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ON BRANCHING PROCESSES WITH RANDOM ENVIRONMENTS: 1
EXTINCTION PROBABILITIES!

By KRISHNA B. ATHREYA AND SAMUEL KARLIN
University of Wisconsin and Stanford University

0. Introduction. Smith and Wilkinson (1969) (see also Smith (1968)) have
formulated an intriguing model of a branching process with random environment
(abbreviated as B.P.R.E.). The structure of the model can be delineated as follows.
Let ¢, be a discrete time (1 = 0, 1, 2, ---) stochastic process of “environmental
variables” taking values in some probability space ®. We suppose associated with
each { € © is a probability generating function (p.g.f.)

o(s) = 2520 pA0)S, 0<s<1.

For each realization of the process ,: ¢ = ({o, {1, {2, -+) and the associated
random sequence of p.g.f.’s, there evolves a population Z,, n=0,1,2, -
governed by the laws of the standard temporally non-homogeneous branching
process. Specifically, suppose Z, comprise the initial population number of the
Oth generation. These individuals (alternatively called particles or objects) create
progeny so that the population size at the first generation is

Z1 =ZiZ=OIX1i

where X (i = 1,2, ---, Z,) are independent random variables with p.g.f. ¢, (5).
The second generation population number Z, is composed from the progeny of the
Z, individuals each producing independently according to the p.g.f. ¢, (s). Pro-
ceeding in this way the n+ 1th generation population number Z,, , , is determined
as the cumulative progeny of the Z, particles of the nth generation each creating
independently according to the p.g.f. ¢, (s). We shall call the process generated
in this way {Z(0), n =0,1,2, ---} the branching process conditioned on the
environment {. The population process Z,, n = 0 without specification of { in
advance is referred to as the branching process with random environment
(B.P.R.E.).

Smith and Wilkinson limited themselves to the case where ¢, (s) is a sequence
of independent and identically distributed random variables (i.i.d.). In that special
case the process Z,,n = 0 is Markovian. These authors devoted their efforts
exclusively to ascertaining conditions for certain or noncertain extinction of the
B.P.R.E. model.
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This paper and its sequel (1971) refine and extend their work in two direc-
tions. In addition to the extinction problem studied in a more general framework,
we also set forth several limit laws on the variables Z, paralleling the classic limit
theorems of simple branching processes. We shall deal with more general situations
of the environmental process, like e.g. when {, is stationary and metrically transitive
or {, is a Markov chain. We will also treat some cases of a multi-type B.P.R.E.

The developments of this paper divide into two parts. Sections 2 and 3 delimit
complete criteria for certainty or noncertainty of extinction. Our methods are
simpler and the conclusions sharper even for the independence case investigated
by Smith and Wilkinson. We discuss in Section 4 facets of the extinction problem
in the multi-type B.P.R.E. model. A summary of the results of this paper appeared
in July (1970).

1. Preliminaries and statement of main results. Let (Q, F, P) be a given probability
space. Let .# designate the collection of all probability distributions {§ = {p;}{2,
p: 2 0,> p; = 1} on the nonnegative integers satisfying the further constraints

(1) Y2o0ip < o, 0<po+p, <L
Clearly ./ is a Borel subset of the Banach space /« of all bounded sequences of
real numbers. Let {;(w), i =0, 1, 2, --- be a sequence of random mappings from
Q, F, P)into (I, #,) where &, is the Borel s-algebra in /o generated by the
product topology. We assume

(2) Plw:{{w)e# forall i}=1.

For any { € .# associate the p.g.f.

(3) @s) = XiZo PA0)s’ ls| < 1.
We can regard { = ({o(w), {1(w), {,(w), ) as a realization of the ‘“‘environ-
mental process.”

Let Zy(w) be a nonnegative integer valued random variable defined on (Q, F, P).
We now generate the branching process Z,(w); n = 0, 1, 2, -+ as described earlier
starting with Z, by means of {¢, (s)}.

