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On Bounding \\A   ! 11M for Banded A

By Stephen Demko

Abstract.  Upper bounds for \\A     II x in terms of inverses of certain submatrices are ob-

tained for band matrices. An application to a problem in spline theory is made.

1. Introduction. Aside from arguments arising from Gerschgorin's theorem or

from the Neumann series, there seems to be little known about how to bound the norm

of the inverse of an N x N matrix.   Varga [9] has obtained some extensions of these

methods. In several papers, [2] and [3], for example, de Boor has used the fact that the

inverse of a totally positive matrix is a "checkerboard" matrix to obtain bounds for spe-

cific matrices. In the case of Hermitian matrices, lower bounds on the moduli of the

elements of the spectrum yield upper bounds on the spectral norm of the inverse. Gen-

erally speaking, however, if a matrix is not strictly diagonally dominant, it is not easy to

bound its inverse (if it has one).

In this paper we show, essentially, that if A is a band matrix having nicely condi-

tioned diagonal subblocks, then A itself is nicely conditioned. This result can be viewed

as a generalization of the fact that a diagonal matrix is invertible if and only if each of

its 1 x 1 diagonal submatrices is invertible. Although our result does not give as sharp

bounds as the traditional methods, it can be used (with the aid of a computer) in cases

where the diagonal dominance arguments do not apply. As an example, we shall bound

the inverse of a specific seven-diagonal Toeplitz matrix of arbitrary size simply by

knowing the inverse of a 9 x 9 subblock.  We also apply our result to a problem in

spline approximation and, thereby, extend some results of [6].

Unless stated otherwise all matrices will be N x N (i.e., finite). The usual coordi-

nate vectors will be denoted by e(:= (0,0,... ,0,1,0,..., 0)T, so that x G C^ has the

expansion x = 2j x(.e¿. We use the usual inner product <x, y):= 2 x¡y¡ and the usual def-

initions for the vector norms II- II   and the operator norms 11-11  , 1 <p <°°, (cf. [7], for

example). We use capital letters to denote matrices and lower case letters to denote the

entries. If Q = (q¡,), then Q* = (q,t) and (Qx, y) = (x, Q*y) for all x, y G C^. If A is a

nonempty subset of N:= {1, 2,..., N} and if A isanA^ x A^ matrix, then AE = (a¡j)

will denote theN x Nmatrix with a¡, = a¡,, if /' and/ are in E and a¡, = 0 otherwise. IE

will be the diagonal matrix with diagonal entries q¡¡ = 1, if / G E, qu = 0, if i ̂  E. A =

(af ■) will be said to have bandwidth k, if a» = 0 for \i -j\>k.
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2. Main Results. Our main result is

Theorem 1. Let B = (£,■■) be an N x N matrix with bandwidth k. Suppose that

for each i G N there exists an integer interval F CN containing i such that BE is invertible

in the sense that (BEYlBE = IE, where E:= {/ G N: 1/ - /I < kfor all /G F}. Let v(i) be

the ith row ofB~E and assume that

d.- := Z
(l6f

2       if**,
j&E\F

< 1.

77ien, B is invertible and

l|JfT1IL<max  Z  Itf 1/(1-^).
i     /SF

Proof Fix i, and let x G ÇT. Note that for / G F, (Bx), = (BEx)¡; it is here that

we use the bandedness. Now

¡n

x,. = (B-¿BEx\ = Z vf\BEx), = Z tf (Ax), +   £    if Z  V«-
/eE /£F jGE\F n=E

Therefore,

Ix,.i<iiaxIL Z lifi + l*L Z     Z   if*

Consequently, since i was arbitrary and by the assumption on the d^s

Il x II m < Il B IL max Z   lof01/(1 ~ d¡).    Q.E.D.
i     jGF

Remarks.  1. Merely the invertibility of the A^'s is not enough to assure the in-

vertibility of A.  For example, if B is the tridiagonal skew-symmetric matrix with general

row of the form-1 0 1, then B is invertible if and only if its order (i.e., N) is even. So

B can have lots of invertible subblocks, BE, of arbitrarily large size and still not be in-

vertible itself. Of course, the invertible subblocks have bad condition numbers.

