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i\bstrnct

All known algorithms for the general channel routing problem in the :::Hayer
knock~knee model with 2d-l tracks use 8Ctin) contact points. We present an
algorithm for a restricted class of channel rouUng problems that uses 2d-1
tracks and O(n) contact points and runs in Lime D(n). While channel routing
problems of Lhis restricled class were successfully used Lo prove lower bounds
on Lhe channel width, any proof that 2d-l tracks and Den} contact points can­
not be achieved simultaneously in general must make use of some special pro­
perties noL present in the restricled channel routing problem. We supply insight
inlo lhose properties and inlo some of lhe dilTicullics lhat must be overcome by
an algorithm that uses D(n) contact points for the general channel routing
problem.
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1. Introduction

The Channel Routing Problem (CRP) is a wiring problem in integrated cir­

cuit design that has received much attention recently ([BB]. [HPJ, [D]. [DKSSU].

[PL]. [RUM]). One common model for channel routing is the 2-layer model with

knock-knees: Each layer can be used to run horizontal and vertical wires. and

wires on different layers are allowed to cross and to share a corner (Le.. form a

knock-knee), but arc not allowed to overlap.

The (infinite) channel of widLh t consists of the grid points (i.i), O::;i:=;t +1.

-co<i <00, where i is the track number and j is the column number. and the

edges connecting adjacent grid points. Grid points on track 0 and t +1 are

called terminals. A wire is a path connecting adjacent grid points and a wire can

switch from one layer to the other by using a grid point as a contact point.

In the CRP we are given n (two-terminal) nets (P" qd. where p, is a column

number on track 0 and qi, is a column number on track t +1. l::5iSn, and no two

nels share a common terminal. A solution to the CRP consists of the channel

width t and the wires connecting the two terminals of each neL in the channel.

Besides minimizing the channel width. the number of contact points used is an

important measure in a channel routing algorithm. In this paper we present an

algorithm for a restricted class of CRPs that uses an optimal (within a constant)

number of contact points. We also discuss the difficulties that arise when trying

La minimize the number of contact points in lhe general CIll'.

!I. trivial lower bound on the channel width t is the density d of a CRP. The

density is the maximum over all x of the number of nets (P1,Q1) for which

Pi <x <qi, or qi, <x <Pi. Leighton has improved Lhis lower bound by shOWing that

there exisL CRPs of density d thaL require 2d-l tracks [L]. The channel routing

algorithms proposed in [3B] and [HUM] produce solutions that usc 2d-l tracks,

but require O(dn.) contact points in the worst case.
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We f1rst describe a channel routing algorithm for one-sided CRPs that uses

2d-l tracks and at most 4n contact points. A one-sided CRP consists either of

right and trivial nets (right CRP). or of left and trivial nets (left CRP). A net

(Pi' qJ is a right net if Pi. <qi.' a left net If Pi.>qi' and a trivial net if Pi. =qj,. Lower

Bounds on the channel width for this and for anolher. more restrictive. model

have been oblained by considering only right (or left) CRPs ([DR]. [L]). Our

result thus says that right (or left) cur's alone are not powerful enough to prove

2d-l lracks and D(n) contact points ca.nnot be achieved simultaneously. We

then show how to extend our algorilhm to wcralc CRPs. and give some insight into

the difftculties present when trying to achieve D(n) contact points and 2d-l

tracks for general CRPs.

The 3-layer CRP can be solved more efficiently: Preparata and Lipski

present a channel routing algorithm whose solution uses d tracks and D(n) con­

tacl poinls on a 3-laycr channel [PLJ. We will follow the definitions inlroduced in

[PL] and distinguish between thc wire layout and the wiring of a CRP. Infor-

mally. the wire layout describes the path of the wires of the nets Without consid-

ering the assignment to the layers. while the wiring gives lhe assignment of wire

seclions to the layers. See I~ig. 1.1, where (b) shows lhe wiring of the wire layout

given in (II).

o
1
2

3
4
5
6

-1 0 1 2 3 4 5 6 7 [} 9 10

I

o 1 2 :) 4- 5 6 7 [} 910

: I

Fig 1.1: (II) wire layout (b) wiring
of the nets (1,10) (2,6) (6,9) (3,4) (4,5) (0,7) (7,8)
whieh have density 3 and are wired on 5 tracks
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The algorithms described in [BB] and [IWM] determine the wire layout of

the CRP using d tracks and then interleave the d tracks with d-l tracks. The

grid points of lhe inlerleaved (even numbered) lracks are used as contact points

for vertical wires that need to switch layer in order to cross over a horizontal

wire in a track below (see Fig. 1.1 (b». Thus the shape of a net in the wire lay­

ouL will be the same as in the Wiring. Our algorithm also uses d tracks for hor­

izontal wires and d-1 interleaved tracks for layer swilches, but it will change

the shape of a net in the wiring step according to a set of rules that are shown to

minimize the number of contact points.