It is convenient to introduce a series of g-algebras. (For any collection D of
random elements on (, F, P) let o(D) denote the sub s-algebra of F generated by
D.) We set

(4) IF(Z)E6(C05C15"'5Cn5€n+15"')
[F’l(z) = U(ZO’ Zl’ "',Zn; CO5CI;CZa )

From the description of the model (or alternatively take as an axiom for the
definition of B.P.R.E.) we postulate that Z,, satisfy the relations

5) B | E,D) = [pe (1
and for any set of integers | < ny < n, < -+ < i

(6)  E(sy"misy"ma - 57me | F(£);Zo = m) = [E(s; %1557 - sime | F(D); Zo = 1)]™

for s;| £ 1,i=1,2, -k
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The proof of existence of a process satisfying these axioms is routine. We refer
to Harris (1963) for details of such constructions.
An immediate consequence of (5) and (6) is

LemMa 1.
(7) E(s* [ Zo = k, () = [ (00, (- (@5,(5)) )T

A direct implication of Lemma 1 is that when conditioning on ({4, {;, {5, *+*)
the process behaves like a non-temporally homogeneous branching process and
therefore the lines of descent are independent subject to this conditioning. Smith
and Wilkinson noted that unconditionally the lines of descent are not independent.
Nevertheless, contrary to the claims of Smith and Wilkinson much of the classical
theory of Galton—Watson branching processes (especially the familiar limit theo-
rems) carries over to the B.P.R.E.

The first objective of this paper is to ascertain complete criteria guaranteeing
certain extinction of the process. It is useful to underscore the fact that in the Smith-
Wilkinson case (where (,(w) are independent identically distributed (i.i.d.)) Z, is
Markovian and then a standard result of Markov chain theory tells us that

(8) P{w:Z,—»0 or Zn—>oo}=1.

In contrast, when {{{w)} constitutes a stationary ergodic process then it is not at
all automatic that these same exclusive alternatives prevail w.p. 1. Nevertheless,
the conclusion of (8) is valid (see Theorem 7 of Section 3).

Henceforth, unless stated explicitly otherwise we assume that {(w),i = 0, 1, 2,--
is a stationary ergodic process (Loéve (1962)). In this circumstance the conditions
for certain extinction are the same as in the independence case. Let

) B={w:Z(w)=0 forsome n}
g = P(B|Zo =k) qul) = P(B|Zo =k, F({)).

We refer to B as the set of extinction and q,, q,(0) extinction probabilities. It is clear
from (7) that

(10) a(8) = [4.(DT a.s.
and
(11) i = E([a:(D)1Y).

We see instantly on the basis of (11) that {q,: k = 1, 2, ---} is a moment sequence,
a fact that seems to have excited Smith and Wilkinson who derived this point by
more complicated means.

Since the sequence of events B, = {w:Z,(w) = 0} increase to B we infer

(see (7))
(12) q(0) = lim, - o, (@, (- (94,(0) ) = E(xz | F(0); Zo = 1)
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where yp denotes the indicator function of the set B. (Note that we write g({) for
¢,(0).) An immediate consequence of (12) is the important functional relationship

(13) 4(8) = o,(a(T7))
where T denotes the shifi transformations
(14) TC = T(Co, L1 Cas ) = (C15 8o o)

Recalling the stipulations of (1) and (2) we may conclude from (13)

PROPOSITION 1. The sets {w: q({) = 1} and {w: g(TT) = 1} coincide modulo a set
of probability zero.

Thus {C; g({) = 1} is a T-invariant set of B and since'T is ergodic by hypothesis,
we infer that

(15) P(g(0)=1)=0 or 1.

We now exhibit a necessary condition for noncertain extinction i.e., for
P(g(0) < 1) = 1. For any real number a, we employ the symbols a* = max (0, a)
anda” = —min (a, 0).

THEOREM 1. Suppose
P(g(Q)<1)=1 and E(loge,(1))* < oo
(prime designates as usual the derivative). Then
(16) Ellog @ (1)| < 0,  Eloggj,(1)>0

and

1-4(0) 1-4(0) >
17 E|log ——F==| < w0, Elog| =% ) =0.
) s S\ =)
We can extract quite easily (see Section 2) from the assertion (17) in the special
case where {; comprise a family of i.i.d. random variables (or when these variables
generate an irreducible finite Markov chain) an integrability property.

THEOREM 2. Suppose P(q(l) < 1) = 1, E(log ¢;(1))* < o0 and ¢(s), i = 0,
1, 2, -+ are ii.d. random variables (or { (w), i = O form an irreducible finite Markov
chain). Then

E(~log(1-9¢0))) < 0.

