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Abstract

This paper establishes that the minimum error rates in coverage probabilities of one- and sym-

metric two-sided block bootstrap confidence intervals are of orders O(n−3/4) and O(n−4/3), respec-

tively, for normalized and studentized smooth functions of sample averages. The block lengths that

minimize the error in coverage probabilities of one- and symmetric two-sided block bootstrap con-

fidence intervals are proportional to n1/4 and n1/3, respectively. Existing literature provides Monte

Carlo evidence that such small improvement over the coverage precision of asymptotic confidence

intervals is to be expected.

1. Introduction

The bootstrap, introduced by Efron (1979), is a statistical procedure for estimating the distribution

of a given estimator. The distinguishing feature of the bootstrap is that it replaces the unknown

population distribution of the data by an estimate of it, which is formed by resampling the original

sample randomly with replacement.
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When the observed data form a random sample, the bootstrap often provides more accurate

critical values for the tests than asymptotic theory (e.g., Beran, 1988, Hall, 1986, 1992, Singh, 1981).

Hall (1988) proves that the error in coverage probability made by symmetric two-sided confidence

intervals, when bootstrap critical values are used in the IID case, is of order O(n−2). This amounts

to sizable refinement1 for the precision of asymptotic confidence intervals, since the errors made by

one- and symmetric two-sided asymptotic confidence intervals are of orders O(n−1/2) and O(n−1),

respectively. Monte Carlo experiments support the predictions of the theory, sometimes producing

spectacular results (Horowitz, 1994).

In the case of dependent data the bootstrap procedure must be designed in a way that suitably

captures the dependence structure of the original sample. Several different sampling procedures have

been invented to tackle this task. Carlstein (1986) proposes to divide the original data set in non-

overlapping blocks and then sample these blocks randomly with replacement. Künsch (1989) proceeds

similarly, except he divides the original sample in overlapping blocks. Hall (1985) also suggested

these techniques in the context of spatial data. Despite the blocking, the dependence structure of the

original sample is not replicated exactly in the bootstrap sample. For example, if non-overlapping

blocks are used, the observations from different blocks in the bootstrap sample are independent with

respect to the probability measure induced by bootstrap sampling. Furthermore, observations from

the same block are deterministically related. Lastly, the block bootstrap sample is non-stationary

even if the original sample is stationary. This dependence structure is unlikely to be present in the

original sample. As a result bootstrap performance deteriorates. Hall and Horowitz (1996) give

conditions under which Carlstein’s block bootstrap provides asymptotic refinements through O(n−1)
1By “refinement through O(n−r)” we mean that the estimated parameter of interest is correct up to and including

the term of order O(n−r), and the estimation error is of size o(n−r).
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for coverage probabilities, when bootstrap critical values are used to construct symmetric two-sided

confidence intervals for Generalized Method of Moments (GMM) estimators.

The random variables of interest in this paper are standardized and studentized smooth functions

of sample moments of X̃ or sample moments of functions of X̃ , where X̃ denotes the sample. For this

broad class of random variables we have established the following result: the errors made in the cov-

erage probabilities by one- and symmetric two-sided block bootstrap confidence intervals are of orders

O(n−3/4) and O(n−4/3), respectively, when optimal block lengths are used. The optimal block lengths

are equal to2 C1n
1/4 and C2n

1/3 for one- and symmetric two-sided confidence intervals, respectively.

Note, however, that the improvement from using the bootstrap over the asymptotics leaves much to

be desired, especially in the symmetric two-sided confidence interval case. The lackluster performance

of the block bootstrap, as demonstrated in the Monte Carlo experiments of Hall and Horowitz (1996)

and Hansen (1999), among others, is consistent with the theory established in the present paper.

To achieve asymptotic refinement, the Edgeworth expansions3 of the statistic of interest and its

bootstrap equivalent have to have the same structure apart from replacing bootstrap cumulants with

sample cumulants in the bootstrap expansion. Lahiri (1992) and Hall and Horowitz (1996) proposed

“corrected” bootstrap estimators that achieve asymptotic refinement and partially account for the
2For convenience and simplicity we will employ C and/or Ci, i = 1, 2, . . . to denote some finite constants that depend

on the specifics of the data generation process, but not on sample size, n. These constants may assume different values

at each appearance.
3An Edgeworth expansion is an approximation to the distribution function of a random variable. Under certain

assumptions Edgeworth expansion takes on the form of power series in n−r, where the first term is the standard Normal

distribution function and r depends on the type of a random variable. The power series form of an Edgeworth expansion

makes it a convenient tool for determining the size of the error made by an estimator of a finite sample distribution

function. See Hall (1992) for a detailed discussion on Edgeworth expansions.
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change in the dependence structure in the bootstrap sample. The corrected versions of bootstrap test

statistics are also used in this paper. The point of the correction factor is to make the exact variance

of the leading term of the Taylor series expansion of the bootstrap test statistic equal to one and to

do this without introducing new (bootstrap) stochastic terms that would affect the structure of the

Edgeworth expansion.

An enlightening fact to note is that one does not need correction factors in one-sided confidence

interval case to achieve asymptotic refinement through O(n−1/2) (see, for example, Lahiri, 1992,

Davison and Hall, 1993, Götze and Künsch, 1996, and Lahiri, 1996). The reason for this is that the

differences between the population and bootstrap variances of higher order terms of the Taylor series

expansions of the random variable of interest are of order smaller than O(n−1/2).

