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On Bombieri’s Asymptotic Sieve.

JOHN FRIEDLANDER (*) - HENRYK IWANIEC (*)

1. — Intreduction.

Let (a,) denote a sequence of non-negative reals and let

A@) = 3 a,,

n<y

for # < X where X >2 and the numbers 4, may depend on X. A basic goal
of the sieve is the estimation of the contribution to the sum A(x) of those
terms for which n has relatively few prime divisors. This information is
usually deduced from information about the sums

A, d)y= Y a,.
<o
n=0(mod d)

AssuMPTIONS. We assume that the latter sums may be written in the form

A{x)

+ E(z, d)

subject to the following:
(4,) The function f(d) is multiplicative, f(d) > 1 for d > 1, and f(d) >> dt.
(4,;) There exists 6, with 0 < §,<1 such that, for every B, for every

>0, and for X >2>2,

sup |R(y, d)| < A(x)(log »)™2,

a<zt~t 1<y<e

the implied constant depending on 6,, ¢ and B.

(*) Scuola Normale Superiore, Pisa.
Pervenuto alla Redazione il 3 Maggio 1977.
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(4;) There exists € > 0 such that we have, for X>#>2 and d < 2%,

F(d)

[B(@, )| < € == A()(log a)°

for some F(d) satisfying
F*(d)
— <

d<af0

C(log z)¢ .

(4,) We have a,>0.

(45) There exist a number field K, a real number » with 0 < < %,
an integer N such that 1<N <X, and a function f(n), such that:

(i) f satisfies (4,) and is independent of N and X,
(ii) we always have f(n)>f(n) and, if (n, N) =1, then f(n) = f(n),
(iii) if G(s) is defined by

1

d§1m = {x(s + 1)G(s),

then the Dirichlet series for G(s) is absolutely convergent for ¢>— .

(4s) There exists an integer g>2 such that, for #< X,

2 |B(z,m’)| < A(z)(log )2,

m<ally
where the implied constant may depend on g.

NoTE. We stress that, although (a,) and f may depend on X, the parame-
ters 0,, 0, f, g do not, nor do the implied constants in the above assumptions.

ExAMPLES. It is a simple matter to construct examples of sequences
which have been treated by the linear sieve and which satisfy the above
assumptions. We mention only three.

ExaMpPLE 1. Let b be a non-zero integer and define
a, = A(n 4 b),

where A is the von Mangoldt function. This sequence satisfies the assump-
tions with 6, = 1 and g = 2. The only assumption not trivially verified
is (4;) and this is an immediate consequence of the Bombieri-Vinogradov
theorem,
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ExAwmpLE 2. Let H(x) denote an irreducible polynomial in Z[x] of degree h,
with the coefficient of #* being positive. Let a, =1 if n = H(m) for some
positive integer m and a, = 0 otherwise. Here the assumptions hold with
0, =1/handg = h -+ 1.

ExaMPLE 3. Let
1 iftn=gm+t+a<X, melZ,

a, =
0  otherwise,

where (#,¢9) =1 and 1< ¢< X* Here one may take 0, =1— « and
g = any integer > (1 — o)1

SOME DEFINITIONS. In a study of integers with few prime factors, it is
often convenient to define the generalized von Mangoldt funections

Ay =pxLr, fork=0,1,2 ..

where u is the Mébius function, % denotes Dirichlet convolution and L is
the function L(n) = logn.
For a vector (k) = (ky, ..., k,) of non-negative integers, we define

A‘(k) - Akl* . Akf.

Letting |k| =k, 4 ... + k,, we have (see Lemma 1):
If w(n) > |k|, then Ay (n) = 0.

This fact offers partial justification for the first statement of this paragraph.
Further justification is offered (see the discussion in [2]) by the fact that
linear combinations of the A, can be used in approximating a rather wide
class of functions whose support is the set of integers with «few» prime
factors.

In the sequel we shall denote by f(x) a function satisfying

A
f—t@ di<B(x) A(@) log @ .
1
Trivially, we may choose f{x)< 1 and, in practice, we usually have much

more, e.g. f(x) < 1/log x.

STATEMENT OF RESULTS. Bombieri has proved [2] the following result.
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THEOREM 1 (Bombieri). Assume that (a,) satisfies (A;-A;) with §, =1 = N
and K = . Assume that we may take f(x) -0 as © — oco. Let (k) be a
fixed vector with maxk,>2. We then have

Z a'nA(k)(n) ~ V) HA (w)(log m)[kl—l ,

nEr

w0l

(B!
Yy = (Ik[——l)' ’

where

and, in turn, (k)! = k! ... k,!.

Our goal is to weaken the assumption 6, =1, and to simultaneously
give an estimation uniform in (k). This leads to the following result.

THEOREM 2. Let (a,) satisfy assumptions (A,-4;). Let 0 <0< 0, and
A = (6r)*°. Let |k|>2 and define a = max k,. There exists a positive con-
stant ¢ depending at most on 0, 6,, g, f, K and C, but not on (k), r, or N,
such that, if

(IZ|> (1—6)<1, |k|>cd and log X > |k |k

then
S a,Agy(n) = yu HA(X)(log X)M~1(1 4 0E),

nsX

where |p|<1 and

o (oo < (cZrcfenr

REMARKS 1.

1) The constant 16 can be improved (and perhaps replaced by 1 -+ &).
It is probably sufficient to take log X > exp (c|¥|) but this would have
required a strengthening of 4, and a surprising amount of extra effort.

2) Although (A4,-4;) are essentially present in Theorem 1 we have found
it is advisable to introduce the additional 4, for Theorem 2. In the case
where one assumes 4, with 6, = 1, the assumption A4, with 6, = 1 seems
quite mild. Even in the case where A, is not known with 6, = 1, it may be
possible to show that A4, holds uniformly for ¢ < #. Such is the case for
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Example 1 and this example has already been investigated by Bombieri
in {1]. It may, however, happen as when A(x) < #'~¢ for some ¢, such as
Example 2, that the assumption of A4, uniformly for d < x becomes unreal-
istic. It seems that, on the other hand, the assumption of 4, with d < &,
while much more reasonable, is insufficient to the completion of the proof
and that 4., an assumption which seems reasonable for sequences satisfying
A(z) > 2%, is a suitable method for filling this gap. It might be mentioned
that, were we to suppose that the support of a, consisted only of square-
free numbers, 4, could be dispensed with and, indeed, the technical details
of the proof of Theorem 2 could be greatly simplified.

3) The other changes in the axioms, the introduction of the field K
and the parameters N, X, were motivated by the wish to include sequences
such as given in Examples 2 and 3 respectively.

4) It should be mentioned that Bombieri[2] uses Theorem 1 to prove
results on Y a,g(n) for a wide class of functions g(n) with support on

nEe

« near primes ». Due to the less precise estimates in the case 0, < 1, we make
no attempt to discuss this.