The result of Theorem 2 in the i.i.d. case was achieved first by W. L. Smith
(1968).
The converse proposition to Theorem 1 is as follows.
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THEOREM 3. Suppose E(—log(1—¢,(0))) < o and E(log ¢ (1)) < E(log
()" < 0. Then

P(g(0) <1) =1.

Theorems 1 and 3 manifestly provide a full set of criteria for certain extinction
except when E(log ¢7,(1))* = E(log ¢,(1))” = . In summary, modulo mild
integrability conditions extinction is certain iff E(log ¢; (1)) £ 0.

The conclusions of Theorems 1 and 3 persist also in the circumstance where {;
unfolds as a positive recurrent irreducible Markov chain. The precise result is as
follows.

THEOREM 4. Suppose the process (;,i = 0 is an irreducible positive recurrent
Markov chain P with countable state space {1, 2, ---}. Associate with each state j a
p.g.f. ¢ (s) satisfying the conditions of (2). Let {n;}]2, be the unique stationary
measure of P. Assume that

Litimlog(1—9,(0))] < o0, Fj2 s my(log(¢;(1)))" < .
Consider the corresponding B.P.R.E. Then for any initial distribution of {,,
P(g(0)<1)=0 or 1,

and extinction is certain iff Y 7 m;loge;/(1) £ 0.

Theorem 4 can be proved allowing a general state space.

The proof of Theorem 4 falls back on the results of Theorems 1-3 in the stationary
case.

The above results constitute refinement of results given in Smith and Wilkinson
(1969) and Smith (1968) who used analytic techniques of renewal processes in
conjunction with methods of fluctuation theory for sums of independent random
variables.

Fluctuation and renewal theory arguments are virtually impossible to apply
in the stationary case. Our approach exploits decisively several variants of the
ergodic theorem Loéve (1962) and the detailed arguments for these more general
cases seem to be simpler than in the special cases. The proofs of Theorems 1-4
occur in Section 2.

As mentioned earlier it is not evident in the stationary case that

(18) P{Z,—»0 or ow}=1.

This assertion is correct and its proof depends on the following interesting theorem
first discovered by Church (1967).

THEOREM 5. Given a sequence of p.g.£.’s fo(s), £1(5), 12(5), f5(s), --- we form the
P-gL7s fu(8) = folf1(-+ fuls)) -+)-
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(1) Thenlim,,, ,, f,(s) = g(s), 0 = s < 1 always exists and g(s) is strictly increasing
iff

(19) lim,,, o, maXs) <q,k20 Ifm(fm+ 1("‘fm+k(s) ~-)—s| = 0.
(ii) The conclusion (19) holds ift
limy, o, lim,, , [[7=x /i (0) =1 or equivalently > 2 o[1—f/(0)] < o0.

In Section 3 we elaborate the proof of Theorem 5. Our arguments inspired by
those of Church substantially simplify his analysis.
With the aid of Theorem 5 we deduce

THEOREM 6.
(20) lim,. ., 03,0+ (03,(5)) ) =4(0)  for0Ss<las,
and the only solution §({) (when one exists) of the functional equation
(21) 4(0) = 9,,(4(T0)
satisfying
(22) P{g0) <1} =1

is §(0) = (D as.
That the assertion (20) implies (18) is a corollary to the following.

THEOREM 7. Let (s, {) = @(@, (- @, (s)) ). Suppose E(log ¢} (1))* < 0.
Then, for 0 < s < 1,

(23) Yoy [mul(s, O) — (0, 0)] < o0, w.p. 1
whenever

(i) E(logey(1)) <O, or

(i) E(loger,(1))>0, and E(—log(l—¢.(0))) < c.

The final section investigates the extinction problem for the multi-type (say
p-types) B.P.R.E. model. We outline the criteria in the case where {; are i.i.d. To
review quickly the formulation we have associated with each { a p-vector p.g.f.
0(s) = (9 V(5), 9 P(s), -, 9,/ P(8)). Let A, = ||0¢,7(1)/ds,] be the mean matrix
of the p.g.f. @(s). We assume E|log|4,]|| < co where the norm | | is defined as
|4| = max; Y?_, |a;;| and A, is a strictly positive matrix w.p.1. It was proved by
Furstenburg and Kesten (1960) that

(24) lim,_,n~"log||d, A, Ag|| =7 exists wp. 1,7 <co

and also lim,_,n "Elog||4,4,,_, - Ag|| == It is easy to see that for the
one type process n = Elog ¢,/(1).