The solution method used in this paper was introduced in Hall (1988). A crucial prerequisite for

the usage of this technique is the existence of the Edgeworth expansions for the random variable of

interest. Götze and Hipp (1983, 1994) and Götze and Künsch (1996) give regularity conditions under

which the Edgeworth expansions exist for smooth functions of sample averages in the dependent data

setting. However, the method of solution of this paper involves terms that are not smooth functions

of sample moments. These terms are of the form (1/b)m
Pb
i=1(

Pl
j=1Xij/l)

m. At present time there

are no Edgeworth expansion results in the literature that apply to the statistics of above type in the

dependent data setting. Thus, the techniques used and results obtained in this paper are heuristic.

The paper is organized as follows: section 2 introduces the test statistics of interest, section 3 lays

out the main theoretical results, and section 4 concludes. This is followed by the appendix containing

the relevant mathematical derivations.
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2. Test statistics

Notation will largely follow that used in Hall, et al (1995) and Hall and Horowitz (1996).

2.1. Sample

The test statistics of interest in this paper are either normalized or studentized smooth functions of

sample moments of X̃ or sample moments of functions of X̃. Many test statistics and estimators

are smooth functions of sample averages or can be approximated by such with negligible error. Test

statistics based on GMM estimators constitute an example of the latter case (Hall and Horowitz,

1996, Proposition 1, 2).

Denote the data by X = (X1, . . . ,Xnfull), where Xi ∈ Rd is a d×1 random variable. Assume that

{Xi} is an ergodic stationary strongly mixing stochastic process and that EXiX 0
j = 0 if |i − j| > k

for some integer k < ∞.4 Set n = nfull − k. Define the sample as X̃ ≡ {X̃i : i = 1, . . . , n}, where

X̃i = {X 0
i, . . . ,X

0
i+k}0. We need to make this redefinition of the sample so that the consistent estimator

of the asymptotic variance is a smooth function of sample moments; specifically, the problem lies in

the cross-product components of the covariance estimator.

4Andrews (1991) proposes a non-parametric covariance matrix estimator, but it is not a smooth function of sample

moments and converges at a rate that is slower than n−1/2. Existing theory on Edgeworth expansions with dependent

data (Götze and Hipp (1983, 1994)) applies only to smooth functions of sampe moments. Note, also, that the above

restriction is not equivalent to the assumption of m-dependence. Lastly, this assumption is not as restrictive as it might

seem, because Xi, for example, can be equal to the GMM moment function. In that case the data can be dependent

with an infinite lag, given that some assumptions are satisfied (see Hall and Horowitz, 1996).
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2.2. Carlstein’s blocking rule

Let b, l denote integers such that n = bl. Carlstein’s rule divides the sample X̃ in b disjoint blocks,

where the kth block is Bk = (X̃(k−1)l+1, . . . , X̃kl) for 1 ≤ k ≤ b. According to the Carlstein’s rule

bootstrap sample X̃ ∗ is formed by choosing b blocks randomly with replacement out of the set of

blocks formed from the original sample and laying the chosen blocks side by side in the order that

they are chosen. Bootstrap sample X̃ ∗ then consists of {X̃∗i } = {(X∗
0
i , . . . ,X

∗0
i+k)

0 : i = 1, . . . , n}.

2.3. Normalized statistic

Let us denote the random variable of interest by UN = (θ̂ − θ)/s, where θ̂ = f(X̄), θ = f(E(X)),

s = (V (θ̂ − θ))1/2, V (·) is an exact variance, and f(·) : Rd → R is a smooth function of sample

moments of X̃ or sample moments of functions of X̃ .

Let U∗N denote the bootstrap equivalent of UN , where U
∗
N = (θ̂

∗ − θ̂)/s̃, θ̂∗ = f (X̄∗), and X̄∗ =

n−1
P
X∗i is the resample mean. Define s̃ = (V

0[θ̂∗− θ̂])1/2, where V 0[θ̂∗− θ̂] = E0(θ̂∗−E 0[θ̂∗])2. Here

E0[·] denotes the expectation induced by the bootstrap sampling, conditional on the sample, X̃ .

Next we define the Edgeworth expansions of UN and U∗N :

P (UN < x)−Φ(x)− n−1/2p1(x)− n−1p2(x) = o(n−1),

where p1(z) and p2(z) are even and odd functions, respectively, both of the functions are polynomials

with coefficients depending on cumulants5 of UN , and both are of order O(1).

P ∗(U∗N < x)− Φ(x)− n−1/2p̂1(x)− n−1p̂2(x) = o(n−1),
5Cumulants are defined as the coefficients of 1

j!
(it)j terms in a power series expansion of logχ(t), where χ(t) is the

characteristic function of a random variable and χ(t) = exp(k1it+ 1
2
k2(it)

2 + . . .+ 1
j!
kj(it)

j + . . .+).
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except, possibly, if X is contained in a set of probability o(n−1). Here p̂1(z) and p̂2(z) are the same

polynomials as above only the population cumulants of UN are replaced by sample cumulants of U
∗
N ,

and P ∗(·) is a probability measure (conditional on the sample, X̃ ) induced by the bootstrap sampling.

Let ki denote the ith cumulant of UN . Then,

n−1/2p1(x) = −k1 − k3
6
(x2 − 1)

n−1p2(x) = −1
2
k21x+

µ
k4
24
+
k1k3
6

¶
(3x− x3)− k

2
3

72
(x5 − 10x3 + 15x).

First four cumulants of UN have the following form (see Appendix):

k1 ≡ E(UN ) =
k1,2
n1/2

+
k1,3
n3/2

+O(n−5/2)

k2 ≡ E(UN − E(UN))2 = 1

k3 ≡ E(UN − E(UN))3 = k3,1
n1/2

+
k3,2
n3/2

+O(n−5/2)

k4 ≡ E(UN − E(UN))4 − 3(V (UN ))2 = k4,1
n
+O(n−2),

where ki,j’s are constants that do not depend on n and E(U
2
N ) = O(1) +O(n−1).

