
ON BOUNDED ANALYTIC FUNCTIONS

ZEEV NEHARI

The objective of this paper is to give an alternative derivation of

results on bounded analytic functions recently obtained by Ahlfors

[l] and Garabedian [2].1 While it is admitted that the main idea to

be used is more in the nature of a lucky guess than of a method, it

will be found that the gain in brevity and simplicity of the argument

is considerable. As a by-product, we shall also obtain a number of

hitherto unknown identities between various domain functions.

The basic problem treated in the above-mentioned papers is the

following generalization of the classical Schwarz lemma: Given a

finite schlicht domain D of connectivity n (w=l) in the complex z-

plane and a point f in D, to find a function F(z) with the following

properties: (a) F(z) belongs to the family B of analytic functions /(z)

which are single-valued and regular in D and satisfy there |/(z) | = 1;

(b) I F'(f)| ^ |/'(f)|, where/(z) is any function in B. Evidently, it is

sufficient to solve this problem for any domain D' which is con-

formally equivalent to D. In particular, we may therefore assume,

without restricting the generality of what follows, that D is bounded

by analytic curves.

It was shown by Ahlfors that F(z) yields a (1, n) conformal map-

ping of D onto the interior of the unit circle and that n — 1 of the n

zeros of F(z) coincide with the zeros of a single-valued function h(z)

which is regular in D with the exception of a simple pole at z = f

and satisfies — ih(z)dz>0 on the boundary r of D\ the nth zero of

F{z) is located at z = f. It was subsequently noticed by Garabedian

that the function ä(z) can be written in the form h{z) = F{z)q{z)

where q(z) — (z — f)-2 is regular in D and that the extremal property

of F(z) can be deduced in a very elegant manner from the resulting

inequality

1
(1) — F(z)q(z)dz> 0, *t=T.

t

Indeed, if /(z) is in B and is continuous on T, we have, by the residue

theorem,

I/'(f) I - hr: f /(*)«(«)& = T- f I = r~ f I
I 2tti j r lit j t lit j v

Received by the editors October 19, 1948 and, in revised form, January 8, 1949.

1 Numbers in brackets refer to the references cited at the end of the paper.
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= — f F(z)q(z)dz = m
2ttj J r

where (1) and the fact that, on T, \ F(z) \ = 1 have been used.

The inequality (1) not only solves the problem stated above but, as

likewise shown by Garabedian, it may also be used in order to estab-

lish the connection between F(z) and the Szegö kernel function [4] of

D. This connection, in turn, leads to a possibility of effectively com-

puting F'({) in terms of a certain complete orthonormal system of

functions in D.

Everything depends therefore on the proof of the existence of two

functions F{z) and g(z), where q(z) has the required double pole and

|.F(z)| =1 on T, such that (1) is satisfied for z£I\ We shall carry

through this proof by giving, with the help of an allied simple ex-

tremal problem, a construction of these functions in terms of the

Green's function and the harmonic measures of D.

We use the following notations: p(z)=p(z, f)=g(z, £)+ih(z, f)

denotes the analytic function whose real part is the Green's function

g(z, f) of D, that is, the harmonic function which is regular in D,

apart from the point z = f where g(z, D+log \ z — f | is regular, and

vanishes for z£D. w,(z)=u,(z)-{-iu>*(z) denotes the analytic function

whose real part is the harmonic measure «„(z) of the boundary com-

ponent r, (V = l, 2, • • • , n), that is, that harmonic function which is

regular in D, is equal to 1 for z(EI\ and vanishes on all the other

boundary continua. We further use the notations u(z)=u(z, f)

= dp(z, $)/dlv(z)=v(z, f) = (l/i)3p(z, f)/dr,, r = £+i*?. It is easily
confirmed that, with the exception of a simple pole of residue 1 at

z = f, both m(z) and v{z) are free of singularities in D and that,

furthermore, Re {u(z, f)} = Im {v(z, {")} =0 for zeEI1.

Since the real parts of the functions p(z), w,(z), w(z), iv(z) are con-

stant on r, the differentials

1 1 1
— p'(z)dz,   — w', (z)dz,   — u'(z)dz, v'{z)dz
i i i

are real there. The same is therefore also true of a linear combination

1
— t{z)dz
i

(2) 1  T n-l -1

= — j^cos 2X«'(z) -f i sin 2X»'(z) - ap'(z) + £ M»*>»' 00 J dz

with real X, a, pi, ■ ■ ■ ,        Since T consists of analytic curves, the
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functions u(z), v(z), p(z), w,(z) are regular on T—an immediate conse-

quence of the Schwarz reflection principle. It is further well known,

and easily proved, that ip'(z)dz is not only real but also positive on

T. If, in (2), X, fit, • * -• , Hn-i are kept constant and a (a>0) is taken

large enough, the differential t(z)dz will therefore satisfy

1
(3) — t(z)dz = 0, z e r.

i

We now pose the following extremal problem: For given X, to find

the differential (2) which minimizes a under the condition (3). It was

shown by the author [3] that this problem has a solution, say

i-%(z)dz, and that the function t\(z) belonging to this extremal dif-

ferential has a double zero on each boundary component T„ v

= 1, 2, • • • , n.

