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Abstract

All known algorithms for the general channel routing problem in the 2-layer
knock-knee model with 2¢—~1 tracks use @(dn) contact points. We present an
algorithm for a restricted class of channel routing problems that uses 2d—1
tracks and O(n) contact points and runs in Lime 0(n). While channel routing
problems of Lhis restricled class were successfully used Lo prove lower bounds
on Lhe channel widll, any proof that 2d —1 tracks and O(n) contact points can-
net be achieved simultaneously in general musl make use of some special pro-
perties nol present in the restricled channel routing problem. We supply insight
into those propertics and inle some of Lhe diflicullies Lthat must be overcome by
an algorithm that uses O(n) contact points for the general channel routing
problem.,
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1. Introduction

The Channel Routing Problem (CRP) is a wiring problem in integrated cir-
cuit design Lhat has received much attention recently ([BB], [BP], [D]. [DKSSU],
[PL]. [RBM]). One common model for channel routing is the 2-layer model with
knock-knees: Bach layer can be used to run horizontal and vertical wires, and
wires on different layers are allowed to cross and to share a corner (i.e., form a

knock-knec), but are not allowed to overlap.

The (infinite) channel of widlh £ consists of the grid points (1.5), 0=i<f+1,
~w<j<w», where i is the track number and j is the column number, and the
edges connecting adjacent grid points. Grid points on track 0 and Z+1 are
called terminals. A wire is a path connecting adjacent grid points and a wire can

switeh from one layer to the other by using a grid point as a contact point.

In the CRP we are given n (two-terminal) nets (p;, q;). where p, is a column
number con track ¢ and g is a column number on track £ +1, 1=i=n, and no two
nels share a common terminal. A selution to the CRP consists of the channel
width £ and the wires connecting the two terminals of each netl in the channel.
Besides minimizing the channel width, the number of contact peints used is an
important measure in a channel routing algorithm. In this paper we present an
algorithm for a restricted ciass of CRPs that uses an oplimal (within a constant)
number of contact points. We also discuss the difficulties that arise when trying

Lo minimize Lhe nurnber of conlacl points in Lthe general CleP.

A lrivial lower bound on Lhe channel widlh ¢ is the density & of a CRP. The
density is the maximum over all z of the number of nets (p;.q;) for which
Pi<z <q; or g;<x <p;. Leighton has improved Lhig lower bound by showing that
there exislL CRPs of densily 2 thal require 2d~1 tracks [L]. The channel routing
algorithims proposcd in [BB] and [RBM] produce solutions that use 2d—1 Lracks,

but require 0{dn) contact points in Lhe worst case.




We first describe a channel routing algorithm for one-sided CRPs that uses

?d—1 tracks and at most 4n contact points. A one-sided CRP consists either of

right and trivial nets (right CRP), or of left and trivial nets (left CRP). A net .

(i, qi) is & right net if p;<g;, a left net if p;>q;, and a trivial net if p;=q;. Lower
Bounds on the channecl width for this and for anolher, more restrictive, model
have been obtained by considering only right (or left) CRPs ([BR]. [L]). Our
resull thus says thatl right (or left) CRPs alone are not powerful enough to prove
22—1 tracks and O(n) contact points cennat be achieved simultaneously. We
then show how to extend our algorithm to weak CRPs, and give some insight into
the difliculties present when trying to achieve 0{n) contact points and 2d —1

tracks [or general CRPs.

The 3-layer CRP can be solved more efliciently: Preparata and Lipski
present a channel routing algorilthm whose solulion uses d tracks and O{n) con-
lact points on a 3-layer channel [PL]. We will follow the definitions inlroduced in
[PL] and distinguish between the wire loyout and the wi'n:ng of a CRP. Infor-
mally. the wire layout describes the path of the wires of the nets without consid-
ering the assighment to the layers, while the wiring gives Lhe assignment of wire
seclions to the layers. See Iig. 1.1, where (&) shows Lhe wiring of the wire layout

given in {(a).
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Fig 1.1: (a) wire layout (b) wiring

b
of the nets (1,10) (2,6) (6.9) (3.4) (4.5) (5.7) (7.8)
which have densily 3 and are wired on 5 tracks




The algorithms described in [BB] and [RI3M] determine the wire layout of
the CRP using 4 tracks and then interleave the d tracks with € —1 tracks. The
{:{rid points of Lhe interleaved (even numbered) tracks are used as contact points
for vertical wires that need to switch layer in order lo cross over a horizontal
wire in a track below (see Fig. 1.1 (b)). Thus the shape of a net in the wire lay-
oul will be the same as in the wiring. Our algorithm also uses d tracks for hor-
tzontal wires and d—1 interleaved tracks for layer swilches, but it will change
the shape of a net in the wiring step according to a set of rules that are shown to

minintze Lthe number of contact points.