Define uα as P (UN < uα) = α. Inverting the Edgeworth expansion produces Cornish-Fisher

expansion:

uα − zα − n−1/2p11(zα)− n−1p21(zα) = o(n−1),

where 0 < ε < 1/2.6

Similarly, define ûα as P (U∗N < ûα) = α.7 Then for ε > 0,

ûα − zα − n−1/2p̂11(zα)− n−1p̂21(zα) = o(n−1),
6In the notation pij(·) (and later qij(·)), i denotes the term in the Cornish-Fisher expansion and j is equal to 1, if

uα is a percentile of a one-sided distribution, and 2, if it is a percentile of a two-sided distribution.
7A way to obtain an empirical estimate of ûα is to carry out a Monte Carlo experiment that consists of resampling
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except, possibly, if X is contained in a set of probability o(n−1). Here,

n−1/2p11(x) = −n−1/2p1(x)

n−1p21(x) = n−1/2p1(x)n−1/2p
0
1(x)−

1

2
xn−1p1(x)2 − n−1p2(x), (1)

with obvious modifications for p̂11(x) and p̂21(x).

Let us also introduce some notation for the two-sided distribution function of the normalized test

statistic. Noting that P (|UN | < x) = P (UN < x)−P (UN < −x) and that p1(x) is an even polynomial,

the Edgeworth expansions for |UN | and |U∗N | take on the following form:

P (|UN | < x)− 2Φ(x) + 1− 2n−1p2(x) = o(n−2),

P ∗(|U∗N | < x)− 2Φ(x) + 1− 2n−1p̂2(x) = o(n−2),

where the latter equality holds except, possibly, if X is contained in a set of probability o(n−2).

Define ξ = 1
2(1 + α), P (|UN | < wα) = α, and n−1p12(·) = −n−1p2(·). Inverting the population

Edgeworth expansion we obtain the following Cornish-Fisher expansion:

wα − zξ − n−1p12(zξ) = o(n−2),

where 0 < ε < 1/2. Equivalently, define P (|U∗N | < ŵα) = α and n−1p̂12(·) = −n−1p̂2(·), where p̂2(·)

is as p2(·) with population moments replaced by their sample equivalents. Then

ŵα − zξ − n−1p̂12(zξ) = o(n−2),

except, possibly, if X is contained in a set of probability o(n−2).

the original sample X̃ , calculating the bootstrap test statistic U∗N , and forming the empirical distribution of U∗N with the

desired level of accuracy. The αth quantile of the empirical distribution of the bootstrap test statistic is the empirical

estimate of ûα.
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2.4. Studentized statistic

The random variable of interest here is US = (θ̂ − θ)/ŝ, where ŝ2 is a consistent estimate of s2. The

functional forms of s2 and ŝ2 are:8

s2 ∼
dX
i=1

C2i · V (X̄i),

where V (X̄i) = γ(0)/n+ (2/n)
Pk
j=1 γ(j) · (1 − n−1j), γ(j) is the jth autocovariance of X, k is the

highest lag for non-zero covariance, f (·) : Rd → R, and Ci’s are constants that depend on function

f(·), but not on n. Also, X̄i is a sample mean of the ith argument of the function f(·). A consistent

estimator of s2 is given by:

ŝ2 ∼
dX
i=1

C2i · V̂ (X̄i),

where V̂ (X̄i) = n−2
Pn
j=1(Xij − X̄i)2+ (2/n)

Pk
m=1(1−n−1m)

Pn−m
j=1 (Xij − X̄i)(Xi,j+m − X̄i)/n and

Xij is the jth element of the sample from the ith argument .

The corrected bootstrap test statistic is U∗S = (ŝ/s̃) · (θ̂∗ − θ̂)/ŝ∗, where ŝ∗2 is the bootstrap

equivalent of ŝ2:

ŝ∗2 ∼
dX
i=1

C2i · V̂ (X̄∗i ).

Here V̂ (X̄∗i ) = n
−2Pn

j=1(X
∗
ij− X̄∗i )2+(2/n)

Pk
m=1(1−n−1m)

Pn−m
j=1 (X

∗
ij − X̄∗i )(X∗i,j+m− X̄∗i )/n, X∗ij

is the jth observation of the ith argument of f(·) in the block bootstrap sample, and X̄∗i is a sample

mean of the block bootstrap sample for the ith argument. The exact bootstrap variance of θ̂∗ − θ̂ is
8The following variances are expressed in terms of being asymptotically equivalent to something, because, in general,

the function f(·) in the random variable of interest, US , is not a linear function. To be able to evaluate the variance of

the random variable of interest, we have to linearize f(·) using Taylor’s theorem.
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denoted by s̃2:

s̃2 ∼
dX
i=1

C2i · V
0
(X̄∗i − X̄i)

=
dX
i=1

C2i
1

b

bX
j=1

(X̄ij − X̄i)2
b

=
dX
i=1

C2i
1

n2

bX
j=1

lX
k1=1

lX
k2=1

(Xijk1 − X̄)(Xijk2 − X̄),

where V 0(·) is the variance induced by block bootstrap sampling, X̄ij is the sample mean of the jth

block of the ith argument, Xijkm is the kmth observation in the jth block of the ith argument.

Note that the Taylor series expansions of US and U∗S have the following forms:
9

US = UN ×
1− ŝ2 − s2

2s2
+
3

8

Ã
ŝ2 − s2
s2

!2
+ op(n

−1)

 (2)

U∗S = U∗N ×
1− ŝ∗2 − ŝ2

2ŝ2
+
3

8

Ã
ŝ∗2 − ŝ2
ŝ2

!2
+ op(b

−1)

 ,
where the error in the second expansion holds conditional on the sample X , Di is a partial derivative

with respect to the ith element of function f(·), µi is the population mean of the ith random variable

in the vector X . The exact variances of UN and U∗N in the above two equations are equal to one.