5) The proof of Theorem 2 will make it clear that the conclusion of
Theorem 1 remains true even if the assumptions K =@ and N = 1 are
dropped provided, say, that X> N and we consider za”/l(,c)(n).

n<X

CONSEQUENCES OF THEOREM 2. The import of Theorem 2 is that if (k)
ranges through a sequence of vectors and X — oo, then, under suitable
circumstances, one obtains an asymptotic formula for Zan/l(k)(n). This
is illustrated by the following corollary. n<X

COROLLARY. Let (a,) satisfy (A,-4;) and assume [(X) = o(1). Let
0<0<0,. There exists a constani ¢, depending at most on 0, 0,, C, K, g
and f such that if (k) ranges through a sequence of vectors and |k] — oo subject to

o loglog X
logloglog X’
o [ 1K

1_ —a

(ii) (a <(@1—0)

(iii) » << af3

(iv) & < elog (1/8(X)),

i [k <

then we have
3 a, Agy(0) ~ v HA(X)(log X)H-1
n<X
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RemaArks I1.

1) If (k) is a scalar, so that r = 1, conditions (ii) and (iii) are trivially
satisfied.

2) If M >1 is fixed and |k| << Ma then condition (ii) is satisfied prov-
ided that
(M —1)¥—1
T‘ > 1 - 0 .
If § approaches 0, then the best admissible value of M approaches 1. If 8
approaches 1, then the best admissible value of M approaches co.

3) For each fixed r, there is a constant f(r) =1 — (r — 1)~ 1/#" such
that, if 6 >0, |k| < ¢loglog X/logloglog X and |k| < ¢log (1/8(X)), then
the asymptotic formula holds as |k| — co.

NoraTioN. We shall use ¢, ¢, ¢,,... to denote positive constants, not
necessarily the same at each occurrence. These, as well as all implied con-
stants may depend on f, g, K, 0, 6, and C, but not on (k) or N.

OUTLINE OF CONTENTS. In Section 2 we consider some special sequences
associated with the field K. In this case the sum Y a,A,,(n) may be eval-
n<X

uated without reference to the sieve, as an elementary consequence of the
prime ideal theorem. The proof is complicated by the search for a result
uniform in (k). Aside the obvious special interest of the result for these
sequences, this result will be used in the proofs of the theorems.

In Section 3 we prove a fundamental lemma of Halberstam-Richert type
(see [3]). This result will be used repeatedly throughout the paper.

In Section 4 we give a proof of Bombieri’s Theorem 1. Qur proof involves
some modifications of that in [2], which we believe simplify the presentation.
The proof also serves as an outline of the essential ideas of the more tech-
nically complicated proof of Theorem 2.

The remaining sections are devoted to the proof of Theorem 2. Section 5

consists of several lemmata to be used in the proof. The sum Y a, Ay(n)
n<X
is dissected into three parts and these are estimated in Sections 6, 7 and 8.

In Section 9 these estimates are combined and the proof is concluded.

Acknowledgement. We are grateful to Professor Enrico BoMBIERI for
several helpful conversations during the course of this work. We thank
the Scuola Normale Superiore (Pisa) for providing a pleasant atmosphere
in which to work. For their financial support, we thank the C.N.R. and
the Accademia Nazionale dei Lincei.
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2. — Some basic sequences.

Before, commencing with the proof of the main results of this section,
we list some results from [2], that will be needed.

DEFINITION.

DEFINITION. Let (k) = (kq, ..., k,) and (k) = (hy, ..., h,). We say (h)< (k)

d (
if 0<hy<k, for each » and denote by (gz;), the « binomial » coefficient

LEMMA 1. We have
() Apys= AL 4+ A% A,
(il) Agy(n) <Ay (n) < (logn)™,
(ifi) |Lq(n)] < %A(k)(d) < (log n)*.,
(iv) If (m,n) =1 then
o2l

(v) If w(n) > |k| then Ag(n) = 0.

Agy(mn) = )A(h)(m)/l(k—h)(") .

Proor. All of these are to be found in [2]. The latter inequality of (ii),
which is not specifically mentioned, follows from (iii).
We define the integers b(n), b,(n) and b,(n) by their generating functions:

) = 32,
by(n)
[I @+@p)) =2
degp=1
ba(n)

(1= @p)) =2

degp=1 n?

)

where the two products run over those prime ideals of K which are of the
first degree.
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The following properties will be frequently used.
1) bu(p) = bilp) = b(p) <[K: @],

(2) p(n)b(n) <bi(n) <by(n) <b(n) < ne,
and all of these are multiplicative,

(3) For i =1, 2, we have
b(p® ™) <bi(p") bi(p")

and hence b,(mn)<b {m)b,(n) for all m, n>1.
LeMMA 2, For 2>1 and k>1 we have
(4) Y pi(d)b(d) A (d)d* > (log 2)* + O(k log 2k (log cx)*~?)
a<<z
(B) I by(d)A(d)dr< (log z)* + O(k(log ex)*T).
i<z
Proor. For k =1, these are well known elementary results on the
distribution of prime ideals. We assume that both results hold for k. From
Lemma 1,

g by(n) Ap i (n)n-1< ; by(n) A::n) logn +
+ 3 by(n) Ag(n)nt D by(m)A(m)mt<
<y m<z/n
=3 i )A"‘”’ togn + 3 (o Autu (1og 2 + 001)) =

= Z by(n)n-14,(n)(log x + O(1)) < (log &)*+t + O(k(log cr)¥) .

n<w

S wr(n)b(n) Ay ()0t =

NEe

A(m)logp _
mp

= 3 wrlmyb(m) )

fE ]

logn + E< p*(mp)b(mp)
mp=x

— 3 wompim) M 10gn 1 5 ua(mppim) 2 <Z/ b(p)l_‘?%ﬁ +
+0(z pA(m)b(m z b(p )logp)

Since b(p)<[K:Q] and w(m)<k, we have > b(p)log p/p < log 2k, and (4)
plm

follows from the induction hypothesis as did (B), but with slight additional
complications.



ON BOMBIERI’S ASYMPTOTIC SIEVE 727

LeMMA 3. There exists a constant ¢ > 0, depending only on the field K,
such that

(A4) T g (m)b(m) Agy(m) > ygyaog 2)H ! — d*a(log o)t —2,
m<z

(B) X by(m) Agy(m) < pg,y@(log o)* =1 + ol z(log o) 2,
m<e

Proor. We assume k << loglog #, since otherwise the result is trivial.
We first consider the case where k is scalar. For b, a positive integer we have

1

x(log x)? > f(]og 1)’ dt > z(log x)® — ba(log &)* 1.
1

Assume that ¢, > klog 2k, and we have

3. ba(n) Ax(n) = ka(log @) 4 go,a(log @e)-,

and -
Y u2(n)b(n) Ay (n) = ka(log x)-* + pe.w(log cx):—2,

n<e

where |p|<1. For k =1, the prime ideal theorem gives such a result. We
have, by partial summation,

> by(n) Ax(n) log n = kx(log x)* -+ ge,x(log xe)t—1
n<e

— [ (k(log t)*— + pe,(log te)+—2) di

1

= ka(log ) + O(c,x(log ex):-1)

and the same estimate holds for ¥ u*(n)b(n)A.(n).
We have n<a

2 pr(mn)bimn) Ay(m) A(n) = 3 p*(m)u(n)b(m)b(n) Ay(m)A(n)

mn< mREE

+0( 3 wmbm)Am) 3 biw) logp) -

MET
p<afm

Since b(p)<[K:Q] and > logp < klog (#/m), the error term is
pim, p<aim

<k Y pm)b(m)Ax(m) log% & kro(log 2)¥! + ke w(log xc)*?

m<e
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by partial summation and the induction hypothesis. Also,

> by(mn) A (m)A(n) < D by(m A (m)A(n) .

mn<x mn<e

‘We write this last sum as

>+ 22— 2 =SI+S;—Sa.