2. The One-Sided Channel Routing Algorithm

We describe a channel routing algorithm that solves right CPRs in a channel

of width 2d —1 by using at most 4n contact points. The algorithm for left CRPs is

analogous. We assume that the right CRP does not contain any trivial nets

(trivial nets can easily be added after the algorithm), and that the CRP is fuil;
lL.e., each terminal (excluding the ones on the right and left end of the channel)
is either the slarting or the ending point of a net. Each right CRP of density d
uniquely decomposes inlo @ right 7uns. The k-th right run, 1<k=<d, is a maximal

sequence of nets (p%.q%), (p£.95). .... (pf .qf ) such that pf < gf and gf = pfer.

The obvious wire layoul for right CRP is to assign each run to cne of d
tracks and to preduce a knock-knee when a net ends and a new one starts up;
see Fig. 1.1 (a). If the wiring is then obtained by using d—1 interleaved tracks to
accommodale necessary contact points, up to dn contact points are needed. An
even stronger resull can be proven: if Lhe wiring of a right CRP consists only of
netls having the 'simple’ shape (i.c., a vertical, a horizonlal, and a vertical wire),
((dn) contact points are required. Thus, when minimizing the number of con-
tact points the wired nets have to have a different shape than the nets in the

‘obvious® wire layout.

in our wiring algorithm we refer to the d tracks that run horizontal wires as
track 1, ..., track d, while the d—1 interleaved tracks are unnamed. We initially
assign each run to a numbered track (this uniquely determines the 'obvious'
wire layout). Wires running on layer 1 (layer 2} will be called red (blue) wires.
When a vertical wirc switches from a red into a blue wire it uses a grid point of

an interleaved track as a conlact point.

The algorithm delermines the wiring column by column, from: left to right.
It tries to run all horizonlal wires as red wires and all vertical wires as blue

wires. This is not always possible: when a net reaches its final column as a red



wire, the wire immediately continuing on Lhis track has to start off as a blue
wire. The algorithm removes such a blue wire from the Lrack within the next two
columns by conlinuing it on another track as either a red wire, or as a blue wire
(if it again participates in a knock-knee). We will show Lhat at mosl 3 blue hor-
izontal wires can be between any two columns in Lhe channel. Furthermore, a
horizonlal red wire changes inte a blue wire only when its corresponding net
reaches the final column (in some cases it will be the column before the final

one).

In the j-th step of Lhe algorithm we determine the vertical wires in column
J. and the horizontal wires between column J and column j+1i. All horizontal
red wires - except the one corresponding to Lhe net ending in column j, and pos-
sibly the one ending in column j+1 - conlinuc as red wires. We thus only con-
sider the herizontal blue wires, which we try to change into red wires, and Lhe
net starting in columin j, Lthe net ending in column 7. and, in some cases, Lhe net
ending in column j+1. We first describe the Lwo roulines used when processing
one column. The slipping routine, which changes blue wires inlo red wires by
letting them ’'slip' onto other lracks, and the take-down routine, which runs
vertical wires from one track to another track and uses eonlact points Lo cross

over blue horizontal wires.

The slipping routine has one argument i, a track number, and causes each
blue wire on track 1 toi~1 Lo 'slip' onlo a higher numbered track (less than )
and change into a red wire. Thus, afler the the slipping routine tracks 1 toi—1
are guaranteed lo conlain only red wires, and track i will contain a red or a blue
wire.

Let &, bp, ... b, be the tracks containing a blue wire belween column i-1
and 7, by <bpyy, 1<i<e, b, =i-1, and lel n; be the net starting in column 7.