Furthermore, first four cumulants of US have the same expansions and rates as the cumulants of UN

above with an exception of the second cumulant. The second cumulant of US is equal to 1+O(n−1).

With this change in the variance, the Edgeworth expansion, say, for US is:

P (US < x)−Φ(x)− n−1/2q1(x)φ(x)− n−1q2(x)φ(x) = o(n−1),

where

n−1/2q1(x) = −k01 −
k
0
3

6
(x2 − 1)

9The expansion of US, of course, is a theoretical construct, since in the studentized case it is assumed that we do not

know s2.
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n−1q2(x) =

Ã
−k

0
2,2

2
− k

02
1

2

!
x+

Ã
k
0
4

24
+
k
0
1k

0
3

6

!
(3x− x3) (3)

− k
02
3

72
(x5 − 10x3 + 15x),

k
0
i is the ith population cumulant of US , and k

0
2 = 1 + k

0
2,2/n+ o(n

−1). The functional forms of the

first two components of one-sided Cornish-Fisher expansion are defined as:

n−1/2q11(x) = −n−1/2q1(x)

n−1q21(x) = n−1/2q1(x)n−1/2q
0
1(x)−

1

2
xn−1q1(x)2 − n−1q2(x). (4)

The functional forms of n−1/2q̂11(·) and n−1q̂21(·) are the same as those of n−1/2q11(·) and n−1q21(·),

respectively, with population moments of US replaced by the sample cumulants of U
∗
S. Also, note

that the following equality holds for the first polynomial, n−1q12(·), in the Cornish-Fisher expansion

of the αth quantile of the two-sided population distribution function of the studentized test statistic:

n−1q12(·) = −n−1q2(·), with the obvious equivalent for the bootstrap case.

Note the difference between n−1p2(·) (introduced earlier) and n−1q2(·). Although the functional

forms of the polynomials in the Edgeworth and Cornish-Fisher expansions for the standardized and

the studentized statistics are the same (as functions of cumulants), some cancellations happen in the

normalized case, when we replace the second cumulant with its expansion. In the normalized case the

second cumulant is exactly equal to one, whereas it is equal to 1 +O(n−1) in the studentized case.

3. Main results

In this paper we have established the optimal bootstrap block lengths by minimizing the error in

the coverage probabilities of one- and symmetric two-sided block bootstrap confidence intervals of

normalized and studentized smooth functions of sample averages. Solution methods to the problems
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involving normalized and studentized statistics are very similar. Section 3.1 deals with the normalized

statistic, while the details of the solution to the case of the studentized statistic are discussed in section

3.2. Algebraic details of the important calculations can be found in the Appendix.

3.1. Normalized statistic

3.1.1. One-sided confidence intervals

Here we find the block length l that satisfies the following expression:

l∗ = argmin
l∈L

|P (UN < ûα)− α| ,

where L is the set of block lengths that are no larger than n and that go to infinity as the sample size

n goes to infinity.

Intuitively, the above probability should equal α plus some terms that disappear asymptotically

and are functions of l. The goal, therefore, is to find these approximating terms. We start out by

expanding the objective function from the above minimization problem:

P (UN < ûα) = P

·
UN − n−1/2(p̂11(zα)− p11(zα))− n−1(p̂21(zα)− p21(zα))

≤
2X
j=1

n−j/2pj1(zα) + zα + rN

 ,
where rN = o(n−1), except, possibly, if X is contained in a set of probability o(n−1). Let’s denote

n−1/2∆N ≡ n−1/2(p̂11(zα)− p11(zα)), SN ≡ UN − n−1/2(p̂11(zα)− p11(zα))− n−1(p̂21(zα)− p21(zα)),

and pij(·)’s are as defined in equation 1. By the application of the Delta method (see Appendix):

P (UN < ûα) = P (SN < x) + o(n
−1),

where x =
P2
j=1 n

−j/2pj1(zα) + zα.
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Now the objective is to develop the first four cumulants of SN as functions of cumulants of UN .

Then, using cumulants of SN , derive an Edgeworth expansion of SN as an Edgeworth expansion
10 of

UN plus some error terms. Lastly, evaluate the resulting expression at x =
P2
j=1 n

−j/2pj1(zα) + zα.

Denote the cumulants of SN by k
S
i . Then (see Appendix for details):

kS1 = k1 − n−1/2E(∆N ) + o(n−1)

kS2 = k2 − 2n−1/2E(UN∆N ) + o(n−1)

kS3 = k3 − 3n−1/2E(U2N∆N ) + 3n−1/2E(U2N )E(∆N ) + o(n−1)

kS4 = k4 − 4n−1/2E(U3N∆N ) + 12n−1/2E(U2N )E(UN∆N) + o(n−1),

where we have used the result that UN = Op(1), n−1/2∆N = Op(A1/21 ) and n−1(p̂21(zα)− p21(zα)) =

Op(A1/22 ) (see Appendix), and A1 = C1n
−1l−2 + C2n−2l2 and A2 = C3n−2l−2 + C4n−3l3. The rates

of A1 and A2 follow from Hall, et al (1995). Next, substitute these cumulants in the Edgeworth

expansion of SN . The resulting equation is:

P (UN ≤ ûα) = P (SN ≤ x) + o(n−1)

= P (UN ≤ x) + n−1/2E(∆N )φ(x) + n−1/2E(UN∆N)xφ(x)

+

µ
1

2
n−1/2E(U2N∆N)−

1

2
n−1/2E(U2N)E(∆N )

¶
(x2 − 1)φ(x)

+

µ
1

2
n−1/2E(U2N )E(UN∆N )−

1

6
n−1/2E(U3N∆N)

¶
(3x− x3)φ(x) + o(n−1).