2. The result of Theorem 1 becomes an equality, if A is a diagonal matrix for in

this case one can take k = 0, and F = {i}, i G N. For tridiagonal matrices with general

row of the form 1 a 1 and 11 - al >\/5, Theorem 1 furnishes the bound llß^1 IIM <

(lal - 2 - 4la-11)-1 with F = {/} and N arbitrary as simple calculations show. This is

not as sharp as the (sharp) bound IIA-1 II„ < (lal - 2Ï"1 for lal > 2 obtained by diagonal

arguments; but it is asymptotically correct as lal —► °°.

3. It is possible to get results in other /  norms, but they do not appear to be very

useful. For example, using

\Xi\"=    Z if (A*), +   Z    if  Z   b,nxn
/£F j<EE\F nSE

summing on i and applying the standard inequalities, we get

Up
llxllp < IIAcllp{r^r—^u-^-rr-
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where p-1 + q~l = 1. Hence, in order to get anything useful we must assume that

^/(^/eE\F 'ul\ bin \qylq < 1. The condition of the theorem seems easier to verify.

In addition, from [7, Corollary 2.4] we know that for banded matrices HA-1 llp can

be bounded in terms of II A-1 II „ independently of N.

4. We have stated our result for N x N matrices, but it is not hard to see that

it also holds for infinite matrices acting on /   spaces if we assume that we have an

onto mapping.

Example.   Let B denote the seven-diagonal Toeplitz matrix of arbitrary size

satisfying the following for all i, j:

18,

10,

aij = 4>

aU 1,

if I/-/I = 1,

if li-/I = 2,

if I/-/I = 3.

In this case the bandwidth is k = 3.  Let BE he the 9 x 9 matrix of this form.  We

take F to be of the form {i - 1, /, i + 1} so that for fixed i, E has the form {j - 4,

i - 3, . . . , I H- 4}.  Now, the fifth row of BEl is symmetric about the middle entry,

and its first five entries are (after rounding)

.00060, .00131, .00815,-.05633, .11440.

Therefore, with the notation of the theorem

z
;sf

„(0| = .1144 + 2( .05633) = .2271.

Similarly, one computes that

z
(I6£ j<EE\F

»}% = .91836.

Consequently, by Theorem 1

IET1\ <
.2271

1 - .9177
< 2.782.

All rounding was done in a way to maximize the final result.  It should be noted that

the matrix B is not strictly diagonally dominant if its order is greater than 2.

Using Theorem 1 to obtain bounds for inverses of non-Toeplitz matrices is clearly

more difficult than the procedure outlined above.  One result that might be useful is

Theorem 2.2 of [7].  This result asserts that the entries of the inverse of a band ma-

trix decay exponentially to zero, the rate depending on the condition number of the

given matrix.  So if we could bound the quantities IIA^1 II „ sufficiently well, we could

apply Theorem 1.  This result was sharpened in [4] ; but even the rate of decay given

in that paper is probably too conservative to be of much use, for example, it is always

bigger than lA.  The fact of the matter is that we really do not know much beyond

diagonal dominance as far as our ability to say anything about the invertibility of ma-

trices is concerned.
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3. A Problem in Spline Theory. In this section we apply Theorem 1 to a prob-

lem in spline theory. Following [5], we let {t¡}"=x be a nondecreasing knot sequence

with t¡ < ti+ k for all i. The L normalized A-splines of order k for this sequence are

defined by

NUpit) = kllPiti+k - ^-1/p[i„ • ■ • . ti+kK-t)k-\     Ki <«,

where [t¡, . . . , t¡+k] /(•) denotes the kth divided difference of/at the points t¡,

..., ti+k and

( (x-r)*-1    ifs>i,

(x-or =
( 0 otherwise.

We recall that there exist constants Dk    depending only on k and p such that for all

sequences {a¡}:= a

(3.1) ii.iipD-k)p < ||£«aJI < MP'

where the function norm is the usual Lp norm:  //« + * \f(t)\p dt = 11/11 £ (cf. [5]).