Criteria for extinction or nonextinction is the substance of the following
Theorem. (The notation x < y signifies that every component of y—x is positive.
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The inner product is denoted by <, > and 1 denotes the vector with each com-
ponent equal to one.)

THEOREM 8. Assume there exist constants C and D such that w.p.1

(1
(25) 0<C= ¢C°()<D<oo
0 @‘53( )
0s; Osy, =
and
(26) E|log {1—,(0),1)] < co.

Then we have

(i) n<O0 implies P(q({)=1)=1

(i) #>0 implies P(q({)<1)=1
Wwhere

4(0) = lim, > o, @o(@e (- 9, (0) ).

2. Extinction probabilities. In this section we shall prove Theorems 1-4 on
extinction probability. For ease of reference, we restate the theorems.

THEOREM 1. Assume E(log ¢, (1))" < co and P{q({) < 1} = 1. Then the follow-
ing hold:

: 1—q({ 1—4({
(i) E|log (1_—(;1((7,—25>’ <o and Elog(TT‘z(Tg—Q =0.
(i) Elloge,(1)] <o and Eloge,(1)>0.

Proor. From the basic functional equation (13) satisfied by ¢({) and the hypo-
thesis P{g({) < 1} = 1 we get

(27) () =£(O)+hn(T7)
where 0 < () = —log (1—¢({)) (finite w.p.1) and
~ 1- co;o(q(Tf))) _ ( 1-4(0) )
Q)= _IOg< 1—¢(T0) = —log 1—q(T0))
Iterating the above yields
(28) W) =fQ)+f(TT)+ - +f(T"T)+ h(T"* 1)
and since A(-) is nonnegative it follows that
Yi=of(T) < WD)
Breaking f(T,{) into positive and negative parts we rewrite this inequality as

n Yo/ (T —n" " Eicof (1)) = ™ h(0).
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However,

0 E(f~ (D) =E(-/(D):f(D)<0)
1= (a(TON 1—0e(a(TD) )2
=E(‘°g( T=q(TD) > (1) 1)

< E(log oy, (1); 05(1) 2 1)
(using the fact that (1 — ¢ (x))/(1 —x) is increasing in {0, 1])

%

= E(log p;,(1))"
Therefore, applying the ergodic theorem to £~ ({) implies
(29) 0 <limsupn™'Y7_of*(TC) < E(log ¢;,(1))*" < oo.

Because of nonnegativity of f *, again by the ergodic theorem we deduce Ef *({) <
o and hence that E|f({)| < 0. To finish (i) we need to show that Ef({) = 0.
This also is an easy consequence of the ergodic theorem. In fact, note first that

(30)  Ef(D) =lim,, ,n~ ' Y7 o f(TD) =lim,_ , [n"'W(Q)—n"*h(T"*])].

Since lim,,, n W) = 0 it follows that lim,, n 'A(T"*'{) exists and by
stationarity has the same distribution as lim »# ™ 'A({), thus proving Ef({) = 0.

We next turn to (ii). By hypothesis, E(log <,05;(l))+ < o0. We shall establish
E(log ¢,(1)~ < E(log ¢7(1))". To this end, we have

E(log ¢g,(1))” = E(=log @y (1); 05,(1) = 1)
< E(—log]——l—?;—((%c—)); o, (1) < 1>
(again since (1—¢@(x))/(1—x) < ¢, (1) for x in [0,1])
< E(f();/(D) 2 0)
= Ef*() = E(log ot (1)

If E(log @7,(1))™ = E(log ¢, (1))* then E log ¢,(1) = 0 and Ef({) being zero it
follows that

E[log ¢,(1)+/(0)] =0
while P{log ¢ (1)+/(0) 2 0} = 1 with P{log ¢, (1)+ (D) > 0} > 0 except if
P{lo: p1({y) = 1} = 1 which is precluded by the stipulations of (1) and (2). This
completes the proof. []

Stating the conclusion of the above theorem in contrapositive form yields
specifically

2 The notation E( f; A) indicates as customary that the expectation is evaluated restricted to the
subset A4.
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COROLLARY 1. Assume E(log @1 (1))* < 00. Then E(log e ()" < E(log o)~
< oo implies P{q()) = 1} = 1.
Next we determine sufficient conditions for P(¢({) < 1) = 1 by proving

THEOREM 3. Assume E[—log(l — ¢ ,(0))] < co and E(log ¢} (1))~ < E(log ("
< 0. Then P{g(0) < 1} = 1.