Evaluating the above equation at x =
P2
j=1 n

−j/2pj1(zα) + zα and noting that P (UN ≤ x) = α +

O(n−1) does not depend on the block length, l, gives us the following objective function:

n−1/2
P3
i=0 E(U

i
N∆N )Ci + n

−1/2E(U2N )E(∆N )C4 + n
−1/2E(U2N)E(UN∆N )C5 + o(n

−1),
10In this paper we have not derived the regularity conditions under which this expansion exists.
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where n−1/2E(U iN∆N) ∼ n−1/2E(U2N)E(U
i
N∆N ), {i = 0, 1}. Thus, we are left with four terms:

n−1/2E(U iN∆N ), {i = 0, . . . , 3}. Appendix shows that these terms have the following orders:

n−1/2E(∆N ) = O(n−3/2l3/2) +O(n−1/2l−1)

n−1/2E(UN∆N ) = O(n−1l) +O(n−1l−1)

n−1/2E(U2N∆N ) = O(n−3/2l3/2) +O(n−1/2l−1)

n−1/2E(U3N∆N ) = O(n−1l1/2) +O(n−1l−1).

Therefore the error in the bootstrap coverage probability of a one-sided block bootstrap confidence

interval is: O(n−1l) +O(n−1/2l−1). The block length, l, that minimizes this quantity is proportional

to n1/4. Furthermore, the size of the coverage error is O(n−3/4), when block lengths proportional to

n1/4 are used.

3.1.2. Symmetric two-sided confidence intervals

The solution methods for one- and symmetric two-sided confidence interval cases are very similar.

Again, we are looking for the block length, l, that satisfies the following equation:

l∗ = min
l∈L

|P (|UN | < ŵα)− α| .

Note that ŵα − wα = n−1∆AN + o(n
−2), except, possibly, if X is contained in a set of probability

o(n−2), where n−1∆AN = n−1(p̂12(zξ) − p12(zξ)) and n−1p12(·) = −n−1p2(·). One can show (see

Appendix) that n−1∆AN = Op(A1/22 ), where A2 = C1n
−2l−2+C2n−3l3 and the rate of A2 follows from

Hall, et al (1995).

Then:

P (|UN | < ŵα) = P (|UN | < wα + n
−1∆AN + r

A
N)
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= P (|UN | < wα + n
−1∆AN ) + o(n

−2)

= P (UN < wα + n
−1∆AN)− P (UN < −wα − n−1∆AN ) + o(n−2),

where rAN = o(n−2), except, possibly, if X is contained in a set of probability o(n−2) and the sec-

ond equality follows by the Delta method (see Appendix). The next task is to develop cumulants of

UN −n−1∆AN and UN +n−1∆AN and substitute them in the Edgeworth expansion of P (UN −n−1∆AN <

wα) − P (UN + n−1∆AN < −wα). Following the steps of the solution method for the one-sided con-

fidence interval case, it is straightforward to show that the relevant error terms are: n−1E(∆AN ),

n−1E(U2N∆
A
N), and n

−1E(UN∆AN)E(UN), where n
−1E(UN∆AN)E(UN ) ∼ n−3/2E(UN∆AN ). The above

terms are of the following orders (see Appendix for the methods used):

n−1E(∆AN) = O(n−2l2) +O(n−1l−1)

n−3/2E(UN∆AN) = O(n−2l3/2) +O(n−2l−1)

n−1E(U2N∆
A
N) = O(n−2l2) +O(n−1l−1).

Thus, the error in the coverage probability of a symmetric two-sided block bootstrap confidence

interval is of orderO(n−2l2)+O(n−1l−1). The block length, l, that minimizes this error is proportional

to n1/3. The error then is of size O(n−4/3).

3.2. Studentized statistic

It is intuitively clear that the error rates of the coverage probability in the studentized case should

be the same as in the normalized case. The reason for this is that the Taylor series expansion of the

studentized test statistic is equal to normalized test statistic plus some higher order error terms (see

equation 2).
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The solution method for the studentized statistic case is very similar to that of the normalized

statistic. The derivation of the error terms is identical to the normalized statistic case for both,

one- and symmetric two-sided confidence intervals. The dominant error terms are: n−1/2E(U iS∆S),

{i = 0, . . . , 3} for the one-sided case and n−1E(∆AS ), n−1E(U2S∆AS ), and n−1E(US∆AS )E(US) for the

two-sided case, where n−1/2∆S = n−1/2(q̂11(zα) − q11(zα)) and n−1∆AS = n−1(q̂12(zξ) − q12(zξ)) (see

equation 4).

Let k
0
i and k̂

0
i denote the population and bootstrap cumulants of US and U

∗
S, respectively. Given

the structure of the polynomials q1(·) and q2(·) in equations 3 we see that the following error terms

have to be bounded; for one- sided case: E[U iS · (k̂
0
1 − k

0
1)], E[U iS · (k̂

0
3 − k

0
3)], {i = 0, . . . , 3}, for

symmetric two-sided case: E[U jS · (k̂
0
2−k

0
2)], E[U

j
S · (k̂

02
1 −k

02
1 )], E[U

j
S · (k̂

0
4− k

0
4)], E[U

j
S · (k̂

0
1k̂

0
3−k

0
1k

0
3)],

and E[U jS · (k̂
02
3 − k

02
3 )], {j = 0, . . . , 2}.

