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ON BOOLEAN ALGEBRAS OF PROJECTIONS AND

SCALAR-TYPE SPECTRAL OPERATORS

W. RICKER

Abstract. It is shown that the weakly closed operator algebra generated by an

equicontinuous a-complete Boolean algebra of projections on a quasi-complete

locally convex space consists entirely of scalar-type operators. This extends W.

Badé's well-known theorem that the same assertion is valid for Banach spaces;

however, the technique of proof here differs from his method, which extends only to

metrizable spaces

In [1], W. Bade showed that every operator in the weakly closed operator algebra

generated by a a-complete Boolean algebra of projections on a Banach space is a

scalar-type spectral operator (in the sense of Dunford, [2]).

The aim of this note is to show that this result can be extended to locally convex

spaces. The methods used by Bade are not available, because they make use of the

fact that the weak operator closure of the algebra generated by a a-complete Boolean

algebra of projections on a Banach space is again an algebra; the corresponding

assertion is false for locally convex spaces in general. These methods are replaced by

the theory of integration with respect to closed spectral measures (see §2).

Let X he a locally convex Hausdorff space. The space X will always be assumed to

be quasi-complete. Let L(X) denote the space of all continuous linear operators on

X, equipped with the topology of pointwise convergence.

Theorem. Let the space L(X) be quasi-complete. Let â be an equicontinuous,

o-complete Boolean algebra of projections in L(X). Then every operator in the weak

operator closure of the algebra generated by & is a scalar-type spectral operator.

1. Preliminaries. The dual space of X is denoted by A". If a is a continuous

seminorm on X, let

U° = {x' G X';\{x,x')\^ 1 for all x such that q(x) < l}.

An A-valued vector measure is a o-additive map m: 91L -» X whose domain <DTt is a

o-algebra of subsets of a set ß. For each x G A", the complex-valued measure

E F-» {m(E), x'), E G 91L, is denoted by {m, x').

If a is a continuous seminorm on X, then the ö-semivariation, q(m), of m is the set

function defined by

a(m)(£) = sup{|(m,x'>|(£);x'Gc/i°},        E G 91L.
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For each £ G 9L, the inequalities

(1) sup{o(m(£));£G9H,£ç£}

< q(m)(E) < 4sup{a(w(£)); F G <Dlt, F C £}

hold [3, Lemma II 1.2].

A complex-valued, 911-measurable function / on Í2 is said to be w-integrable if it is

integrable with respect to every measure {m, x'), x' G X', and if, for every £ G 911,

there exists an element jEfdm of X such that

Ujdm,x^ = j¿d{m,x')        .

for each x' G X'. If / is an w-integrable function, then the mapping fm: 9R, -» X

specified by

(fm)(E) = ffdm,       £G9H,
JF.

is called the indefinite integral of the function / with respect to the measure m. The

Orlicz-Pettis lemma implies that it is a vector measure. The element ( fm)(ti) of X is

denoted simply by m( /).

The set of all w-integrable functions is denoted by L(m). Members of 911 are

freely identified with their characteristic functions. An w-integrable function is said

to be w-null if its indefinite integral is the zero vector measure. Two w-integrable

functions/and g are w-equivalent or equal w-almost everywhere (w a.e.) if \f— g\

is w-null. The class of all w-integrable functions equivalent to a function/ G L(m)

is denoted by [f\m.

Let a be a continuous seminorm on X. If / is an w-integrable function, then the

a-upper integral, q(m)(f), of /is defined by

q(m)(f) = q(fm)(ü).

For any continuous seminorm q on X. the relations

(2) q(m)(f) = q(m)(\f\),       f G L(m),

and

(3) q(m)(f)<q(m)(g),        0 < f< g; f, g G L(m),

are valid [3, Lemma II 2.2]. Furthermore, the function

(4) f^q(m)(f),      /GL(w),

is a seminorm on L(m).

