY. FOr ] we have

PROOF. Immediate.

REMARK. The same method works giving the same
estimate. nx

LEMMA 16. I We have

PROOF. In the proof of (i) we use a result of C. Mardjanichvili [4],

where

Hence, by partial summation we get (i). The parts (ii) and (iii) are immediate.

LEMMA 17. W e have

LEMMA 18. and

Then

PROOF. By Lemma 17 we have
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Also

We use Lagrange multipliers. I Consider

Setting

Hence log ui/ki = constant (independent of i). We have also

The result follows from these.

COROLLARY. We have

REMARK. We define
I

PROOF.

Now the result follows from Lemma 18.

LEMMA 19. Let P* and P*(z) be as in the fundamental lemma. I’or

(d, P*(z)) = 1, we have

PROOF. This follows from the fundamental lemma in the same way as

in the proof of Lemma 11.
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DEFINITION. For simplicity we write

LEMMA 20.

W e have

where B is arbitrary and the implied constant depends on B.

PROOF. By Hölder’s inequality we have

Each n can be uniquely represented in the form n = n’n", where (n’, P(z)) == 1
and all the prime divisors of nl are  z. We have

Hence

For We have also

Hence

We have
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Thus

This completes the proof.

LEMMA 21. I’here exists we have

2vhere the implied constant is independent of a.

Hence

Substituting in Lemma 19 we have &#x3E; where

and

The sum occuring in ~S1 can be majorized by
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by the lower bound for z. This completes the proof.

LEMMA 22. We have

PROOF. We have I and

This completes the proof.

LEMMA 23. For x &#x3E; 1 we have, uniformly for 0 &#x3E; 0,

PROOF. We have

By (Ag) the second sum has the required bound and since g ~ 2 and
» n%’ the first sum is

This completes the proof.

6. - Sieving out small primes.

We divide the sum I into three parts precisely as in Section 4.
"X

In this section we estimate Zo uniformly in (k). From now on we take x = ~.

LEMMA 24. There exists c&#x3E;0 such that, if

then

48 - dnnati della Scuola Norm. Sup. di Pisa
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PROOF. Let’ = XI/erlkl, so z  i. The constant c is to be chosen (as
will be apparent) so that some of the previous lemmata may be applied.

For n a positive integer, write n = nln2 where all the prime factors of
ni are  " while those of n2 are &#x3E; ~..

Let

If n, ~ .X e~2, 7 let ml 1 be the largest g-th power dividing n1. Thus has

at most lkl distinct prime factors, each  ~, and each occuring with
multiplicity ~ g - 1. Hence

(assuming , Thus

by Lemma 23.
Let JY’l denote the set of positive integers divisible by precisely I distinct

primes  z. We have

and

By Lemma 18 (Corollary) we have

which, by the argument used in the proof of Lemma 21, is
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where P* is the set of primes not dividing nl. By Lemma 19 this is

Since n1 is divisible by at most lkl distinct prime factors, we have

Now, summing over nl and then over (h) we get

By Lemma 20

so, by Lemma 22

Before we estimate T,(I) we change the last sum over n, as follows

by Lemmata 13 and 14.
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Now, T,(l) splits up in two parts corresponding to the sum over square-
free n1 and to the error term 

By Lemma 22 we have

For the estimation of we write nl = where the prime divisors
of n. are ~ z while those of n4 are &#x3E; z. Using Lemmata 1 and 15 and
interchanging the order of summation we obtain

In the summation over (h) we examine the ratio of the terms in going
from (h) to (h’) where (h’ ) adds one to one component, say the r-th one.
This ratio is

If the maximum of this ratio  1 then the sum is  M. (Term for
(h) = (j)), where

The choice of C can be made to ensure that ~o  1/2r and hence M  e.

Therefore we have
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Going from ( j ) to ( j’ ) and computing as with (h), the ratio is 
and since z ~ ~, the terms for which ljl = l dominate. The sum over these
terms is easily seen to be

Considering the ratio of consecutive terms in Y it is easily seen that
1=1

the term I = 1 dominates, giving the result,

Using the lower bound for z, it is easily shown that and
I

~ U2(t) also have this upper bound (with some constant c) and the result
I

follows from this.

7. - Estimation of ~2.

Recall that

LEMMA 25. then

PROOF. We have

and by Lemma 21 this is
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The last double sum is

and by Lemma 20 this is

giving the result, since

8. - Estimation of ~1.

Recall that

and define

LEMMA 26.

small enough to ensure s &#x3E; 2) and i

then we have

PROOF. Following precisely the same argument as in Lemma 12 we have
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Applying Lemma 20 we get

By Lemma 9 we have

To estimate E2 we write

Using the simple estimate c (log d)’k’l of Lemma 1 and the argument
of Lemma 9 the latter sum is

Moreover, since

by Lemma 1, the former sum is bounded by

by the Corollary and Remark after Lemma 15. Thus

Collecting these estimates, we get the result,
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9. - Conclusion of proof.

Collecting together the estimates of the last three sections we obtain

Since 2a(1 - 0)-l  log X the first term is less than the third one. Substi-

tuting z = X"’ we arrive at

Substituting

where u &#x3E; 1 and is some sufficiently large constant we get
s &#x3E; 2a log (2(1- 0)-’) and so the term containing e-8 is less than the one

containing ( l - 0)~. Thus we have

For

the last two terms are less than
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Since

where

Now, it remains to estimate F. Since by Lemma 4 the above result is true
for the sequence b1 (n), with

where fi is the f of Lemma 4, we get

with a different E** satisfying the same bound as E*. Also, from Lemma 3

Comparing these two results we obtain

which completes the proof, since a simple computation shows that
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