Proor. First note that

E(log ¢,(1))” = E[—log ¢1,(0); @1, (1) = 1]
< E[—log(1-94,(0)); ¢,(1) < 1]
< E[—log(1—¢4,(0))] < oo.

Now set

(31) V() = 0c(@c. (- 05,(0) +))-
Then, from the definition of the shift transformation 7°
(32) Y,,(Z) = ¢§0(Yn— I(TZ))

and since the ¢, (s) are nontrivial w.p.1 (because of conditions (2) and (3))
P{Y (D) <1 for all n} = 1. Thus, w.p.1, 0 £ —log (1— Y, (0)) < oo for all n.
Defining u, = E(—log (1— Y,({)) we employ induction to infer that u, < oo for
all n. In fact, py < oo by hypothesis. From (32)

(33)  —log(1—Y,(0)) = _1og<1 _l‘f“y(z"l‘(}(?)>_log(1 —Y,_,(TD)).

Since (1 — ¢, (x))/(1 —x) is increasing for x in [0, 1] it follows that

+
I R A RO
which is integrable by hypothesis. Thus
0 < py < E(—log(1—,(0)) + pt, .
This completes the induction and in this analysis we noted the fact of the integra-

bility of )
EWAESI
E\1=Y,_,(TD)).
Set
1-Y,(0)
) O i)
we obtain the recurrence relation
(36) /'ln = 0n+ltn—1

and therefore
(37) o =2 5=10;+Ho.
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Assume contrary to the assertion of the theorem that P(q({) < 1) < 1 holds.
Then by the zero-one law, (15), P(q({) < 1) = 0 and so Y,_ (TY) increases to
1 w.p.1. This fact implies by monotone convergence that p, t c0o. On the other
hand, since Y,_((TC) T 1 w.p.1, we deduce that 8, | 6 = E(—log ¢ (1)) which is
< 0 by hypothesis. (Note that in the last step the assumption E(log ¢;,(1))* < oo
is unnecessary.) Thus )7_; 8, > — oo and a contradiction results from (37). ]

We shall next extend these results to the case when the {{;} form an irreducible
positive recurrent Markov chain. The restriction to a countable state space is not
crucial but makes the arguments more transparent and less encumbered by
unimportant technical details. Thus the {; take values in a countable set, say, the
integers {1, 2, ---}. Let P = | p;;| be the associated transition probability matrix
of the process and let {r;} denote the stationary probability distribution. Consider
the induced Markov chain stationary process {#;}, i = 0, 1, 2, --- such that 5, has
the distribution {r,} and the transition probabilities are given by |p,;||. It is clear
that {5;} form a stationary ergodic sequence.

Our procedure will be to express the probability of extinction for the {-process in
terms of that for the related 5-process.

LEMMA 2. Let ¢; = P{lim, ., ¢ (- (¢,(0)) = 1|{o =i}. Then e; = 1 for all i or
e; = 0 for all i according to P(q(n) = 1) = 1 or 0.

ProoF. Since {5} is stationary and forms a Markov chain with transition
probabilities the same as {{;} we get

(38) P{q(ﬁ) = 1} = ZiP{‘I(ﬁ) =1 I”Io = i}P{”Io = i} = Zi em;.

But0 < =, < 1 forall i. We know that P(q(#7) = 1) can assume only the two values
0 or 1. The conclusion of the lemma is now immediate. []

A simple corollary of Lemma 2 in conjunction with the results of Theorems 1
and 3 is Theorem 4 of Section 1. We take up next Theorem 2 cited in Section 1.

THEOREM 2. Let E(log @ (1)* < oo, P(q(0) < 1) =1 and suppose {; is a
process of either of the following kinds. {{;} consists of i.1.d. random variables or
{¢;} fluctuate as a finite state irreducible Markov chain, then E(—log (1—¢,,(0)) <
0.