Denote by t(w) the topology on £(w) which is defined by the family of

seminorms (4), for every continuous seminorm q on X. The resulting locally convex

space is not necessary Hausdorff. The quotient space of £(w) with respect to the

subspace of all w-null functions is denoted by L'(w). The resulting Hausdorff

topology on £'(w) is again denoted by t(w). It is clear from (1) that t(w) is the

topology of uniform convergence on 911 of indefinite integrals.
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Since X is quasi-complete, it follows that every bounded measurable function is

w-integrable [3, Lemma II 3.1].

A set £ G 911 is said to be w-null if Xe iS w-null. Two sets £, F G 911 are

w-equivalent if their characteristic functions are w-equivalent. Since |x/.; — XfI =

Xi^/r where EAF = (£U£)\£Pl£, this is so if and only if Xkaf 1S w-null. The set

of all equivalence classes of 9U with respect to w-equivalence is denoted by 9H(w).

The set 91t(w) can be identified with the subset {(x/;]„,'. £ £911} of L'(w).

Furthermore, as

a(w)(£) = a(w)(x,),        £g91,

for each continuous seminorm q on X, the topology and uniform structure t(w) has

a natural restriction to 911 (w) which is again denoted by t(w).

A vector measure m is said to be closed if 9H(w) is a complete space with respect

to the uniform structure t(w).

The following result, which is a slight extension of Theorem IV 4.1 of [3], shows

that the closedness of a vector measure is a desirable property.

Proposition 1. Let w: 9H -> X be a vector measure. Then m is closed if and only if

D(m) is complete.

Proof. If £'( w) is complete, then w is closed [3, Theorem IV 4.1].

Suppose that m is closed. If X denotes the completion of X and m: 9H — X the

measure defined by w(£) = w(£), £ G 9H, then w is also closed. It is clear that

L'(w) Ç L\m) and that t(w) induces the t(w) topology on L'(w). Since L\m) is

complete [3, Theorem IV 4.1 ], the proof is completed by showing that £'( w ) = L'( w ).

It suffices to show that each w-integrable function / s* 0 is w-integrable. Choose

simple functionssn s* 0, n = 1,2,..., such that sn î/pointwise. Since (snm)(E) G X

for each £ G M, n = 1,2,..., it follows from the Dominated Convergence Theorem

and the quasi-completeness of X that (/w)(£) G X for all £ G 9lt. Hence, / is

w-integrable.

2. Closed spectral measures. If TV is an equicontinuous subset of A", then qN

denotes the continuous seminorm on X defined by

(5) qN(x) = sup{| (x,x')\ ; x' G N},       x G X.

For x G X and an equicontinuous subset N of A", let a¿ denote the continuous

seminorm on L(X) given by

q*N(T) = qN(T(x)),        T G L(X),

where qN is the seminorm (5). The collection of all such seminorms q„ determines

the topology of L( A").

A spectral measure in X is an L(X)-valued, o-additive and multiplicative map P:

911 — L(X), whose domain 9H is a a-algebra of subsets of a set £2 such that P(ß) is

the identity operator. Of course, the multiplicativity of P means that P(£ n £) =

P(E)P(F), for every £ G 9H and £ G 9H. Since L(X) is itself a locally convex

space it is clear that spectral measures are vector measures.
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A spectral measure P in A" is said to be equicontinuous if its range

R(P) = {P(£);£G9H},

is an equicontinuous part of L(A"). For such spectral measures, every bounded

measurable function is P-integrable (see §1 of [4]).

Let P: 91L -» L( X) be an equicontinuous spectral measure. Let / be a P-integrable

function. It is a consequence of the multiplicativity of P that the operator P(f)

commutes with P(£), for every £ G 911. Furthermore, the indefinite integral of the

function/with respect to P is given by

(6) (/£)(£) = P(/)P(£),        £G91t.

Lemma 1. Let P: 91L -* L( X) be an equicontinuous spectral measure. If x G X and

N is an equicontinuous subset of A", then there exists an equicontinuous subset H of A",

depending on P and N, such that

<¡N(p(f))^qxÁP)(f)^qxH(P{f))<

for every f G L\P).