Notice that the above terms are dominated by their normalized statistic equivalents. This is easy

to see from equation 2, where we break down US and U
∗
S in UN and U

∗
N , respectively, times something

that is asymptotically equal to one. The only exception occurs in the case of the terms E[U jS ·(k̂
0
2−k02)],

{j = 0, . . . , 2}. In the normalized statistic case the exact variances of UN and U∗N are both equal to

one. Thus, the leading terms of k
0
2 and k̂

0
2 both cancel, and E[U

j
S · (k̂

0
2 − k

0
2)] is dominated by the

population and the bootstrap variances of the second brackets in equation 2. However, one can show

(see Appendix) that E[U jS · (k̂
0
2−k

0
2)] terms are either equal to or dominated by O(n−1l−1). It follows

that the error rates in the coverage probabilities of one- and symmetric two- sided block bootstrap

confidence intervals of studentized statistics are O(n−1l) + O(n−1/2l−1) and O(n−2l2) +O(n−1l−1),

respectively. Thus, the optimal block lengths and the coverage error rates are the same for both,

studentized and normalized cases, where the former are proportional to n1/4 and n1/3 for one- and
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symmetric two-sided confidence intervals, respectively.

4. Conclusions

In this paper we have established that the minimum error rates in coverage probabilities of one-

and symmetric two-sided block bootstrap confidence intervals are of orders O(n−3/4) and O(n−4/3),

respectively, for normalized and studentized smooth functions of sample moments. These rates are

attained, when the blocks for one- and symmetric two-sided block bootstrap confidence intervals are

proportional to n1/4 and n1/3, respectively. The above rates in the coverage errors are consistent with

Monte Carlo evidence of Hall and Horowitz (1996) and Hansen (1999). The reason for such slight

refinement over the asymptotic case is clear: the blocking damages the dependence structure of the

original sample, and even under the optimal blocking rate, the block bootstrap does not recover this

dependence sufficiently well.

Bühlman (1997, 1998) has suggested a promising alternative to blocking called ‘sieve bootstrap’,

which seems to work well under certain restrictions.

Appendix

Result 1 Derivation of the probability bounds for n−1/2∆N , n−1∆AN , and n
−1(p̂21(x)− p21(x)).

From Hall, et al (1995), we know that n−1E(p̂1(x)−p1(x))2 = O(A1), where A1 = C1n−1l−2+C2n−2l2.

Also, note that the probability rate of n−1/2(p̂1(x)−p1(x)) is the same as that of n−1/2(p̂11(x)−p11(x)),

since n−1/2p11(·) = −n−1/2p1(·) with the obvious modifications for n−1/2p̂11(·). Then by Chebyshev’s

17



inequality:

P (A
−1/2
1 n−1/2|∆N | > Mε) <

n−1E(∆N )2

A1M2
ε

≡ ε∗,

where Mε < ∞ and ε∗ can be made arbitrarily small. The latter statement is true, because

n−1E(∆N )2/A1 = O(1). Thus, A−1/21 n−1/2∆N = Op(1), i.e., it is bounded in probability.

To find the probability bound for n−1∆AN we use the result from Hall, et al (1995): n−2E(p̂2(x)−

p2(x))
2 = O(A2), where A2 = C1n−2l−2+C2n−3l3. Also, the probability rate of n−1(p̂2(x)−p2(x)) is

the same as that of n−1(p̂12(x)− p12(x)), since n−1p12(·) = −n−1p2(·) with the obvious modifications

for n−1p̂12(·). Then we follow the steps above to establish that n−1∆AN = Op(A1/22 ).

Lastly, to establish the probability bound of n−1(p̂21(x) − p21(x)), we note that the probability

rate of n−1(p̂2(x)− p2(x)) is the same as that of n−1(p̂21(x)− p21(x)) (this is not hard to show), and

then proceed as in the case above.

Result 2 Derivation of the cumulants of UN , SN , and UN ± n−1∆AN .

The derivation of the cumulants of UN depend on applying the Taylor series expansion to the random

variable of interest. We know that

UN =
n1/2(f(X̄)− f(µ))q
V
£
n1/2(f(X̄)− f (µ))¤ .

Note that V
h
n1/2(f(X̄)− f (µ))

i
= O(1). Then using the Taylor expansion with respect to X̄ around

µ:

n1/2(f(X̄)− f(µ)) =
dX
i=1

(Dif)(µ)n
1/2(X̄i − µi)

+
1

2

dX
i=1

dX
j=1

(DiDjf)(µ)n
1/2(X̄i − µi)(X̄j − µj) + op(n−1/2),

18



where the notation is as in equation 2. Then

E(UN) =
k1,2
n1/2

+
k1,3
n3/2

+O(n−5/2),

where ki,j are constants that do not depend on n. Here we have used the following equalities from

Hall, et al (1995):

E(X̄i − µi)2 =
γ(0)i
n

+
2

n

kX
j=1

(1− n−1j)γ(j)i (5)

E(X̄i − µi)3 =
E(Xi1 − µi)3

n2
+
3

n2

kX
j1=1

(1− n−1j1)E
³
(Xi0 − µi)(Xij1 − µi)2 (6)

+ (Xi0 − µi)2(Xij1 − µi)
´

+
6

n2

X
j2,j3≥1;

X
j2+j3≤k

(1− n−1(j2 + j3))E ((Xi0 − µi)(Xij2 − µi)(Xi,j2+j3 − µi)) ,

where Xij is the jth observation of the ith element of the vector X, γ(j)i is the lag-j covariance

of the ith element of the vector X. Also, we used the moment inequalities of Yokoyama (1980),

Doukhan (1994) (Remark 2, p. 30), Hölder, and a consequence of Hölder and Burkholder inequalities

(Hall and Heyde, 1980, eq. 3.67, p. 87). These tools will be used repeatedly, when we bound the error

terms in the coverage probability (see Results 4 and 5).

To derive higher order cumulants, use the Taylor series expansion, taken to the appropriate power.