MK Bz MR

(The same is done for > w*(m)u(n)b(m)b(n)A(m)A(n). We omit the de-
mp<a

tails for this sum which are entirely similar).
By the prime ideal theorem,

- Ay(m) 1
8, —mgﬁ by(m) - w(l +0 (_“log wc))

which, by Lemma 2 is

= 27*g(log x)* + O(k(log 2k)x(log cx)*~?) .

By the induction hypothesis,

An) z\#1
8, =n<2\/_b o(n) —( qu_@) ka (1 + 0(k Tog cm))

= (1 —2-*)2(log )* + O(c;2(log cx)*-1) .

By the induction hypothesis

8, =( > by(m)Ay(m) )( Z A(n )<< ka(log o)t (1 + O(k 1;; cw)) .

m<yg NSz

Collecting together we get the result for £ 4 1 with ¢, , < ¢, which com-
pletes the proof for scalar k.
Now, let (k) = (kyy ..., k), (K'Y = (K4, ..., k,_1) and @ = k,. Assume that

Z #E( n) Agn(n) = (|k(|k/)'1)' o(log 2)¥1=1 4+ O(c* z(log ex)¥1-2) ,

and that Y by(n)Ay,(n) satisfies the same estimate.

<
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We have
D wm)b(n) Agy(n) = 3 w(m)b(m) Ay(m)u2(n)b(n) A,(n)

+ 0( S pr(m)b(m) Ay, (m) 3 MZ(n)b(n)Aa(n)).

m<e (n,m)>1
n<w/m
If @ =1, the error term is estimated as in the sealar case. If a>2, we
write n = ps, where p|m, and Lemma 1 gives

<z(“) 3 w0 A 3 040

{(n.m)>1 j=1\} |m
m=e/m p<Safms

<013 (%) 3 s oo 10z ) <

The sum over s was estimated in the scalar case and so the above is
< c(w/m)(log cx)*—2. The error term is thus

< e*w(log ew)*t Y p*(m)b(m) Ay, (m)m*.

m<r

This sum ig estimated by partial summation and the induction hypothesis,
making the error

< ¢*m(log ze)*~2(1 4 ¢*l(log ex)~?) .

We turn now to the main term. (We omit the details for by(m). The main
term is similar, using by(mn) <b,(m)by(n), and there is no error term cor-
responding to the above).

By partial summation,

2 wim)b(n) M(I(’g g)y= ?'j((logt)“ + O(a¥(log ct)a—l)) (log at_o)i—l%: _
1 1

n<ax n
= j(log w)“ﬂ'fu“ (I —u)du + O(a2j(10g cx)u+:i—1) —

alj!
T (@ + )

0
(log #)*+ + O(a*j(log cx)*+i~?)

(see p. 56 of [5]).
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Hence

3 b Aufn) 3 psom)bom) Age(m) >

n<w m\z n
(k)!

(k')!
= (k=)

(}k'l——'lﬁ a? |k |z(log cw)lk[—g|) +

+ O(cl"'lz% (log eI~ 2) + O(c¥! k' |a2az(log cx)1—3) .

x(log z)F—1 L 0(

Collecting the estimates together gives the final result.

LuMMA 4. The sequence by(n) satisfies the assumptions (A-A,) for every X,
with 6, = N = 1.

Proor. We denote by a an ideal of K (all our ideals will be integral),
g an ideal which is square-free and free of prime ideals of degree >1, >* a
sum over ideals of this type, b an ideal free of primes of degree >1, >**
a sum over ideals of this type, and p a prime ideal.

We note that there exists 6 > 0 such that

>* 1= V.o + 0(z9),

Na<cz
and
1= Vi + 0@),

Na<z

where the implied constants depend only on K and 4, where

Vi= [1 @—@p)y9) [ (1— (Np))resix,

degp=1 deg p>1
Vo= ][] (1— (¥p)?) resix,
degp>1

and res (. is the residue at s = 1 of the simple pole of (x(s). (We omit the
proof of these estimates which follow from a routine application of Cauchy’s
theorem, using the estimate

IEx(8) < A=, for |t} >1>0).

Now, fixing g as above

1= 3u) St1= S|V + o) )=
(1g%)<=1; o Na< Y Ny Ny

_Ty H(l——p) +0 (Vo TT (1 + (W¥9)o-1).

Plg Plg
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Thus

Z* 1= zw 2 B) = Z**ﬁ‘(b) z**l —

Na<Y Na<Y b?ja (b.g)=1 Na<Y
(a.g)=1 (a.g)=1 (a.9)=1
b?la
Y Yi-o
= > u(b 1— 0( (Np)o- )} =
mmIM){ FQ( )+ (Nmmmfn + (Np)*)
1\t
=V, Y 1 —_— 1— O|Yt—e 1 + (Np)e- =
5!( *’Nb) @W=1( ch>)*' (T [T+ @)

—V, Yn(1 + p)_1 +0 (Yl—a Qe+ (Np)o-l)) .

plg Plg

We are now in a position to evaluate the function f(d) for the special se-
quence b;(n) and to estimate R(w, d), thus verifying the assumptions. We may
take d to have no prime factors which are not norms in the field, sinee for
other d we take f(d) = oo and have R(z, d) = 0.

Let d = Hp’f‘, and let g, be the product of all g, prime ideals of
=1 T

norm p,. Note that g, = b(p)<[K:Q]. Let g=1]]g,. For a vector
i=1

() = (otzy ..., &), We have

Up= 2*1=2 2* 1=3 3*1

Na<lz Pw  Na<ez (P Na<z/da)
v71[|¥a (a.9)=1 (ag)=1
o[ gpa) Wl
where (p)(“) denotes a subset of primes pP, ..., p®, for each 1 =1, ..., 7 and

Ay = Py ... py. We have

Un=Tige 110 M)EH-mJHZHaHMWﬂ=

Plg M M PI8
g e (9
=V H g B + pre+ Ofa=o [T L + pi= 1) p{= D=
o9 =1\%
and
—a,
* 1 _ U(x — V x o
Naém (a);ﬂ) @ tHl a:>ﬁ-( )( + ) Pttt

Na=0(mod d)

+ 0(“?““1—[ 2 (14 pimh) op—u (-‘7’)) .

loizf o

47 - Annali della Scuola Norw. Sup. di Pisa
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This formula makes it clear that f is multiplicative, that

1 < L < <-—1-—
fp) ~flpe™) T T f(p)’
that
1 1\-o(»
@21—(1 5) <1
and that

g3l ()3 ()

az=f
< QIE:Qp-8 (1 +

1\ oo
p—1) <P

Noting that the error satisfies

r
|Blz, d)] < a'~° [] 47p" V7 < 400D gja)t=*
=1

it is now easy to check the remaining assumptions. We give only the details
for (4,). Letting ¢ = [K: Q],

2 4a0(d) (m/d)1—6<m1—aw(l—8)5 2 4qw(d)<
d<gl-s d<z d
1 1 3
< gl—ed LI (1 + 44 (1_9 -+ E -+ )) — gl—eb H (1 £ ; 4 1) < wl—eb(log cx)u .
<z p<z -

3. — A fundamental lemma.