Proof. If / is P-integrable, then a simple calculation using the definition of the

a¿-upper integral of/with respect to P, the formula (6) and the inequality (1) shows

that

(7) a¿(P(/)Ha¿(P)(/)<4sup{a¿(£);rGP(/P)},

where R(fP) = (P(f)P(E); E G 911} is the range of/P. Let H denote the equicon-

tinuous subset {4P(£)'(x'); £ G 9H, x' G N} of A" (if T G L(X), then T denotes

the adjoint operator). It follows that

(8) 4a¿(£)<a¿(P(/)),       TGR(fP).

The required inequality is clear from (7) and (8).

Let P: 9H -» L( X) he an equicontinuous spectral measure. Then define

S(P)={P(f);fGL\P)}.

The identity (6) implies that the map /i-» P(f), f G L)(P), is injective and hence,

Lemma 1 implies that it is a linear homeomorphism of Ly(P) onto $(P). This fact

together with Proposition 1 gives

Proposition 2. Let the space L(X) be quasi-complete and let P: 91L — L( X) be an

equicontinuous spectral measure. Then P is a closed measure if and only if 5(P) ii

complete for the relative topology induced by L(X).

Proposition 3. An equicontinuous spectral measure P: 911 -» L(X) is closed, if and

only if, the range R(P) of P is a closed set in L(X).

Proof. Suppose that R(P) is closed. Let (Ea)a£A he a Cauchy net in

(9H(P), t(P)). If q„ is a continuous seminorm for L(X), then it follows from (2),

the identity | xEa - x£J= Xe0ae„ and Lemma 1 that

(9) iAHxe. - Xe,)(*)) < 4xAP)(Fa AEß),
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for each a, ß G A. Also (3) and Lemma 1 imply that

(10) q»(P(XE.)(*)) < 1n(P)(XeJ < qH(P)(0) < oo,

for each a G A. Since X is quasi-complete and R(P) is equicontinuous, it follows

from (9) and (10) that there exists an operator T G L(X) such that P(Ea) -» £,

a G A. As Ä(P) is closed, there is £ G 91L such that T= P(E). Then Lemma 1

implies that Ea -* £ in 9H(P). This shows that 9H(P) is r(P)-complete.

Conversely, let P be a closed measure. Let (P(Ea))aeA be a net in R(P) which

converges to £ G L(X). If q%(P) is a continuous seminorm for t(P), then there

exists a continuous seminorm q^ on L(X) such that

a¿(P)(£a A£^) < qH{P(Ea) - P(Eß)),

for all a,ßGA. As 91t(P) is complete, there exists £ G 9IL such that £a -» £.

Lemma 1 implies that P(Ea) -> P(E). It follows that R(P) is closed.

An operator T G L( X) is called a scalar-type operator if there exists a spectral

measure P in A" such that T G i(P).

3. Proof of the theorem. Let K denote the closure of ÉB in £(A") and {K > denote

the algebra generated by K in L(X). Interpreting â as the range of a spectral

measure in X on the Stone space of 1$, it follows from Proposition 3.17 of [4] that K

is an equicontinuous, complete Boolean algebra of idempotents in L(X). Accord-

ingly, there exists an equicontinuous spectral measure P in X whose range is

precisely K. Propositions 2 and 3 imply that §(P) is closed in L(X).

The algebra {&) is a convex set. Hence, the weak operator closure of {&) is the

same as its (strong) closure in L(X). Since the £(A")-closures of {&) and {K) are

clearly equal, it suffices to show that any operator in the closure of {K) is a

scalar-type operator.

Since {K) consists of all operators of the form P(s), where j is a P-simple

function, it follows that {K)G 5(P). The space ii(P) is always contained in the

closure of {K) because the P-simple functions are r(P)-dense in £'(P). Since 5(P)

is closed (even complete) it follows that the closure of {K) is equal to i(P).

It is worth noting that the algebra, {&), generated by $ is equal to the linear span

of &. Hence, although the weak (or strong) closure of (&) may not be an algebra in

L( X), it is a closed subspace of L( A").
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