The method of derivation of cumulants of SN and UN ± n−1∆AN is to derive them as sums of

cumulants of UN plus an error that is asymptotically equal to zero. Let’s demonstrate this for the

second cumulant of SN :

kS2 = E(SN )
2 − E2(SN )

= E(UN − n−1/2∆N − n−1(p̂21(zα)− p21(zα)))2

− E2(UN − n−1/2∆N − n−1(p̂21(zα)− p21(zα)))
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= k2 − 2n−1/2E(UN∆N ) + n−1E(∆2N ) + 2n−1/2E(UN )E(∆N )− n−1E2(∆N ) + o(n−1).

Using this method it is straightforward to derive cumulants of higher orders.

Result 3 Derivations involving the Delta method.

Here we will demonstrate the derivation of equality P (UN < ûα) = P (SN < x) + o(n−1). The

derivation of other equalities involving applications of Delta method are similar.

P (UN < ûα) = P (SN < x+ rN ),

where rN = o(n−1), except, possibly, if Y is contained in a set of probability o(n−1). That is,

P (rN 6= o(n−1)) = o(n−1). Therefore, as n→∞, P (m · |rN | ≥ ε, for some m ≥ n) = o(n−1), for all

ε > 0. This is equivalent to P (n · |rN | ≥ ε) = o(n−1) for all ε > 0, as n→∞. Then,

P (SN < x+ rN ) = P

Ã
Sn < x+ rN ,

∞[
n=1

∞\
m=n

{ω : m · |rN (ω)| < ε}
!

+ P

Ã
SN < x+ rN ,

∞\
n=1

∞[
m=n

{ω : m · |rN (ω)| ≥ ε}
!

≤ P

Ã
SN < x+ rN ,

∞[
n=1

∞\
m=n

{ω : m · |rN (ω)| < ε}
!

+ P

Ã ∞\
n=1

∞[
m=n

{ω : m · |rN (ω)| ≥ ε}
!

≤ lim
n→∞P (SN < x+ rN , m · |rN | ≤ ε, ∀m ≥ n) + P ({ω : rN (ω) 6= o(n−1)})

≤ P (SN < x) + o(n
−1).

Similarly we can show that P (SN < x+ rN ) ≥ P (SN < x) + o(n−1).

Result 4 Bounding of n−1/2E(U iN∆N ), {i = 0, . . . , 3}.
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(i)

n−1/2E(∆N) = n−1/2E(p̂1(x)− p1(x))

= E(k̂1 − k1) + C · E(k̂3 − k3).

Start with E(k̂1 − k1) and define β̂ ≡ E0(f(X̄∗)− f(X̄)), β ≡ E(f (X̄)− f(µ)), and k̂1 = β̂/s̃. Then

k̂1 =
β̂ − β + β

s

1− s̃2 − s2
2s2

+
3

8

Ã
s̃2 − s2
s2

!2
+ . . .


= k1 +

β̂ − β

s
− β

s

s̃2 − s2
2s2

− β̂ − β

s

s̃2 − s2
2s2

+
β

s

3

8

Ã
s̃2 − s2
s2

!2
+Op(n3/2A0),

where A0 = C1n−2l−2 + C2n−3l, s2 = O(n−1), β = O(n−1), β̂ − β = Op(A1/20 ), s̃2 − s2 = Op(A1/20 ),

E(β̂ − β) ∼ C1n
−1l−1 + C2n−2l ∼ E(s̃2 − s2), E(β̂ − β)2 ∼ C1n

−2l−2 + C2n−3l ∼ E(s̃2 − s2)2.

The last six bounds are from Hall, et al (1995). Also, note that β̂ − β ∼ (f 00(X̄)/2) · E0(X̄∗i −

X̄i)
2 − (f 00(µ)/2) · E(X̄i − µi)2 and s̃2 − s2 ∼ (f 0(X̄))2E0(X̄∗i − X̄i)2 − (f 0(µ))2E(X̄i − µi)2. Then

E(k̂1 − k1) ∼ C1n−1/2l−1 +C2n−3/2l.

Next bound E(k̂3 − k3):

k̂3 − k3 = E0
f(X̄∗)− f(X̄)q

V 0(f(X̄∗))
−E0

f(X̄∗)− f(X̄)q
V 0(f(X̄∗))

3

− E

f(X̄)− f (µ)q
V (f(X̄))

− E
f(X̄)− f(µ)q

V (f(X̄))

3

∼ C ·
Ã

E0(X̄∗i − X̄i)3
(V 0(X̄∗i − X̄i))3/2

− E(X̄i − µi)3
(V (X̄i − µi))3/2

!
.

Note that X̄ is a vector random variable and X̄i is a scalar random variable. Here we have used

Taylor’s theorem for vector-valued functions. By Hall, et al (1995):

E

Ã
E0(X̄∗i − X̄i)3

(V 0(X̄∗i − X̄i))3/2
− E(X̄i − µi)3
(V (X̄i − µi))3/2

!
= O(n−1/2l−1) +O(n−3/2l3/2).
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Therefore n−1/2E(∆N ) ∼ C1n−3/2l3/2 +C2n−1/2l−1.

(ii)

n−1/2E(UN∆N ) = E(UN k̂1)− k21 +C · (E(UN k̂3)− k1k3).