The following lemma is eésentially due to Halberstam and Richert (see
p. 82 of [3]). We, however, shall have need of a somewhat different for-
mulation of their result.

LEMMA 5. Let 2>2. Let P* be a set of primes and P*(z) = [] p. Let

p<z
peP*

$>2 and y = 2*. There exist two sequences {A3} peyy of real numbers such that
(i) AF =1, |AF|<1 and AF = 0 for d>y,
(ii) for all D|P*(z), D>1

>A=0, >i7<0.

ap d|D
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(iii) for all multiplicative functions f(d) satisfying the condition

1 1 (log w)"
1 1——————— or some K,>1
( ) ws];’Lz( f(p)) Ko(logz ’ f ° ’
peP*

some x>0, and all 2, w with 2> w>1

we have

() & (1—3—) {1+ 0}
p|P*(z) f(d) ’

where the implied constant depends only on K, and x.
REMARK. As in [3], the error term ¢® can be improved.
PrOOF. Let f>2. We choose u(d)AF as the characteristic functions of

the sets D=*;

D= {le*(z)§ A=D1 Pry Pr<.e. <P1<< Zapgl+1p2l 1 <<y

for all 1<l< rjl},

D™= {le*(z); A=D1 Pry Pr<< e < P1 <2 PPoi—1 oo P1<<Y
for all 1 <l<%} .

It is easy to see that
deD* => d<y.

For D|P*(z), D>1 we have

A=Y (A i)

ajp d|(Dp(D))

where p(D) is the smallest prime divisor of D. Hence, we get (ii).
We have

Af V(Psr+1)
( ) d]PZ'(z) f(d) ( ) =1 (U]D1.. . Par) B Pgry <... <0, <2 f(pl pr2+1)
Dot <UDy ... D1 )8 for 1<I<r
and
Ay V(Per)
(4) T = V(2)— L
d]Pz‘(z) ,'f(d) (%) r;l (/D500 Dar— B <. <Py <32 (D5 Dar)

D1 <(¥/D;... D1-1)8 for i<I<r
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where
1

Vie) = pul:'I(z) (1 - —(17)) '

If d= P1-o Dargs Parg1 << ... << p, appears in the sum (3), then p,... py
< y'~0-¥A for [ =1,...,r (by induction on I) and hence

Parer > YOO anq s ytE+E
Similarly, if d = p, ... Pary Por << ... < Py appears in the sum (4), then

Dy oee Pgpq <y O for 1 —1, ..., 7

Py, > yAEEY  ang  p s gHOFED

Hence
_Vyama-zier) ( 1 )zm
(%) 2 V(Pers)[f(P1 e Parsa) < @r F1)! S < i W
and
V (y(1/26)1~218)) ( 1 )zr
6 Vip,, e Pop) < —F——— ! —
(6) E (P2r) /(D1 - P2r) @n)! y(lfgﬁ)(l-3;<p<yll' )
From (1) we have
1 logz
R
vee 7y~ 18 Foiog

so, the sums (b) and (6) are less than

13 2\ 1 ﬂ 'BKO 2r+1

and

28 2\ 1 B 28K\
V(Z)Ko—s"(l—ﬁ) W%rlogm—f-%log s )

respectively. Note that, for s>f -+ 2r, the sum (5) and, for s>pf +
+ 2r — 1, the sum (6) are empty. Thus,

v
ﬂ-f-2'r<az7<
ﬂKo 2\~ 1 ﬁ 2741
<= V(z)ﬂ+;>s(l——ﬁ) __—(27-—{—1)!(”“%,3—2 +xlogﬁKo) <
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<PK,V(z)eb—s 3 (1—g c_r xer log—@—— + xe log BK, )2r+1<<
s S\ ) @+ p—2 ’

<« V(@)e,

since for sufficiently large absolute 8 the series > converges.
r=1

We can do the same with (4). This completes the proof.

4. — A Theorem of Bombieri.

In this section we shall give a modified proof of Theorem 1 of Bom-
bieri[2]. Hence, we assume that axioms (A4;-4,) hold for N =6, = 1.
Axiom 4, will not be needed. We also assume §(z) -0 a8 # —> ccand K = ().

We begin by dividing the sum a, A ;,(n) into three parts as follows:

nKe
Let (k) = ((¥'), a), where a = max k, (The order of the components is clearly

immaterial).

2y = z anda(n) ,

n<e
(n.P(2))>1

n a
= 3 an ﬁ(k')(d)(log— )
N dln d
(n.P(2))=1 i<y

n\®

Zi= > an 2 Lun(d) (log :l)'
n<w din
(n.P(»))=1 dzv

Here, y and 2z will be chosen later and P(z) = ] p.

<2

REMARK. In the case when (k) is scalar, £, is just the Mdbius function.

The division of the sum into X, and X, corresponds to Bombieri’s division,
while the introduction of 2, allows us to avoid Bombieri’s use of a sup-
plementary set of coefficients 4;, at the same time enabling us to estimate 2,
much more simply. Each device makes it possible to estimate X, at the right
order of magnitude. In comparison with X, of [2], ours is complicated slightly
by the condition (n, P(2)) = 1. In practice the choice of z will be suffi-
ciently small so that, with the aid of the fundamental lemma, we can see
that the asymptotic formula is not destroyed.

LEMMA 6. Let g5 be defined by
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Then, for z>1,
2 1gsl0* <.

0=z

Proor. One checks readily that, by (4;),

(s) = z gs01°

621

is absolutely convergent for ¢<— 7, so
2 195|072 <z 3 |gslo" 1< &
[ >3

LeMMA 7. For 2>2 4 (log N )2, we have

1\e»

I1 (1— f—l—) =H'T] (1 —5) {1 4+ 0z} <« (loge)™

p<z (p) p<z

o)

REMARK. The same method shows that, if f is replaced by f, this result
holds for z>2. From this, restriction (iii) of Lemma 5 follows easily for P,
the set of all primes, and, a fortiori, for P* any subset thereof, with » — 1.

where

Proor. We have

OB ) -

=TT (1+ =22+ o).