It is readily confirmed that, in the vicinity of z = f, the function

/x(z) has the expansion

(4) t\(z) —-h regular terms.
(z - f)2    z - f

We shall now show that h(z) is free of zeros in D. In view of (3), the

expression h(z)dz does not change its argument if z describes the

boundary T of D. If A arg t\ denotes the total change of the argument

of t\ along r, and A arg dz has a similar meaning, we have therefore

A arg t\ = — A arg dz.

Since A arg dz= — 2ir(» — 2), it follows that

1
(5) — A arg t\ — n — 2.

2ir

By the argument principle, this is equal to the number of zeros of t\

in D minus the number of its poles there, plus a contribution of 1/2

for each zero of t\ on T. Since fx has n double zeros on T and a double

pole at z = f, it follows from (5) that fx has no zeros in D and, more-

over, that t\ does not vanish on T at points different from the n double

zeros already located.

Our next step is to prove that the function

(6) <rx(z) = (l\(z))in =-h regular terms
z - f

is single-valued in D. For this purpose we have to show that, in addi-

tion to the fact just established that <rx(z) has no zeros in D, the argu-
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ment of the function ox(z) returns to its initial value if z describes a

boundary component Y, (V = l, • • • , n) of D. This is equivalent to

showing that the increment of arg t\ along T, is an even multiple of

2ir. That this is indeed the case is easily shown as follows: If we start

from the point on T, at which the double zero of t\ is located and

describe V, in the positive sense with respect to D, the total variation

of arg t\ is, in view of (3), equal to the negative value of the total

variation of arg dz, that is, it is either 2ir or — 27r. At the double zero

of t\, arg /x jumps by 2ir. The variation of t\ along the whole of T,

is therefore either 0 or 4-tt. Hence, the function <rx(z) defined in (6)

is indeed regular and single-valued in D.

We now introduce two functions K\(z, and L\(z, by the defi-

nitions

(7)

K(z, f) = A-x(z, f) =-(<rx + icx+*n)

L(z, f) = ix(z, f) = — (<rx - io-\+i/2).
4irt

Both functions have also been written without the subscript X, in

anticipation of the fact—to be proved further below—that they are

independent of the parameter X. It is easily confirmed that K(z, f)

is regular in D and that L(z, f) has a simple pole at z = f with the

residue (27r)-1.

For zEr, the two functions K{z)=K{z, f) and L(z)=L(z, f) are

connected by the relation

1
(8) —L(z)dz = K*(z)ds,

i

where ds= \ dz\ is the length element on T.2 We shall prove (8) by

showing that both the arguments and the absolute values on both

sides are equal. We have, by (6), (7) and (3),

1 1      t 2
(9) — K(z)L(z)dz = -— Ox + o-x+T/2)dz ̂ 0,

l l07T2

whence

1
arg — L(z)dz = — arg K(z) = arg K*(z) = arg K*(z)ds,

i

which shows that the arguments are equal. Again by (7), we have

* The asterisk denotes conjugate complex quantities.
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K{z)
(10) m
In view of (3) and (6), we have

(id —= A,   . =qGr-J-\0'X+t/2/ (l/i)/x+t/2&

As a result, ^xo^/Vx/a is real on T, whence, by (10), |AX-1| =1 for

z£F This completes the proof of (8).

As a first application of (8), we shall show that K(z) and L(z) are

independent of X and that we were therefore justified in dropping

the subscript X in (7). For suppose there are two different pairs of

functions K~i, Li and K2, Z2 belonging to different values of X. Obvi-

ously, the function L\ — Li is regular in D+T, whence, by Cauchy's

theorem,

[LiC«) - £,(«)][£iC0 - Ki(z)]dz = 0.
1 r

In view of (8), this is equivalent to

Ki(z) - K2(z)\*ds = 0,

whence K~i(z) =K2(z) on T and therefore throughout D. The identity

Li(z) =L2(z) follows by another application of (8).

The fact that both K{z) and L(z) are independent of X leads to an

interesting identity. With the notations

(12) o-(z) = <70(z),      t(z) = <rT/2(z)

we have, by (7),

e^io-x + iVx+,/2) = <r + ir

<ra(<rx — icx+t/2) = a — %t

whence

(13) (Tx(z) = cos X<r(z) + sin Xr(z).

Consider now the function

T(z) = <r(z)/r(z).

