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1. Introduction. In this paper, we define, and investigate the properties
of the strong Borel-type methods [B\ a, β]p, [B, a, β]p, which, when the
index p = l, reduce to the methods [B\ a, β], [B, a, β] considered in [1]. We
use * to designate generalization of theorems, lemmas and definitions of [1]:

e.g. Theorem 3* is a generalization of Theorem 3 of [1].
Suppose that σ, an {n = 0,1, ) are arbitrary complex numbers, that

a > 0, that β is real and that Λr is a positive integer greater than —β/oί.
Whenever q > 1 , q denotes the number conjugate to q, so that

Let x be a real variable in the range [0, oo): in all limits and order
relations involving x, it is to be understood that x —> oo.

Let

and define Borel-type sums

0 0

 r«n+/3-l

^ T(an+β)

It is known that the convergence of either series for all x ^ 0 implies the
convergence, for all x Ξg 0, of the other.

Borel-type means are defined by

Aa>β(x) = j o e^aa,β(t) dt Sa>β{x) = ae~
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Borel-type methods are defined as follows:

1. Summability:

(i) If Aatβ(x) -> σ>, we say that sn ->σ(B\a,β\
(ii) If Sa>β(x) -+ σ, we say that sn -> σ(B, a, β).

3*. Strong summability with index p:

(i) If

[ e*\Aa.β-ι(t)-σjr\'dt = o(e*),

we say that sn -> σ[B', a, β]p.

(ii) If

Jo

we say that sn -> <r[B, a, β]p.

We assume henceforth that the series defining aa>β(x), sa>β(x) are convergent
for all x ^ 0, and, since the actual choice of N in the definitions is clearly
immaterial, that aN + β7^2. The functions aΛiβ{x), aa,β-\(x)9 satβ(x) and sUiβ-λ{x)
are then all continuous for x i^ 0. Further, we assume, without loss of
generality, that α0 = ax = = aN-χ =• 0, so that σN = σ*.

Given a function f(x\ we write for δ > 0

whenever the integral exists in the Lebesgue sense.

2. Preliminary Results.

LEMMA A. Suppose that fit) is a non-negative function, integrable L
in every finite interval (0, x\ that a > 0 and that cc+β > 0. Then

if and only if

Γ
Jo
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This can readily be proved by integration by parts.

LEMMA B. If f(t) is non-negative and integrable Lp in every finite
interval (0, x\ where ρ> 1, the?ι, for 0 < δ < 1/p and q = p/(l-δp), fδ(t)
is integrable Lq in every finite interval (0, x) and

1/Q

where K is a constant independent of x.

For a proof, see [2], page 290, Theorem 393.

LEMMA 5^. 7/ /*(£) ί5 integrable Lv in every finite interval (0, x\
where p^l, and

then, for q^p and δ > , fδ(x) is integrable LQ in every finite
p q

interval (0, x), and

Γ
I I/β(0\ Q dt = o(eqx).

Jo

PROOF. Let 0 < /* < 1, — = 1 — 1 , so that (δ-l)λ > - 1 . Using
λ p q

Holder's inequality twice, we obtain that

(x)\»^tj* \f(u)\(x-uriduY

= Jo

1 ί»χ \p/q I px \I-P/Q

-\Ja \f(u)\-(x-ur-^e-^dή \J9 \f(u)\>e-»*du

1) The second integral does not appear when p— 1.
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where, since (δ—l)λ> — 1, K is finite and independent of x\ whence in view
of Lemma A with cc — q, β = —μq,

\fδ(x)\Q = O le"**^-rtci-M)» Γ I f(μ)I* (χ-uy
δ-1)λe-pιιudu) .

Thus

ί I fait) IQ e"{p-Q)t dt = o[\ \βμ) \p e~^u du f ( t - u y δ ~ 1 ) λ e v μ t dt)
JO . \Jθ Ju ]

= olj \f(μ)\'du\=o(e")

since (δ —l)λ > — 1, and so, in view of Lemma A with oί = py β = q—p,

f \M)\α dt = o(e«*) .
Jo

This completes the proof of Lemma 5*.

3. Theorems. This section is divided into two parts. The first contains
theorems concerning relations between methods of the same type : that is
between "B" methods or between " B " methods. The second contains
theorems giving interrelations between "B" and " B " methods.

3.1. To each "J3" theorem stated in this section, there corresponds an
exactly analogous "JB" theorem which can be proved by replacing "2?" by
" £ ' " , V by W and "Sα,άx)" by "AαA*)" respectively in the appropriate
proof outlined below.

THEOREM 3*. // sn -> σ[B, ct, β]q then sn -> σ(B, 0L,β-S) wlwre q>l and

PROOF. Assume without loss of generality, that σ = 0. Let 0 < θ < 1.
Using Lemma A with a = q, β = —θq, we obtain that
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\Γ(l-S)sa,β-δ(x)\ =

p-θqt

= o lew If efiK'-Vu-* du\ j

(since δg < 1, f e"**" υr** du < oo), and so it follows that sn ->0(B, a, /3-δ).

This completes the proof of Theorem 3*.

THEOREM 5*. If sn -> σ(β, Λ, /8) ίΛ^i 5W -> <τ[B, a, β+ΐ\q where q>0.

This follows immediately from the definitions.

THEOREM 9*. If sn-> σ[B, a, β]p then sn -• σ[B, a, β + δ]q provided

i) p>q>0, 8 = 0,

or ii) g ^ ^ ^ l , ^

or iii) g > / > > ! , δ = —- —
p q '

PROOF. Using Holder's inequality, we obtain, for p> q > 0, that

J β Ί 5 β l f l - χ ( ί ) - σ | « Λ ^ J β t | 5 β , f l _ 1 ( ί ) - σ | » Λ | | J β e * Λ

from which case (i) follows.
Case (ii) can readily be proved by means of Lemmas A and 5*, and case

(iii) by means of Lemmas A and B. The final theorem in this section
exhibits an exact relation between the strong and ordinary methods; it can
be proved in a similar way to Theorem 11 of [1] by using Minkowski's
inequality instead of the triangle inequality.

THEOREM 11*. For q>l, sn -» σ[B, a, β]q if and only if sn -> σ(B, a, β)



ON BOREL-TYPE METHODS, II 237

and

f
JO

3.2.

THEOREM 15*. For q > 1, sn —><ή_B, a, β]Q if and only if sΏ

THEOREM 18*. For g > 1, sn-+o{B', a, β]q if and only if sn -> σ[B, a,β + l]q.

Proofs of these theorems can be constructed from the proofs of Theorems
15 and 18 of [1], by using

i) Theorems 3*, 11* instead of Theorems 3, 11 of [1],
ii) Lemma A to give equivalent statements about means and sums,

e.g. ί et\Satf£t)\qdt = o(e*)
Jo

if and only if

f \sa,ftf)-satβ-1(t)\*dt = o(e«*y,Jo

iii) Lemma 5* with p= q instead of Lemma 5 of [1],
iv) Minkowski's inequality instead of the triangle inequality,
v) (applicable only to the proof of Theorem 18*), Theorem 15* instead of

Theorem 15 of [1].
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