ProoF. Since the {{;} form a Markov chain in either case we obtain

fos( =5t - e (525

- E{EHlog (%%) CJ}
-off (52
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where X is a random variable having the same distribution as that of ¢(77) when
conditioned on {,,

> E{Eﬂlog (.1_1":;)(:;{_))
2 E{E[[log(1—or(X )]s Xp < 1—6]} — |loge]

= E{|10g (1 —¢§0(0)|P[X§o S1-¢ | €0]}_ IIOgSI
2 [infy, P{X, < 1—¢|{o}]E|log (1~ 04,(0)] —loge].

3 X = l—e:l} where ¢ > 0 is arbitrary

Both in the cases where {; are i.i.d. and where {{;} is the state variable of a finite
state irreducible Markov chain, it follows owing to the*fact P{g({) < 1 | (o} =1
for almost all {o, that § =inf,, P{X,, < 1—¢|(o} >0 for ¢ sufficiently small.
(When {; consists of i.i.d. random variables then P(X,, < 1—¢ | {o) is independent
of {o. When {{;, i > 0} goes according to a finite Markov chain, then {, can
only assume a finite number of values.) In these cases, we obtain

10g<1—"‘i(5—))}+1og |s|] <. [

1—¢(T?)

Eliog(1 - po 0] <57 1

3. Some results on composition of probability generating functions and applications.
In this section we are concerned with the following problem. Let {fi(s)},i = 1, 2, ---
be a sequence of p.g.f.’s and set

(39) Jools) =il £l /ids)))-

We seek answers to questions like: When does limy_, ,, fi1,(s) = g(s) exist and if so
when is g(s) strictly increasing in the right open interval [0, 1). These questions
were first raised by J. D. Church (1967), who settled them completely. (Unfortuna-
tely, Church’s paper is virtually inaccessible.) We present here simpler proofs of
these results and some applications to the B.P.R.E. model. The following theorem
summarizes Church’s pertinent discoveries.

THEOREM 3. Let fy, be as defined in (39). Assume that for every i, f(s) % 1. Then

(1) limy, 0 fig)(s) = g(s) exist for all s in [0, 1].
(ii) Either g(s) = g(0) for all s in [0, 1) or g(s) is strictly increasing in [0, 1) with
the latter holding if and only if

(40) 2. (1-£(0)) < 0.
The proof of this theorem is carried out in a series of lemmas.

LemMma 1. If limy_, oo fisy(5) = g(s) exist in [0, 1] and g(s) is strictly increasing in
[0, 1) then lim,_, o fi{s) = s for all s in [0, 1], and the convergence is uniform in s.
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ProoF. Fix sin [0, 1). Let ¢ > 0 be arbitrary such that s+& < 1. Suppose there
exists a sequence {n,} of integers going to co such that lim,, f,,k(s) > s+e¢&. Then
for large k, f,,(s) > s+é& and thus f,.(s) = fiu - 1)(fo(5)) = fim—1y(s+¢). Letting
k — oo we see that g(s) = g(s+¢) which is impossible since ¢ is strictly increasing.
Thus Limsup,.,, /() <s. A similar argument yields liminf,.,f,(s)2 s,
yielding the conclusion

lim,, . fi(s) = s for s in [0, 1).
Since f,(1) = 1 for all k, Lemma 1 is proved except for the fact of uniform con-
vergence which is assured since the function f(s) = sisa p.g.f. []

LeMMA 2'. Let {f,} and {g,} be two sequences of p.g.f.’s such that
lim, , , fig,(s)) = s ) Sfor s in [0,1].
Then, for each s in [0, 1]
(41) lim,., , f(s) = s = livrnHoo g.(s)-

Proor. Let for each r, X, and N, be nonnegative integer valued random variables

with p.g.f.’s f.(s) and g,(s) respectively. Then f.(g,(s)) is the p.g.f. of the random
variable

Y, =¥, X,;, if N,>0
=0 if N,=0

where {X, ;7= 1,2,.--} is a sequence of independent random variables distri-
buted as X, and N, is independent of {X, ;;i =1, 2, ---}. Since lim,, « f(g,(s)) = 5
for sin [0, 1] it follows that ¥, — 1 in distribution. Now ¥, and X, are nonnegative
integer valued and so Y, — 1 in distribution requires that both N, and X, tend to 1
in distribution. These facts clearly imply (41). []

The following lemma establishes the first part of Theorem 5.
LEMMA 3'. Suppose there exists an sq in (0, 1) such that
B =1im sup,_, , fuo(So) > limy., o, f4(0) = .
lim, , ., fu(s) = g(s) exists for all s in [0,1]
and g(s) is strictly increasing in [0, 1].
Proor. First note that the sequence {f4,(0)} is nondecreasing and hence

a = lim,_, o f(4)(0) exists. Next by definition of f there exists a sequence {m,} of
integers such that

lim, oof(rnk)(SO) =p.