We assume z > ¢(f, K), so log S is meaningful (for smaller z the result is
trivial) and hence

[log 8] < Z l

) p)’ tet < 3 g+ 3 (p Tt <

D=z
p>z

if ¢ is sufficiently small, since the second sum is < log N/(zlog z).
This gives the first half of the result, the latter half being well-known.
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LeMMA 8. For 2<z< ®, we have

1 logx
(d.P(z))=1
Proor. We have f(d)> f(d) and
1 1 1
— 1 — —
2, f(d)<<z<lﬂ<w( i) T T )<<z

(¢.P(z))=1

LeEMMA 9. Denote

1 1 ,by(d) ( 1)b<m
S ——\—H S
B4 1(@) ot (1 f(p)) d m@) =5

For 2 + (log Ny <z<w, we have

log
S —1

,,‘Z';c [Bal <2 log 2
(d.P(z))=1

PrOOF.

sl L ()= L 0=+

1 b(d)\) (
H(—=—2 1
i (f(d) 7).
Moreover,
1 bz(d)l 1
—_— < - b, (6’
2 ]f(d) TS 2 a2, 00T 2
(d.P(z))=1 (d.P(z)=1 6>1 (c(iéPl%))>=l1

1b(p)
I (t+,)

<pse

logx

logz°

The former sum is < 3 |gs]0~1 > by(0')(0')* K z77logx by lemma 6.
&<

>
The latter sum is

b 2
<—1+ H(1+M+Ll;)+---)<
i P

1\E:@
<—14+0 ;}:[V(IJ%) <

=2

log N
< —1 —&—exp(czl(;ggz)«z-ﬂ.

The result now follows from Lemmata 7 and 8,

731

1)b(p)
P .

by(d)
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LeMMA 10. For fized (k)
Yy < A@)(log 3)* 7% log z 4 o(A(w)(log )M~

Proor. This follows from Lemmata 1 and 2 of [2] where the same
bound is given for an obviously larger sum.

This proof can also be simplified by means of the fundamental lemma.
We shall not do this as, in the sequel, we shall be giving a bound uniform in (k).

LEMMA 11. If 2y < @ and 2ot < y < a'¢, then
€ at+1 ,
2, < A) (logg) (log x)*'1 (logz)~2,

where the implied constant may depend on f, C, and e.

Proor. Using Lemma 1 we get

22<(10g§)a (logx)®1 > > .

d<<z/v n<x
(d.P(2))=1 (n.P(2))=1
n=0(mod d)

By Lemma 5 we get

S o > a2 M= N A@rd)<
n<e n<e v|n v[P(2)
(n.P(2))=1 n=0(mod d) v|P(2) r<{z?
n=0(mod d) vzt
Aw) ( 1 )
&L —== 1——) -+ Rz, vd)| .
T L G ) RPN

<z

The result follows from (4,), (4;) and Lemmata 7 and 8.

LEMMA 12. Let ¢ > 0. If $>2, 2>2 and 2,y <a'¢, then

2y=HA@)F +0 {(B‘Urﬂ(w) + i%c +z1log w)A(w)(log cv)"“”(}giﬁ)?

where o(c) depends only on & and

F = ﬂllzlz)(l — ]1_)) S ’:(k;;(d)(logg)a,

a<y
(d.P(z)) =1

ProoF. We have

2= z (1) (—) az Lan(d)(log d)ye? z a{logn) .
< n<w
(d.P(Z);; 1 (n.P(2))=1
n=0(mod d)
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The sum over n has upper and lower bounds given by

S oaylogn) SAE=31F Y alogn).

n< v P(2) v} P(%) n<a
n=0(mod d) v|n vz n=0(mod vd)
v<e®

Partial summation (twice) gives

KT
n=0(modd»)

A(x) , J A(t) b
= (W + R(=, vd)) (log x) —1 f (f—(ﬁ) + E(, vd)) d(logt)’ =
1

= ——— > a,(logn)* + O((logx)* sup |R(t, »d)]) .

) (@) i 1<t<er

> a.(logn) = A(x, vd)(log w)b~fA(t, vd)d(log t)> =
1

By Lemmata 5 and 7

1 1 _ A(x) (log w)”)

1 b= 1——— H(1 b L Qe

2, wlosnr = ,,,Q[z)( f(p)) 2, Gellog )+ (6 fd) loga

n(iggﬁlgi)
+ 0flog ey ¥ sup [E(t, vd)]) -

By partial summation

Y anlogn) = A(z)(og 2)(1 + O(bp(@))

n<w
and hence
1 Lan(d) z\?
Z, =4 1—— A (1 —)
1= Al) pxl;[z>( f(p)) 2 f@ \°a)
(d.P(2))=1

1 2
+o ((e-s + aB(@) Atog 241 (ZEZ)' 4 ot A(a)(1og w)lk'—Z) -
Using Lemma 9 we can remove the dependence on f from the main term,
getting
cle) log

S, =HA@TF + 0 {(e + B(@) + @ + &7 log x)AW)“Og ;= (ng)} '

This completes the proof of Lemma 12.

e&/a

CONCLUSION OF PROOF OF THEOREM 1. Choose y = #'%, z == 2° and

§ = ¢~ Y3, (This is clearly not an optimal choice, but is sufficient). We have

2y 643 A(w)(log m)* 1,
X, = HA@)F + 0(s*B¢*"" A(x)(log )"~
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and
X, < £® A(w)(log x)* 1

(since a>2) provided > », (s, (k)). Thus

3 a4, dgy(n) = HA@ F + 0(s'" A(@)(10g #)7")

n<w

Since the sequence a, =1 satisfies the axioms, the above result holds also
for it and with the same F. Combining this with Lemma 3,

F = yy(log 2)H=1(1 4 0(%)

and hence the result follows.

5. — Auxiliary lemmata.

This section contains various lemmata whih will be needed for the proof
of Theorem 2.

LeMMA 13. There exists a constant ¢ such that, if # >1 and k< }nlog x
then

> i) < (log z)* 4+ ck(log cx)*1 .

ProoF. We have f(n)>f(n) and

_ Ai(n) . Ay(m) . m Ay (m)
=25y - AN Eee=3e 2 u(5)5r
m=0(mod J)

Let m = 6hu, where (v, 6) =1 and h|0®, i.e. b divides some power of J.
This gives

u<x/0h w
(u,0)=1

_ 3 (Mo 4,(h0) A_y(w)
S—.Z(-)gahgmbz(h) i 2 bi(w) TR

For the term j = 0, the only non-zero contribution comes when § = h =1
and by Lemma 2,
k(K A0k
S<(loge + )+ > ( )(logw + o) Y [9] gbz(h)—% .
i=1 afé®

3 ] i<y
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Sinece ¢* > uj/j!, choosing u = }nlogd h we get

bay(h) A;(0h) < he(log Ok)I < he (;’—;)] HCIIKERS (%)] j1(0R)ns
for ¢ < 5/12. Hence
8 < (log @ + e} {1 + ¢(e) i (_ﬂn_)’z |go|6—1113 h—1+n/3} .
Si\loge +¢/ %5 e
Since

zo h—1+n/3 < 2 h1—1+n/3 h2—2+2ql3< §2ni3 hzhl—l—n/s ; h2—2+2n/3 < O2nl8 |

Fald Ryl

by (4;) and the assumption on k, 8 is less than
(log x)* -+ ck(log cxw)r—
LuEMMA 14. There exists a constant ¢ such that, for »>1,

> wrm) A(n)/f(n) > (log x)* — ck(log 2k)(log log 3N )(log cx)**.

n<e

PrOOF. For any ¢ (f) and k > ¢, log /(log log 3x)(log log 3N), the result
is trivial. For smaller % it is clearly sufficient to prove that, for some c,(f)
we have
> ur(n) Ax(n)/f(n) > (log & — c(log 2k)(log log 3N))* .