Since k̂1 = k1 + (β̂ − β)/s− (β/s) · ((s̃2 − s2)/2s2) +Op(n3/2A0),

E(UN k̂1) = k21 +
1

s2
E
³
(f(X̄)− f(µ))(β̂ − β)

´
+E

Ã
UN

β

s

s̃2 − s2
2s2

!
+ o(A3),

where A3 = C1n
−1l+C2n−1l−1. The rate of the error o(A3) stems from the following two considera-

tions. First, the terms covered by the error are farther out in the Taylor series expansion of k̂1 than

the terms left in the expansion, and therefore their rates are smaller than those of the terms left in

the expansion. Second, the error of the term n−1/2E(UN∆N) turns out to be O(A3). Next define

Y ≡ X − µ, i.e., Y is the demeaned random vector X. Some algebra:

(f (X̄)− f(µ))(β̂ − β) ∼ f 0(µ)(X̄i − µi)
"
f 00(µ)
2b

Pb
j=1(Xij − X̄i)2

b
− f

00(µ)
2

E(X̄i − µi)2
#

= C ·
µ
Ȳi
1

b
(Ȳ

(2)
i − Ȳ 2i )− Ȳi

1

b
E(Ȳ

(2)
i )

¶
+ C ·

µ
Ȳi
1

b
E(Ȳ

(2)
i )− ȲiE(Ȳ 2i )

¶
,

where Xij = (1/l)
Pl
k=1Xi,(j−1)·l+k, Ȳ

(k)
i = (1/b)

Pb
j=1(Xij − µi)k, and C = f 0(µ)f 00(µ)/2.

E
h
(f(X̄)− f (µ))(β̂ − β)

i
∼ C

b
E
h
Ȳi(Ȳ

(2)
i − Ȳ 2i )− ȲiE(Y (2)i )

i
=

C

b
E
h
Ȳi(Ȳ

(2)
i −E(Ȳ (2)i ))− Ȳ 3i

i
= O(n−2) +O(n−3l),

where the second equality follows from Taylor’s theorem and the last equality follows from the appli-

cation of inequalities of Yokoyama (1980), Doukhan (1994) (Remark 2, p. 30), and equation 6. By

22



noting that E[UN · (β̂ − β)/s] ∼ E[UN · (β/s) · ((s̃2 − s2)/2s2)], it follows then that E(UN k̂1)− k21 =

O(n−1) +O(n−2l).

Let us examine E(UN k̂3)− k1k3. From Hall, et al (1995), k̂3 = k3+(l
1/2/n1/2)kl3− k3+Op(A1/24 ),

where A4 = C1n−1l−2+C2n−2l2 and kl3 is the third cumulant for a sample with l observations. Then

E(UN k̂3)− k1k3 ∼ k1

Ã
l1/2

n1/2
kl3 − k3

!
+ E (UNRN )

=
k1
n1/2

· O(l−1) +O(n−1l)

= O(n−1l−1) +O(n−1l),

where RN = O(n−1/2l2)
³
Ȳ
(3)
i − E(Ȳ (3)i )

´
+O(n−1/2l)Ȳi+O(n−1/2l)

³
Ȳ
(2)
i −E(Ȳ (2)i )

´
. The first part

of the second line of the above equation follows from Hall, et al (1995), and the second part of the

second line follows from inequalities of Yokoyama (1980), Doukhan (1994) (Remark 2, p. 30), and

equations 5 and 6.

Thus, n−1/2E(UN∆N) = O(n−1l) + O(n−1l−1). Following methods developed above we can

establish that n−1/2E(U2N∆N ) = O(n−3/2l3/2) + O(n−1/2l−1) and n−1/2E(U3N∆N ) = O(n−1l1/2) +

O(n−1l−1). Therefore the error in coverage probability of the one-sided confidence interval is equal

to O(n−1/2l−1) +O(n−1l).

To obtain the rate of the error in coverage probability for the symmetric two-sided confidence

interval, we have to bound the following terms: n−1E(∆AN), n
−3/2E(UN∆AN), and n

−1E(U2N∆
A
N ). Ap-

plying the methods above we can show that n−1E(∆AN ) = O(n−2l2) +O(n−1l−1), n−3/2E(UN∆AN) =

O(n−2l) +O(n−2l−1), and n−1E(U2N∆AN ) = O(n−2l2) +O(n−1l−1).

Result 5 Bounding of E
h
U jS · (V 0(U∗S)− V (US))

i
, {j = 0, . . . , 2}

E
£
V 0(U∗S)− V (US)

¤ ∼ C · E
E 0

Ãf 0(X̄)(X̄∗i − X̄i)
s̃

!2
ŝ∗2 − ŝ2
2ŝ2


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− E

Ãf 0(µ)(X̄i − µi)
s

!2
ŝ2 − s2
2s2


∼ O(n)E

n
E0
³
(X̄∗i − X̄i)2(X̄∗(2)i − X̄(2))

´
−E

³
(X̄i − µi)2(X̄(2)

i −E(X2
i ))
´o

+ O(n)E
n
E0
³
(X̄∗i − X̄i)2(X̄∗2i − X̄2

i )
´
−E

³
(X̄i − µi)2(X̄2

i − µ2i )
´o

∼ O(n) · E
n
E0(X̄∗i − X̄i)3 − E(X̄i − µi)3

o
+ O(n) · E

½
1

b3
E(X̄ij − X̄i)4 − E(X̄i − µi)4

¾

∼ C · E
 l2n

bX
j=1

(X̄ij − µi)3
b

− nE(X̄i − µi)3


= C ·
Ã
l2

n
E(X̄ij − µi)3 − nE(X̄i − µi)3

!
,

where E0
¡
X̄∗ − X̄¢3 = (1/b2)

Pb
i=1(X̄i − X̄)3/b, s2 = O(n−1), and the rest of the notation is as in

Result 4. Then by equation 6 we have that l
2

nE(X̄ij −µi)3−nE(X̄i−µi)3 = O(n−1l−1). Using above

methodology it is straightforward to show that the terms E
h
US · (k̂02 − k02)

i
and E

h
U2S · (k̂02 − k02)

i
are dominated by the term E

h
k̂02 − k2

i
.
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