This family {f(,,(s)} is normal (see Hille (1962) Chapter 15)in |s| < 1 and so there
exists a further subsequence {n,} of {m,} and a function g(s) on |s| < 1 such that
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limy, o fim,(8) = g(s) exists uniformly on compact subsets of |s| < 1. Clearly,
g(sy) = B and g(0) = «. Since all the f(,,k) are p.g.f.’s, the coefficients of g(s) are
nonnegative. Thus f > « implies g(s) is strictly increasing in [0, 1]. According to

Lemma 1’ and noting the identity f,, , 5(5) = fino)(frer 1 (St 2 (fones ((5)) ) We
deduce that

limk—? (Df;lk+ I(f;lk+2 ° '.f;lk+ (= 1(f;lk+ 1(s)) a ) =S
for sin [0, 1]. For any q let k(q) be such that n,,y < g < ny,,+,. Clearly,

f(ll)(s) Zﬁ,k(q)(ﬂ,k(q)+ 1(f"k(q)+2 (fq(s) ))
By Lemma 2’
1Mo fon gy + 1 oy +2 7 (fe(5)) = 5 for all s in [0,1].

Also fi,,,(s) = g(s) uniformly on compact subsets of |s| < 1. Thus

lim,_, , fi)(s) = g(s) for all s in [0, 1).

On setting g(1) = 1 the conclusion of Lemma 3 follows. []

We now turn to the analysis for (ii) of Theorem 5, i.e., the task of ascertaining
necessary and sufficient conditions guaranteeing g(s) to be strictly increasing.
This is the content of the next two lemmas.

Lemma 4. If g'(s) = O for some s in [0, 1) then Y ; (1—£/(0)) = 0.
Proor. For any s in [0, 1)
g'(s) = limy, , f3(s)
= limye o [0y (a2 (5)) )
2 limy, o, [T5-1/7(0) = [ 1521 £(0).

Thus if g'(s) = 0 for some s in [0, 1) then [[;~,//(0) =0. The lemma is now
immediate since 0 < f;'(0) < 1 for allj. []

LEmMA 5. If g(s) is strictly increasing in [0, 1) then Y (1—£/(0)) < co.

Proor. Let ¢;(s) = limy_, oo f(f4+1(:--fi(s))---) for s in [0, 1) which exists by
virtue of part (i) of the theorem. Then g(s) = f(;(e;(s)). Since g(s) is strictly
increasing arguing as in Lemma 1" we conclude that ¢;(s) — s uniformly in
[0, 1]. Thus,

L =1lim;, , &/(s) = lim;, , [ [ ; /i (&c+1(5))

and

im0 = limy o) § )
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Evaluating these at s = 0 and noting that lim;, « f;'(s) = 1 uniformly in s in
[0, 1] we get
fimj o TIZ i/ (s 1(0)) = 1
and
im0 D% 13 (844+1(0)) = 0.
In view of this last result

. © f/ + 0 X 0 ’ 1 0
limsup;_, -i;:’(ol)ﬂéhmsupj*wexPQ;j(ﬁ%f(O_)(—))_l))

k=j

< exp <1im Squ*%iﬁW) =1,

It is now clear that
: L . 2 . = fi' (e 1(0) ]
lim;., J[]A/(0) = I:llmj,00 114 (8k+1(0)] [hm SUPj.o [ ] iﬁ,ié(——))}
k=j k=j k=j ﬁ‘( )
2 [lim;, . &/(0)] =1.