N

‘We have

log p b(p) log p ( gpIng) b(p) log p
- = =022 >
éx H(p) péx p 2 P p;zzv p
>logz + O(loglog 3N)
which gives the result for ¥ =1.
Assuming the result for k, we get

; wi(n ) Ajea(n)/f(n) n; H3( (n) log n[f(n) +
+ z pin) A(n)if(n) 3 pi(m) A(m)[f(m) >
< (7mn§)x=n1
\ /1k(n){1 b{p)logp < b(p)logp
o ngzlu (n) f(’n) ogn + n<zw/n P p[;N P

—3 15}
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Since n is divisible by at most % distinet primes, the expression in paren-
theses is at least log x — c,(log 2k)(loglog 3N) which we may assume is
positive. This completes the proof.

LEMMA 15. For ¢ >1, we have

Z wi(n) Agey(n)/f(n 7[/7(0]]) (log 2)M 4 cqy(log z)l*l—1

where cgy < (clkl)*.

Proor. We have the trivial estimate

T = z wi(n) Agy(n)/f(n) < (log )it 3 — < (log m)lkl+1,

nEw n<w f(

so the result holds for |k|> }»n log». For smaller |k| the result is proved by
induetion on r. For r =1, it follows from Lemma 13. We have

Te 3 pmyp G deln) s /}SZ” 3 e 2]

mu<e f(m) f(n) = m<z ) n<xfm

-zl eofest) )

/lu 4 i 3 3
é ﬂ%) (log%) = f (logg) a8 (u) =—f S(u)d(logg) <
1

1

N\

Also

r

< —-—f{(log u)e 4 O(az(log u)a—l)} d (lOg &)z _
1

= af(log g)l (log )2 %" + O(a*(log x)*++-1) =
1

1!
= (aa_.{_li)y (log @)+t 4 O(a*(log m)a-{—l—l) .
Hence
T<?® (log z)H + 0 ( 22 g al(ff|—1)! )1 el -1
g (o8 O ] o Gy CE )

+ O(eqya*(log x)*-2) ,
which gives the result.
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COROLLARY. For logz > (|k|!/(k)!)(c|k|)* we have

5, w0 48) < 28 g

n<e |k|

Proor. Immediate.

REMARK. The same method works for > by(n) Agy(n)/n giving the same
estimate. n<e

LEMMA 16. Let ¢q>2 and 1>1. We have
) 3 (r(m))!m™* < élogw + ¢'),

m<x
(i) 7,(m)<q

(i) Toyp = Ta % Ty-

2(m)
’

Proor. In the proof of (i) we use a result of C. Mardjanichvili [4],

S (r(m)' < AP z(logx 4 ¢ T,
m<x

where

g q
Ale)_( Ny —1/a— i< q! <gl

Hence, by partial summation we get (i). The parts (ii) and (iii) are immediate.

LEMMA 17. We have

n nt1
(@)<n!<2(n+1) .
e e

LEMMA 18. Let (k) = (ky, ..., k,), Ly = L5 ... % L* and

Rk

Then
oy < 27qy) and  Lyy(n) <oy, (n)(log n).

ProoF. By Lemma 17 we have

kqfe)e .. (K, Je)
cr) = (—/e()|?|/e)%&< 2ya) -
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Also

Lyyn)<t,(n) sup (logu,) ... (logu,)r.
w1 ek

We use Lagrange multipliers. Consider
F(Uyy oery Uyy ) = (log )™ ... (log w,)*" — Aty .. u, — m) .

Setting 0F/ou;, — 0, we get

T

k.
2 ] k _
log u; a'l=_[1 (log u,)¥ = Auy ... u, .

Hence log u,/k; = constant (independent of ¢). We have also
Zlogu,=logmn.

The result follows from these.
CoroLLARY. We have
(1) L) <2Yg Ty 5(n) (log m) M,
(i) Agy(m) <2947, 1 (n)(log n)*.
REMARK. We define y, = 1.

Proor. Let p, = p#..%pu (r times). Clearly |u(n)| <7,.(n);

Loy = ttry1* Ly

Ay =, % Lg,.

Now the result follows from Lemma 18.

LeMyma 19. Let P* and P*(2) be as in the fundamental lemma. For
?)) =1, we have
(d, P*(z)) =1, h

A) ( 1 )

Uy € I———— )+ R(x, vd)| .
nga: f(d) wljll';l(:z) f(p) VIPZ‘(Z)\ @ )|

(n.P*(2))=1 <2

n=0(mod d)

Proor. This follows from the fundamental lemma in the same way as
in the proof of Lemma 11.
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DEerFINITION. For simplicity we write

R¥(w, d) = sup |R(y, d)].

I<vy<e
LeMMA 20. Let ¢>2, a>2, 2>16(xq)® and

8, = 1,m) 3 7@,
(d.P((iL;')=1

We have

log 2

n<x?

where B is arbitrary and the implied constant depends on B.

Proor. By Hélder’s inequality we have

n<a0 n<xe W n<x®

S 8, R*w, n)< ( > f)i( > ni(B*(@, n)i)t.

6(xa)®
> 8.R*w,n) < (c l_og_m) A(z)(log & + ¢2)T+0-(B

745

Each n can be uniquely represented in the form n = n'n’, where (n', P(2)) =1

and all the prime divisors of »' are <z. We have

8 < Ty 7 )70 ) < (") (20g) )

Hence

<%
A
S
™M

n<g®
(n.P(2)) =1

rq('n))S)( s (2(xq)30(n)ﬁ,r1)<

<e(loga + ¢%)7

For 0 <2< } we have (1— 2)1< ¢*. We have also

> 1< log(logm) +e

s<p<a P log #

Hence

o3 log \16(=0?

—n k=g 3\¢®

ngm" n = (0 IOg‘ z) (logx + 1 )q )
We have
F
R¥(x, n)< C (n)A(w)(log x)C .

n

I1

[ <

(

20q)?

1— 2017

r
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Thus
3 #H(RH @, m)?< CA()log ) 3 T (Re(a, m)i -
< CA(x)log w)c( > Fz(Tn))*( > R¥(x, n))* <

< (A(@))¥(log w)o-2

This completes the proof.

LeMMA 21. There exists ¢ > 0 such that, for a>1 and z > (co)*® we have

1 log 2\*/’
almg, < ot A(x (1 — ———)(c——) 4+
2 ( )mgz) f(p))\ log =z

n<ax

(n.P*(2)) =1
Fatle S 40D N R(x, vd)],
d<<a®/ v| P¥(z)
(d.P‘(z))=1 p< 22

where the implied constant is independent of «.

Proor. Let n = p,..p, where p;<..<p,. Put d=p,...p, where
t=[01/4]. 1f t =0 then d =1<a® 1If t>0 then p,>d", so z>n>
d(dl/l)l-—t — dl/t glvmg d<mt/l<mel4_

Also
o) b IO (41814 2(@)
Hence
S= 3 oM, <ol 4102@ Gy
n<a " d<2x"/‘ nga: "
(n.PX2)) =1 (d.P*(z))=1 (nP*(2))=1
n=0(mod d)

Substituting in Lemma 19 we have § « 8, + S,, where

(4/8)0(a) 1
e 3 S L)
“ ( 2 g )4 U1

(d.P*(z))=1
and
By=ot? S W02 S Rz, 4d)| .
d<<ad/t »| P*(2)
(d.P2(z)=1 vzt

The sum occuring in 8; can be majorized by

okle 81 log m)"‘"’
1 — —_ e p<<te——
JL( i Tren T ) (ologz
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by the lower bound for z. This completes the proof.