4



2. The One-Sided Channel Routing Algorithm.

We describe a channel routing algorithm that solves right CPRs in a channel

of width 2d -1 by using at most 4n contact points. The algorithm for left CRPs is

analogous. We assume that the right CRP does not contain any trivial nets·

(trivial nets can easily be added after the algorithm), and that the CRP is full;

i.e., each terminal (excluding the ones on the right and left end of the channel)

is either the starting or the ending point of a net. Each right CRP of density d

uniquely decomposes into d right runs. The k-th right run, l':::=k:::;d, is a maximal

sequence of nets (pt,qt). (Ptq~), .... (Pi~ ,q~) sllch lhatpf < qt and qf:; pf+I'

The obvious wire layout for right CRP is to assign each run Lo one of d

tracks and to produce a knock-knee when a net ends and a new ooe starts up;

see Fig. 1.1 (a). If the wiring is then obtained by using d-1 interleaved tracks to

accommodate necessary contact points, up to dn contact points are needed. An

even stronger result can be proven: it the wiring of a right CRP consists only of

nels haVing the 'simple' shape (i.e .. a vertical, a horizontal, and a vertical wire),

O(dn) contact poinls are required. Thus, when minimizing the number of can.

tact points the wired nels have to havc a dilTerent shape than the nets in the

'obvious' wire layout.

]n our wiring algorithm we refer to the d tracks that run horizontal wires as

track 1, ...• track d, while the d-l interleaved tracks are unnamed. We initially

assign each run to a numbered track (this uniquely determines the 'obvious'

wire layout). Wires running on layer 1 (layer 2) will be called red (blue) wires.

When a vertical wirc switches from a red into a blue wire it uses a grid point of

an interleaved lrack as a conlacl poinl.

'l'he algorilhm determines the wiring column by column. from left to right.

It tries to run all horizonLal wires as red wires and all vertical wires as blue

wires. This is not always possible: whcn a net reaches its final eolumn as a red
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wire. the wire immedlalely continuing on this track has to start oIT as i1 blue

wire. The algorithm removes such a blue wire from the track within the next two

columns by continuing it on another lrack as either a red wire, or as a blue wire

(if it again participates in a knock-knee). We will show that at most 3 blue hor­

izontal wires can be between any two columns in Lhe channel. Furthermore. a

horizonLal red wire changes into a blue wire only when its corresponding net

reaches the final column (in some cases it will be the column before the final

one).

In the j-th step of the algorithm we determine the vertical wires in column

i. and Lhe horizonLal wires beLween columnj and column j+l. All horizontal

rcd wires - except the one corresponding to Lhe net ending in column j, and pos­

sibly the one ending in column j +1 - conLinue as red wires. We thus only con­

sider the horizontal blue wires. which we try to change into red wires. and Lhe

net starting in column j, Lhe net ending in column j, and, in some cases, the net

ending in column j+1. We first describe the Lwo rouLines used when processing

one column. The slipping routine. which changes blue wires into red wires by

letting them 'slip' onto other tracks, and the take-down routine, which runs

vertical wires from one track to another track and uses conLact points to cross

over blue horizontal wires.

The slipping routine has one argument i, a track number, and causes each

blue wire on track I to i-I Lo 'slip' onLo a higher numbered track (less than i)

and change into a red wire. Thus, afLer the the slipping routine tracks I to i-I

are guaranteed to conlain only red wires, and track i will eonlain a red or a blue

wire.

Let b l , b 2• ... , be be the tracks containing a blue wire balwecn column i-I

and j, bt <bl~l. I'::=l<c, be :::i-l. and let nj be the net stilrting in column j.