Then nel n; runs down column 7 as a blue wire, switches into a red wire between




track & ~1 and &,, and continues as a red wire on track b,. The blue wire in
track &; behaves the same way: it runs down column 7 as a blue wire and
switches into a red wire between track b,,,—1 and bi41, E<c. The wire on track
b, runs down column j as a blue wire and continues on track © as either a blue
or ared wire, depending on Lhe color of Lhe wire on track 4 between column j -1

and j. See [ig. 2.1.
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Fig. 2.1 Slipping Routine
(Red wires are denoted by solid lines, bluc wires by dashed lines)

The number of contact points needed in the slipping process is equal to the
- number of blue wires on track 1 to i. The time required by the slipping routine

is proportional to the number of blue wires belween column 7-1 and 7.

The {ake-down Toutine has lwo arguments, ¢, and iy, both of which are track
numbers, 1;<i,. We run the wire currently on track 4, down column j until it
reaches track i; and use contact poinls as nceded. If iz = d+1, the wire ends at
the terminal in column #: in all other cases it continues on track ij (its color is

determined by the wire previously on track iz). Sce Fig. 2.2.
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Fig. 2.2: Take-down Routine

Assume that net »; ending in column j is currently on track 4, and that net
7; starts in column j. If the wire on track i belonging to net n; is blue, we per-
form the slipping routine down tc; lrack 7 and the take-down routine from track
it tod+1. See Fig. 2.1. In column 7 +1 we will have only red wires between track
1 and ¢ (a mere careful analysis of the algorithm shows that actually all wires

are red in column 7 +1).

If the wire on track i belonging to net »; is red, we are forced to put a blue
wire on track 17 between column § and 7+1. In order to have a red wire on track
i and Lo ¢ontinue the blue horizontal wire currently on track i as a horizontal
red wire as soon as possible, we look at the net cnding in column j7+1. We distin-
guish between two cases. First assume that the net ending in column f+1 ison a
track below Lrack i. When the blue wire now on track i participates in the slip-
ping routine for the net ending in column j+1, a red wire is put on track i in
column j+1. The blue wire slips from track i onto a higher nurnbered track,

where it could still run as a blue wire. See Fig. 2.3 (a).
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Net ending in column j +1 is
(z) below track ¢ (b) above track

Fig. 2.3

In Lhe second case Lhe net ending in column j+1 is on track i’ which is
above track i. We perform the slipping rouline down to track i, take the wire
previously on track i’ down to track i, and take the red wire on track i belong-
ing to net n; from track ¢ down to d+1. See Fig. 2.3 (b). Track i contains now a
blue wire Lhat ends in column j+1. Thus all Lthe blue horizontal wires between
track i’ and track i (which were crossed over in take-down(i'i) will be changed
inlo red wires in the nexl step. In the worst case we have 3 blue horizontal wires
between two columns. This oceurs when a red wire ends in eolumn j—1 and the
first case holds, and a red wire ends in column j and the second case holds, as
shown in Fig. 2.3 (b). (Note that between column j+1 and J+2 we will then only

have red wires.)

We now give the detailed algorithm for the wiring of the d runs. For simpli-
city we introduce a 'null’ net for each run; this allows us to start off with all
tracks conlaining a red wirc between column 0 and column 1. Let (p¥. g%) be
the first net ol cach run, and order the runs such that p§ < p%*!. The column
containing | will be column 1. Lel (—k+1, p%¥) be the null net for run k.,
1=k=d. The horizontal part of Lhis net is pul as a red wire onto track k, all the

vertical parls of the nct are run as blue wires.




Wiring Algorithm
1, initialize the channel with the d null nets:
ji=1

2. while not all nets have been wired do
(* Lhe net ending in column j is on track i *)
(* color(i.j) gives the color of Lhe wire on track i between column j —1 and 5 *)

1:= track number of net ending in column §;
if color(i,j) = blue
then Dbegin (* an ending blue wire removes all blue wires above track i *}
slip(i);
talkke-down(i 2 +1)
cnd
else begin (* an ending red wire causes a blue wire on track i *)
i:= (rack number of net ending in column 7 +1;
il =4
Lhen slip(i)
else begin (* make sure the blue wire disappears soon *}