LEMMA 22. We have

k
2 (Eh;) vy < (k|21

(R)<(k)

Proor. We have y,, <|k| and

aé(k)(gg) = 2k,

LeMMA 23. For x> 1 we have, uniformly for 6 > 0,

This completes the proof.

Az, m°) € A(x)(0logx)—2.

28149 < <Lt 19

Proor. We have

Az, m?) < Ax) 1

@049 <m<atly m>x0lie f(mg) m<wx'/v

| R(w, m?)| .

By (4,) the second sum has the required bound and since g>2 and
f(m) > m? the first sum is

< |19 @t < 2atH00—20 < 25018 (0 log x)~2.

019

This completes the proof.

6. — Sieving out small primes.

We divide the sum a, A,y (n) into three parts precisely as in Section 4.
<X

In this section we estimate 2, uniformly in (k). From now on we take z == X.

LeMMA 24, There exists ¢ > 0 such that, if

cloglog X + (c[k[)#™" [k " < logz< lgl‘glﬁ )
then
S a,dgm) < (elk) "y A(X)(log XM 2 log 2 .
X

N
(nP(2))>1

48 - Annali della Scuola Norm. Sup. di Pisa
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ProoF. Let ¢ = XY §0 z< . The constant ¢ is to be chosen (as
will be apparent) so that some of the previous lemmata may be applied.

For n a positive integer, write n = n,n, where all the prime factors of
n, are <, while those of n, are > {. .

Let
> adpmy= 3% + 3 =8+8,.
n<X ny =X py< X2
(nP(2))>1

If n,> X%, let m? be the largest g-th power dividing n,. Thus n,m;° has
at most |k| distinet prime factors, each <, and each occuring with
multiplicity <g-— 1. Hence

nlmi_g < C(ﬂ—l)lkl and m;l>,mc—(a—1)lk| > X014
(assuming f¢ > 4g). Thus

S, <(log X)¥ 3 A(X, m’) « A(X)(log X)H~2,
my> X0
by Lemma 23.
Let N, denote the set of positive integers divisible by precisely I distinet
primes <z. We have

1| x|
8 = z z anA(k)('n) = z 8,1,
=1 a<X =1
neNy
ny < X0/2

and

k
S0 =3 ("N S anmdom) dunng) .
W \(P)) nim<x
|al=t n €Nt
ny < X002

By Lemma 18 (Corollary) we have

> g A1y (M2) < 2,y (log X )= p3 Gy, Tr i1 (N2)
n<X/ny ny<X/n;
(n.P(D))=1 (nsP()) =1

which, by the argument used in the proof of Lemma 21, is

<2p-nlog XM + 1M 3 (4@ F g,
a< X0 naSX/ny
(d.P(}))=1 ng=0(mod d)
(rama, P*(0)) =1
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where P* is the set of primes not dividing n#,. By Lemma 19 this is

< ya-n(log XYF-Mr 140 > (r 4 1)@/09@ {ﬂﬂ 11 (1 _fl—)) +

a<Ton a) f(m) ooy (p
(d.P((£))=1
+ > |R(X, "ﬁ’d)l}-
1

Since n, is divisible by at most |k| distinct prime factors, we have

_‘_1_ _ _L __1~_ -1 log2lk|
plzn(o(l f(P))\mlz:(IC)(l f(P))zlx_nIl(l f(P)) < log¢ -~

Now, summing over n, and then over (k) we get

r+1)s/0
80 < 4 E El o (0EZ) T 5 (09 tog zye

log ¢ log ¢ W <o \(R)
hI>1
Ay(ny) ((70))
1)48(log X )1+ .
N () + 4 1) log X) (h)g(k) (b)) VM

c 2 mm) X (r + )W R(X, m)| = Ty(1) + Ty(l), say.
(d.P(?Z;L):—-l

By Lemma 20
k) log X\unm/e
T,(1) < (r + 1)49 (( ) - (c——) A(X)(log X)lkl-2
s0, by Lemma 22

Kl
S @<+ 1 ez
=1

clog X)W)”"’
1

k] —2
Tog A(X)(log X) .
Before we estimate T,(l) we change the last sum over #, as follows

A(h)("1)< S 2(n1)A(h)(nl) S (1—pny) m(m1)

:16<NX1 f(nl) \:I:J\f)’z f(nl) <X f(nl) o
A
3 pe(m) S -+ 0 (0g 2 b)) (g X)M-* loglog X)
ny< 1
n€N"1

by Lemmata 13 and 14.
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Now, T.(l) splits up in two parts corresponding to the sum over square-
free n, and to the error term [h|(log 2[h[)(log X)*~(loglog X)

T,(l) = U:(1) + U(D) .

By Lemma 22 we have

k 1+(r+1)i0
5 U,(l) < [k]s @0 ol (c IOLY)
<1

*l—2
Tog 7 A(X)(log X) loglog X .

For the estimation of U,(l) we write n, = nyn,, where the prime divisors
of n, are <z while those of n, are > 2. Using Lemmata 1 and 15 and
interchanging the order of summation we obtain

1+ (r+1)4e
U,(1) < lk[2+4/e(clig_-_x) A(X)

k
log{ 2 (( ))V(k_h)(log X)lk=nf.

log X /<y \(R)
|A]=1

. (h)) o+ Aiy(ns) oy Aa—p(n4)
<’i§|§>(§’>((i) W) Ty B Gy €
log X\t +r+1" 4 (X) !

24+4/0
< [E| (0 log C) 10gX(z)<<k)l7I'

lil=1

k h
'(5)< Sy (gh;) (((?;) Yk—n) 777 lh Iy (Ih 7|10g C)[h ’](log X)[k hl -

In the summation over (h) we examine the ratio of the terms in going
from (k) to (k') where (k') adds one to one component, say the r-th one.
This ratio is

W'y 1 Bl log & log¢
g~ (k= B=D) (14 5= lil) g x ~“Fliggx -

(1 log 2)l-

If the maximum of this ratio is <o < 1 then the sum is <M. (Term for
(k) = (j)), where

M<@+o+ ..+ M Yy<c@a—p

The choice of [ can be made to ensure that ¢ < 1/2r and hence M < e.
Therefore we have

14 (r+1)4/°
Uy (1) < [k 2+ (c lohg_X) A(X) (4)!

(k)) . -
1 3 0 (1 log 2)!(log )=
log ¢ logX(?é(k)H ((?) Vo-s(tlogz)"(log X)

[
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Going from (j) to (j') and computing as with (k), the ratio is < |k|log z/log X
and since z<(, the terms for which |j| = ! dominate. The sum over these
terms is easily seen to be

(k)! .
Lo o X)l-t,
l!(!kl—l—l)!(lr log 2z)}(log X)
k
Considering the ratio of consecutive terms in > U,(l), it is easily seen that
=1
the term [ =1 dominates, giving the result,

!g: U,(l) < |k|2+4/e(0IOgX)1+(r+1)‘/e (k)!
=1

oo
log (Jk]—2)!
< (o]l ]} yay A (X)(log XYk —21ogz .