Then neL nj runs down column j as a blue wire, switches into a red wire between



track bl-l and b l, and continues as a red wire on track b 1. The blue wire in

track b l behaves the same way: it runs down column j as a blue wire and

switches into a red wire between track bl+1-l and bhl , l<c. The wire on track

be runs down column j as a blue wire and continues on track i as either a blue

or a red Wire, depending on Lhe color of the wire on tracki between columnj-l

and j. See Fig. 2.1.

j-l j j+l

1
2
3
4

i

·-_....f-
o

·- -----1---

------l--­·•·••,
I''ig. 2.1 Slipping Houline

(Red wires are denoted by solid lines, blue wires by dashed lines)

The number of contact points needed in the slipping process is equal to Lhe

number of blue wires on track 1 to i. The time required by the slipping routine

is proportional to the number of blue wires between column j -1 and j.

The lake-down Toutine has two arguments. i l and i 2, both of which are track

numbers, i l ,:5;i 2 · We run the wire currently on track i
l

down colwnn j until it

reaches track i 2 and use contact poinLs as needed. If i 2 = d+l. the wire ends at

the terminal in column j; in all other cases it continues on track i
2

(its color is

determined by the wire previously on track i 2 ). See .F'ig. 2.2.
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,
~

Fig. 2.2: Take·down Routine

Assume that net nl ending in column j is currently on track i, and that net

nj starts in column j. If the wire on track i belonging to net n~ is blue, we per-

•
form the slipping routine down to track i and the take-down routine from track

ito d+l. S~e Fig. 2.1. In columnj+1 we will have only red wires between track

1 and i (a more careful analysis of the algorithm shows that actually all wires

are red in colwnn j +1).

If the wire on track i belonging to net nt is red, we are forced to put a blue

wire on track i between column j and; +1. In order to have a red wire on track

i and La continue thc blue horizontal wire currently on track i as a horizontal

red wire as soon as possiblc, we look at the net ending in columnj+l. We disUn-

gUish between two cases. first assume that the net ending in columnj+1 is on a

track below track i. When the blue wire now on track i participates in the shp-

ping routine for the net ending in column; +1, a red wire is put on track i in

column j + 1. The blue wire slip~ from track i onto a higher numbered track,

where it could still run as a blue wire. See Fig. 2.3 (a.).
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1-1 j j+1
,,,

, ', '
-_:.n.L, '. :

,
•----+-.i m
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, ~ .----+,--i' L­; r-~'~, . ,, , ,, , ,
: ! ,

Net ending in column i +1 is
(a) below track i (b) above track i

Fig. 2.3

In the second casc the net cnding in column i +1 is on track i', which is

above track i. We perform the slipping routine down to track i', take the wire

previously on track i' down to track i, and take the red wire on track i belong­

ing to net nl from track i down to d+ 1. See Fig. 2.3 (b). Track i contains now a

blue wire that ends in column i +1. Thus all the blue horizontal wires between

track i' and track i (which were crossed over in take-down(i',i) will be changed

in La red wires in the nexL step. In the worst case we have 3 blue horizontal wires

between two columns. This occurs when a red wire ends in column j -1 and the

first case holds, and a red wire ends in coLumn i and the second case holds, as

shown in Fig. 2.3 (b). (Note that between column i+1 and i +2 we will then only

have red wires.)

We now give the detailed algorithm for the wiring of the d runs. For simpli-

city we introduce a 'null' net for each run; this allows us to start off with all

tracks containing a red wire between column 0 and column 1. Let (Pt q1) be

the first net of each run, and order the runs such that pf <pfH. The column

containing pl will be column 1. Let (-k+l,pn be the null net for run k,

l.:5::k.::;d. The horizontal part of this nct is put as u red wire onto track k, all the

vertical parLs of the net are run as blue wires.
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Wiring Algorithm
1. initialize the channel with the d null nets;

j:= 1

2. while not all nets have been wired do
(. Lhe net ending in column j is on track i "')
(. color(i,j) gives the color of the wire on track i between columnj -1 and j .)