slip (i');
lake-down(i'\i)
cnd
take-down(i.d+1);
end
ji=F+1
endwhile

The wiring algorithm produces nets of Lthe shapes shown in Fig. 2.4. Each
wired net consists of 3 parls: Lhe slipping pert, which consists only of blue wires
and contains ! slips, 0=l=d. The first -1 slips can only occur when the blue
horizental wire is Lhe last wire participating in Lhe slipping routine and the net
ending in the corresponding celumn is red. The horizontal blue wire following
the last slip can be of tenglth 2 {when the siluation deseribed in Fig. 2.3 (b)
occurs), all olher horizenlal blue wires have length 1. The red purt of the wired
nel consists of a horizonlal red wire ending in Lthe column in which the net ends ;
(Iig. 2.4 (a)). or onc column before (Fig. 2.4 (b) and (c)). The take-dowm part
Lhe wired net consisls cither of a straight blue wire, or a blue wire with one slip ;
and possibly two conlacl points belore the slip. Thus, each wired net contains at

most 4 contact peinls, and the tolal number ol contact points is at most 47
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(a) (8)
Fig. 2.4: Shapes of the wired nets

(c)

Since we only have to consider the nets ending in column j (and possibly
7+1), the net starting in column 7. and the blue wires entering column J, one
column is processed in constant time. Hence, the Wiring Algorithm wires a right

CRP in time O(n) and uses O(n) contact points.

The number of slips in the slipping part of a wired net can be bounded for
the cost of Lwo additional contact points (they will occur in the first vertical wire
of the slipping part of a net). Assume no more than s slips are wanted in a net,
s21. Let the net ending in column 7 be on track i, and let w be the wire that
would have to slip again in slip(i). Instead of making a slip in wire w, run w hor-
izontally and let the net slarling in eolumn 7 slip onte track i. See Fig. 2.5. Wire

w will Lhen change into a red wire in column j+1 or 7 +2.

Fig. 2.5: Bounding lhe number of slips

_‘l_ 1_




3. Conclusions

The algorithm from section 2 can be modified to solve weak CRPs with 24 —1
tracks and O(n) contact points. A weak CRP is a CRP that eontains right and
left nets with the following restriction. For all columns p in which one terminal
belongs to a right net and the other terminal to a left net, we either have the
right net of the form (p.g) and the left net of the form ('r.;pl). or we have Lhe
right net of the form (g.p) and the lefL net of the form (p.r), »#g. Thus, the

situations shown in Fig. 3.1 (2} and (b) cannot occur together in a weak CRP.

P T q q T p

Ing. 3.1: (a) (&)

Weak CRPs have a wire layout that consists only of simple shaped nets. If
situation 3.1 (a) occurs the algorithm processes the channel left to right; if
situation 3.1 (b} occurs right to left. During the algorithm right ncts and left
nets arc handled separately; i.e., a verlical wire of a right net passes over a hor-
izontal blue wire of a left nct and vice-versa. Hence the algorithm contains a
right and a left slipping routine and the number of contact peinks needed is still
o(n},

If we remove the restriction of Fig. 3.1 the idea used in the previous algo-
rithms fails. TFirst, the d-track wire layouts lor general CRPs have to contain
some nets of non-simple shape. Preparata and Lipski show that nets of the
shapes shown in Fig. 3.2 are sufficient, [PL]. For nets of the form (p.q) and
(g.p) the shape shown in Fig. 3.2 (¢) is necessary, and for scme CRPs using only
the shapes shown in Fig. 3.2 (a) - (c) resulls in Q(n) lracks. But the main prob-

lem is that the ordering of the wircs in the channel is now crucial, and Lhe use of

-12-



a slipping routine to remove as many blue horizontal wires as possible destroys

the ordering.

—

(z) (b) (c) (d)
Fig. 3.2: Shape of Lhe nets in Lhe wire layout of [PL]

At the present, it is not known whether 2d—1 tracks and O(n) contact
points can be achieved simultaneously, A proof that it cannot be achieved for all
CRPs might use a 'worst-case’ CRP that contains nets of the form shown in Fig.
3.1, and nets that require the shape shown in Fig. 3.2 (¢) in d-track wire layout.
Another interesting question is how many tracks are needed to achieve o(n)
contacl points. The knock-knees force the horizontal wires to run - for at least a
shorl distance - on Lhe 'bad' layer, but avoiding knock-knees allogether requires
n'/2 tracks for sorne CRPs, {BR]. It is quite possible that the problem does not

get easier if ed, ¢ >2 tracks can be used.
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