By (11) and (12), T(z) is real on T. At interior points of D, T(z) can-

not be real. Indeed, suppose T(z) = — tan X0, where X0 is an arbitrary

real number between — 7r/2 and x/2. This would entail cos Xo<r(z)
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+sin Xor(z) =0. By (13), this would mean that o^z) has a zero in D,

which further above was shown not to be true. The same argument

also shows that every real value is taken by 77(z) on T exactly n

times, this being the number of zeros of r/x(z) on T. Since 77(z) is real

on T but at no interior point of D, it follows therefore that w = T(z)

maps D onto an n times covered half-plane which is bounded by the

real axis. If, in (6), the positive value of the square root is taken, we

have, by (6) and (12), 77(f) = —*, which shows that w— 77(z) yields a

(1, n) mapping of D onto the lower half-plane, Im{w>} <0. Conse-

quently, the function

T(z) + i <r(z) + Mz) K{z)
(14) F(z) =-^—— =- = —

T(z) — i <j{z) — tV(z) L(z)

yields a (1, n) mapping of D onto the unit circle. This, together with

(9) and the argument principle, incidentally shows that K(z) has

n — 1 zeros in D and that L{z) is free of zeros there.

If we introduce the function q{z) by

(15) q(z) = 4tt2L2(z)

we have, by (14) and (9),

1 47T*
(16) —F{z)q{z)dz =-K(z)L(z)dz ^0, z G T.

i i

Comparison of (16) with (1) shows that F(z) and q(z) are identical

with the functions F(z) and q{z) introduced there, provided we can

show that the principal part of q(z) at z = f is (z —f)-2. This is in-

deed the case. For suppose the principal part of q(z) at this point is

(z — f)_2+7(z — f)-1. By the residue theorem and in view of |F(z)|

= 1 (z£r), we have

y -—- { q(z)dz = —f F*(z)F(z)q(z)dz.
2ti J r 2iri J r

By virtue of (16), this may also be written

7* = —. f F\z)q(z)dz.
2iri J r

Since F(z) has a zero at z = f—originating from the simple pole of

L(z)—the integral at the right-hand side vanishes by the Cauchy

theorem, whence 7 = 0. This completes the proof of the identity of the

functions F(z) and q(z) with the functions—denoted by the same

symbols^—introduced at the beginning of this paper.
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It was shown by Garabedian that the function (2ir)~1F(z) [q(z)]Vi

is identical with the Szegö kernel function [4] of D. In view of (14)

and (15), this function is identical with K(z). The identity of K(z)

= K(z, f) with the Szegö kernel function is also easily shown with the

help of (8). Indeed, if /(z) is a function which is regular and single-

valued in D and continuous in D-\-T, we have, by (8) and the

Cauchy theorem,

(17) /(f) = 4" ff(z)L(z)dz = f K*(z, fif(z)ds,
i J r J r

and this relation is characteristic cf the Szegö kernel function.

The Szegö kernel function K(z, f) can be effectively computed in

terms of a certain complete orthonormal set of functions [4]. If

K(z, f) is known, L(z) =L(z, f) can also be immediately determined.

We have, by (8) and the residue theorem,

K*(t,fidst     1  r L{t,fidt       1     , „ r; ,
=-h 2tt£(z, fi,

r K*(t, fids, = j_ f ?.

Jr     t — z i Jt    t —

whence

1        r K*{t, fids,
(18) 2wL(z, fi =-+ j •

z — f    Jt    t — z

Once the kernel function is known, we are thus in a position to de-

termine explicitly the functions F{z) and q(z), as well as the functions

<Tx(z) mentioned before.

If we combine (2), (6), (7), (13), (14), (15), (18), a large number of

interesting identities connecting K(z), L(z), F{z), q(z), ox(z) with the

Green's function and the harmonic measures can be obtained. As an

example, we prove the identity

2irK(z, fiL(z, fi £5}

Ä(r, f; i-i

where, as in (2), Re {p(z, f)} is the Green's function of D, Re {w„(z)}

the harmonic measures of T, (v = l, • • • , n — 1) with respect to D,

and the c, are suitable real constants. Indeed, by (9), (6), (2), and

(12)

2*K[p, fiL(z, fi     <r2(z) + r2(z)

K(fi fi 8*K(fi fi
= Cp'(z, fi + zZc,wl{z),

where C, c\, c2, • • • , c„-i are constants. Since the residue of the simple
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pole of L(z, f) at z = f is (27r)-1, the value of constant C is immedi-

ately seen to be 1. This completes the proof of the identity (19).

The constants c, in (19) can be expressed in terms of the harmonic

measures o>„(z), their periods P„, with respect to the boundary com-

ponents r„, and the kernel function. By (8), we have

f K{z, f)Z.(z, fidz = f  I K(z, f) \»di.

On the other hand,

p\z, fidz = 2jria>,(s-)

and

w', (z)dz = 27riPM,.

In view of (19), the constants c, are therefore the solutions of the

system of linear equations

im, r)]-1 f I k(z, f) \>ds = «„(f) + Eu, p = i, ••,«-1.
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