i:= track number of net ending in column;;
if color(i,j) = blue

then ucgin (. an ending blue wire removes all blue wires above traek i ",)
slip(i);
take-down(i ,d + 1)
end

else begin ('" an ending red wire causes a blue wire on track i .)
{:= track number of net ending in columnj+l;
iC{~i

then slip(i)
else begin (. make sure the blue wire disappears soon "')

slip (i');
Lake-down({,i)
end

take-down(i ,d + 1);
end

j:= j+l
endwhile

The wiring algorithm produces nets of Lhe shapes shown in Fig. 2.4. Each

wired net consists of 3 parts: the slipping part, which consists only of blue wires

and contains l slips, O:=;;l:=;;d. The first l-l slips can only occur when the blue

horizontal wire is Lhe last wire participating in the slipping routine and the net

ending in the corresponding column is red. The horizontal blue wire following

the lasL slip can be of lcngth 2 (when the siLuation described in Fig. 2.3 (b)

occurs), all other hori'lonLal blue wires have length 1. The red part of the wired

neL consists of a horizonLal red wire ending in Lhe column in which Lhe net ends

(Fig, 2.4 (a», or one column before (I~ig. 2.1 (b) and (e». The take-dmun part

the wired net consisLs either of a sLraight blue wire, or a blue wire with one slip

and possibly two conLacL points before the slip. Thus, each wired net contains al

most 4 contact poinLs, and the toLal nwnbcr of conLact points is al most 4n.

-10-
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Fig. 2.4: Shapes of the wired nets

Since we only have to consider the nets ending in column j (and possibly

j +1), the net starling in column j. and the blue wires entering column j, one

column is processed in constant lime. Hence. the Wiring Algorithm wires a right

CRP in time O(n) and uses D(n) contact points.

The number of slips in the slipping parl of a wired net can be bounded for

the cost of two additional contact points (they will occur in the first vertical wire

of the slipping part of a net). Assume no more than s slips are wanted in a net.

s~l. Let the nel ending in column j be on track i, and let w be the wire that

would have Lo slip again in slip(i). Instead of making a slip in wire w, runw hor-

izontally and let the net sLarLing in column i slip onto track i. See Fig. 2.5. Wire

w willlhen change into a red wire in columnj+l or j+2.

i j+1

i

~----l : I

I I.

------j--1--( -~
--~,----it---+-
--+--+----,j- ----

J<'jg. 2.5: Bounding lhe number of slips
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3. Conclusions

The algorithm from section 2 can be modified to solve weak CRPs with 2d.-1

tracks and O(n) contact points. A weak CRP is a CRP that contains right and

left nets with the following restriction. l"or all columns p in which one terminal

belongs to a right net and the other terminal to a left net, we either have the

right net of the form (p,q) and the left net of the form (r.p), or we have the

right net of the form (q,p) and the lefL net of the form (p,r), r"t:-q. Thus, the

situations shown in Fig. 3.1 (a) and (b) cannot occur together in a weak eRP.

P T q q T P

I ![I
I'lg. 3.1; (a) (b)

Weak CRPs have a wire layout that consists only of simple shaped nets. If

situation 3.1 (a) occurs the algorithm processes the channel left to right; if

situation 3.1 (b) occurs right to left. During the algorithm right nets and left

nets arc handled separately; Le., a verLical wire of a right net passes over a hor­

izontal blue wire of a left nct and vice-versa. Hence the algorithm contains a

right and a left slipping routine and the number of contact points needed is still

O(n).

H we remove the restriction of Fig. 3.1 the idea used in the previous algo­

rithms fails. First, the d-track wire layouts for general CRPs have to contain

some nets of non~simple shape. Preparata and Lipski show that nets of the

shapes shown in Fig. 3.2 are sufficient, [PL]. For nets of the form (p,g) and

(q ,p) the shape shown in }i'ig. 3.2 (d) is necessary, and for seme eRPs using only

Lhe shapes shown in !;'ig. 8.2 (a) - (c) resulLs in O(n) tracks. But the main prob­

lem is that the ordering of the wires in the channel is now crucial, and the use of

-12-



a slipping routine to remove as many blue horizontal wires as possible destroys

the ordering.

I
I

r
(a) (b) (e) (d)

)i'ig. 3.2: Shape of the nets in thc wirc layout of [PL]

At the present, it is not known whether 2d-1 tracks and O(n) contact

points can be achieved simultaneously. A proof that it cannot be achieved for all

CRPs might use a 'worst-case' CRP that contains nets of the form shown in Fig.

3.1, and nets that require the shape shown in Fig. 3.2 (d) in d-track wire layout.

Another interesting question is how many tracks are needed to achieve O(n)

conlc.cl points. The knock-knees force the horizontal wires to nUl - for at least a

short distance - 011 the 'bad' layer. but avoiding knock-knees allogether requires

nl/
2 tracks for some eRPs. [HR]. IL is quite possible that the problem does not

get easier if cd. c >2 tracks can be used.
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