A(X)(log X)*-2log 2 <«
1

Using the lower bound for z, it is easily shown that 8, sz(l) and
1

> U,(l) also have this upper bound (with some constant ¢) and the result

i

follows from this.

7. — Estimation of 2,.
Recall that
n a
22 = Ay ‘:(k')(d) (log-d) .
n

LEMMA 25, If 1<y< X and X% > z> (6r)"%° then

log X/y\*{ log X\enur
, |kj—1
Si<ro (T (Tag) | AC@og -

ProOF. We have

X a
[Z,]< (log —) D> an 2 [Land)|<
Yy <X din

ns

(n.P() -1

a
<2 (log 3(-) yay 2 (4 2)%™a,(log X)¥1.
y (n.g(gz))-al

and by Lemma 21 this is

< Yy (l‘l’f gﬁy)“A(X)(log X)H-1(r 4 2y ((,.

log X 1+ (r+2)8/0
logz )
a
+ 0 (o) Uog )R 240 S (¢ +2)49%0 5 BT, 5d)| .
log X Nl

d< X0/
(d.P(z))=1 y<z®




752 JOHN FRIEDLANDER - HENRYK IWANIEC
The last double sum is

< D am) 3 (r 4 2)WND|R(X, m)|
m< X0 d|m
(d.P(z))=1

and by Lemma 20 this is

log X 48(r +2)12/0 s
<<(c logz) A(X)(log X)

giving the result, since 48(r 4 2)'¥° < (6r)!2/°,

8. — Estimation of 2.
Recall that
n a
Zl = z g(k')(d) z a, (lOg E)
n<<X

a<y =
(d.P(z))=1 (n.P(2))=1
n=0(mod d)

and define

F=T] (1_1)"(1’) S byd) ﬁ(k;])l(d)(logg)“‘
»[P(2)

? d<y
(d.P(z))=1

LEMMA 26. Let 0<<e<<0y, 0 = 0,— 2¢, y = X°, 2" = X° (¢ will be chosen
small enough to ensure s>2) and assume f(X)<1. If

logz> [k|*M  and 27> ‘;—lk—| (log X3
(k)
then we have
log X
Z,=H,A(X)F + 0 2%anlc

logz

(8(r+1))®
) A(X)(log X)m-z) +

log X
logz

+0 ((e-*+ ap(X)) 2° 7"“"(

| )A(X)(logX)l"l“l).

Proor. Following precisely the same argument as in Lemma 12 we have

_ , X\* A(X) _1
5= 2 £<k’(d’(l°g d) 1@ p[ﬂ(z)(l (p))+
(d.P(z))=1

- +4X) Lo(d)|
+o((e +ap)eiog ppyls) 5 L),

(d.P(z))=1
+ 02y (log X 3 w(m) 3 (r+ 1)20 R¥(X, m)) =
dlm

m <X 0—¢
(d.P()=1

=FE, + E,+ E;, 8ay .
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Applying Lemma 20 we get

(8(r+1))’
log X) A(X)(log X)-2 .

a 0’
E3< 2 '}’(k)( logz

By Lemma 9 we have

E,=HAX) ] (1 — })b(p) > by(d) Lie)(d) (IOg E)a +
v 2(2) P d d

+ O(A(X)(log X)¥+12-7) = H' A(X) F + Oy A(X)(log X)) .

To estimate E, we write

Lun(d) | < Cyz(d) ] l 1 bz(d)’

G| b, (d) B | i Lon{d)] .
2 d) P P b Far(d)]
(a.P(n))=1 (d.P(2))=1 (d.P(2))=1

Using the simple estimate |£.(d)| <(log d)1 of Lemma 1 and the argument
of Lemma 9 the latter sum is

van log X
]k’| log

< (log X)Wi+1=n « — (log D).

Moreover, since

€ ()] < 3, Age(0)
dld
by Lemma 1, the former sum is bounded by

be(d)

log X
d 2/1(70) )<< g
ETrd

A(kr)((s) ’y(k') log X %
> ¢’gxbz(d) 5 < ] Tog 2 (log X)

a<y
(d.P(2))=1

by the Corollary and Remark after Lemma 15. Thus

n (log X\?
7, < (e + ap(0) 227 (EZN A (ftog T

Collecting these estimates, we get the result,
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9. — Conclusion of proof.

Collecting together the estimates of the last three sections we obtain

(8(r+1))®
z anAgy(n) — H' A(X)F < 2%y (c llog X) A(X)(log X)k-2 +
n<<X ogz

log X

+ 2%y (™ + aB(X) (logz

2
) 4wmog xyH—1 +
log X\@n""
— , e Jk|—1
+ =0y (53 ) " A log Tkt +
+ yaylelk |)(4')"°(log 2) A(X)(log X)Ik-2 ,
Since 2°(1 — 0)* < log X the first term is less than the third one. Substi-
tuting z = X°* we arrive at
Y a,dgyn) — H A(X)F <
n<X
< {20 (€7 + aB(X)) 8* + yan(1— 6)%(es)®™™ + yy 57 (ol ]) 47} -

A (X)(log X1,
Substituting

s = (ealk)“"u,
where #>1 and ¢, >¢ is some sufficiently large constant we get
$> 2alog (2(1— 6)Y) and so the term containing ¢~ is less than the one
containing (1 — 8)*. Thus we have
{“.} & a2a82y(k,)ﬂ(m) + ‘y(k’)(l . B)G(GclIkl)(ﬁf)lalbu(ﬁ'r)lulo + yku—l .

For

(6r)-18/0
u= (”‘—"’ a —6)*“)
Y

the last two terms are less than

, (61‘)‘"/0
Vet (;:_:_:)) 1— o)a) (ce, e )@,
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Since
wr< X8 (1 _g)-¢  and 7<_k'><(|kl)
V') Y a
k|—1 .
for r>2 we have even yu)/ym = —— )| obtain

2 a, dgy(n) = H' AX)F + By, A(X)(log X)H~1,

n<X
where

2\ k| (Bry-rele
¥ « (1—__0) (c(k))(&r)‘/ﬂﬂ(X) + ((7) (1— O)a) |k ‘(sr)ls/o .

Now, it remains to estimate F. Since by Lemma 4 the above result is true
for the sequence b,(n), with

AX) =V, X -+ 0(Xro A H — 1 1 L 1\1=b(®)
(X) =V, X 4 O(X*9%) an 1_1:[( _m)(_ﬁ}_’) ,

where f, is the f of Lemma 4, we get

g by(n) Agy(n) = H,; V, XF + B**y,, A(X)(log X )"~
<X

with a different E** satisfying the same bound as E*. Also, from Lemma 3

S b, (m) Agy(n) = vy X(log X)) 4 0(c¥ X (log X)¥-7) .

n<X

Comparing these two results we obtain

F (log X)I*l=1 — ) B¥*(log X)E=1 4 O(c¥(log X)*I-2) ,

1
- Vl Hll. Y(x)
which completes the proof, since a simple computation shows that

H'=V,HH.
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