We are interested in the following problem:  let Q: Lp  —► spaníA^   }"=1 be

a bounded  projection,  find  a  bound  for   HßlL   in  terms  of  IIQ \\p :=

sup{ II Qf II   : 11/11   = 1}.  The results we present here extend those of [5], [8], and

[6, Corollary 4.5].

We assume that ß satisfies the following: there exist functions </>. G L    where

p-1 + q~l = 1 and 1 < p < °°, such that

(a) / <t>ig = 0ifg(x) = 0 a.e. in (?,., ti+k),

(b) 110.11^ < 1, 1 <i<ii,

(c) f<f>i(Qf-f) = 0, 1 <<<«, and

(d) there is y > 0 such that for all {a,} = a,

»«», Za A q

q<kla\q

Now let G:= (/ ^¡N,   ) he the Gramian matrix for Q.  It follows from a result

of de Boor [1, pp. 537-538] and from the easily verified fact that for all sequences

{«,-}

Il y|| ̂  <¥
that y-'D-^WG'1 \\p < \\Q\\p < kWG'1 \\p.

Now,'let H = diag{(f1+fe - tx)1/p, ..., (tn + k - tn)llp}, and let G =

(f 0/A; =o) where Öl = kllPiri+k ~ ri)_1 Ip$ï As above> we have that' IIßII M <

k^G     II „.  To use Theorem 1, we must work with certain submatrices of G.   To in-

sure that these have nice inverses, we make one final assumption:

(e)  There is an r > 0 and a 0 < F depending on r such that for every set E of

the form E = E¡ = {/: 1/- il <r + k}, we have IIGEl II „ < T.

By the results of [7] and the inequalities proved above we see that (e) will hold

if the projections QE: L   —*■ span{A-   : / G E) are uniformly bounded on L  ; here

QEf = x if and only if / <t>,(f- s) = 0, /' G E.   Note that r in general will depend on y.
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With all of these assumptions, let a > 1.   By [7], there is an r > 0 such that for

all /, GE] = D, + C,, where c{, = 0, if If -/l< r and II G^C, II „ < &o-_1/i\  Conse-

quently, if

U+k - h   .
max      -< o,

\i-j\<r+k t,+ k - t,

then IIG£ C,IIM = \\H-1GEflH\\00 < Vi.  This impUes the condition of Theorem 1

that d¡ < 1.  Again, interpreting Theorem 1 in operator form, we have the inequality

IIG~l IL < 2 max a1 'p II GE¡ II „ < 2a1 'pr.

We summarize this in

Theorem 2.   Let Q: Lp —► span{A- p} be a projection satisfying (a)-(e).

Then, given o > 1, there is an r = r(o) > 0 such that for all knot sequences {t¡ }"=xk

satisfying

max     *1+* J'^o,      llßll0o<2a1/f,r.
Ii-/Kr+* tj+k - '/

In particular, the least squares projection L satisfies \\L\\„ < const ol¡2.

It is known that the L„ norm of the least squares projection can be bounded

in terms of the quantity r := xnaxi,{(ti+k - t¡)/(t,+ k - t,)}, [5].  It is also known

that there is a constant Xfc > 1 with the property that:   given 1 < X < \k there exists

A = A(X) such that max ¡ ¡_,, < j { (ti+ k - t¡)l(t,+ k - r;-)} < X implies that the Lx

norm of the least squares projection is bounded by K, [4].  Theorem 2 is sort of a

compromise between these results:  it allows partitions irregular in the sense that the

global mesh ratios can become arbitrarily large; and it allows ratios of adjacent mesh in-

tervals to be fairly large, as long as "on the average" they are not too big.  Here, "on

the average" is determined by the parameter o in the theorem.

Theorem 2 also says that if the least squares projection is bounded sufficiently

nicely for all partitions of a fixed cardinality, then it is bounded for all partitions.

So that, theoretically, one might be able to solve the general problem of bounding the

least squares projection independently of the partition by showing that its Gramian is

sufficiently well behaved for all partitions of fixed size.
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