But0 < f;/(0) < 1 foralljandso Y72, [1—/;(0)] < co thus yielding the assertion
of the lemma. []

As a corollary of Theorem 5 we get the following results concerning
lim, . o, 9o+ (9,(5))-

THEOREM 6. Let {{,:n = 0, 1, 2, -} be a stationary ergodic sequence in the sense
of Section 2. Then we have (i)

(42) P{lim, ., , o (0 (- 0. (s) ) =q() forall 0ss<1}=1
where we recall that g({) =lim,, ,, 9.,(-+ (¢,(0)) ).
(ii) The only solution G({) (when one exists) of the functional equation
(43) 4(0) = 0,,(4(TT)),
satisfying P@G(D) < 1) = 1is g(0) = q(D) as.
Prook. (i) From stationarity, ergodicity and by virtue of the stipulations (2)

and (3) we see that E(1—¢;(0)) > 0 and hence P{{; Y 2,(1—9;(0)) =0} =1.
Now appeal to Theorem 5 to get (42).

(ii) If §(Q) is any solution of (43) then iterating this equation we get

40 = @@, (- @, (4(T"0) =)
2 9, (0r,( 94,(0) ) for any n
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and letting n — oo leads to relation
(44) P{L; 4() z q(D)} =1.
Now suppose P({; §({) < 1) = 1. Then for any fixed s (0 £ 5 < 1),
PG 4(0) S @@, 90,(5) )}
= P{C; §(T"0) < s} = P(C; 4(0) < )

the last equality due to stationarity. Letting » — oo and using the previous theorem
we get

P40 = a0} 2 PUL 4(D) <5}
for any s satisfying 0 < s < 1. Now, let s T 1 to conclude P{; G0 £ q(D)} = 1)
which in conjunction with (44) implies the inference
PL a0 =a)}=1 1
We now turn to estimate the rate at which n,(s, {)—n,(0,{) = 0 as n - ©
where

(45) (8, 0) = 0o @0, (- @1, (8) )

THEOREM 7. Let E(log ¢,(1))* < 0. Then ¥ 2y (m,(s5,0) —m,(0,0)) < o for each
s (0 < s < 1) a.s. whenever

(i) E(loger(1)) <O, or

(i) E(logey(1)) > 0 and E(—log(1—¢,(0)) < 0.

We need the following known fact whose proof we present as we do not have an

available reference. (We are grateful to N. Kaplan who suggested the relevance of
this lemma.)

Lemma 6. Let k(D) = h(0) a.s. and suppose there exists g({) integrable satisfying
|h(D)| < 9(D) as. for all n. Then

(46) lim,, ,n~ 'Y 525 h(T"70) = Eh(]).
Proor. Let g,(0) = sup;.p, |[h(D)—A(D)|. Then
(47) 0=<g,(0)<29(0) and Ilim,.,g,({) =0, a.s.

By dominated convergence theorem it follows that Eg;({) — 0 as L — 00. Now
™t 520 (h(T"0) = H(T"T))
ST o (T D) —h(T )|+ 07 Yo ps 1 gu(T"0)

On the basis of the Ergodic theorem we deduce that lim,.,n"">"_,, g,
(T"77f) = Eg,([). Moreover, observe that
h(T" ¢

()

n

lim a.s. for each ;.

n— oo
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Thus
limsup, ., n~' Y526 [ (h(T" )~ h(T"~I7))| £ Eg,(0) a.s.
Letting L — oo we may conclude
(48) limsup,..q, [n 7 Y325 (h(T" ) —W(T" 7)) =0 a.s.
Again applying the Ergodic theorem we see that
lim, ., n ™' Y426 H(T"78) = Eh(C) a.s.

The proof is now immediate from (48). []

PrROOF OF THEOREM 7. (i) Let E(log ¢/,(1)) < 0. Then by the mean value theorem
(8, O)— (0, 0) = TIj=0 @2i(1)-
Since u = E(log ¢;,(1)) <0, applying the Ergodic theorem yields the fact that

lim,., n™' "% _ologe; (1) exists and equals p which is negative. Thus for almost
every {, 2L, ([T7=6 @¢,(1)) converges at a geometric rate.

(i) Let E(og ¢,(1)) > 0 and E(—log (1— ¢, (0)) < co. Then according to
Theorem 3 we know that P(¢q({) < 1) = 1. By the mean value theorem, we have

7rn(s’ C) - 77:,,(0, Z) = H?;(l) q)llj((plj»« 1(' : '((pln— 1(s))' ' ))
It suffices to show that
(49) limsup,,,n~ ' Y126 f,- (T'Cs) <0

where f'l(z’ S) = log (plio((pil(“' Pe, 1(s) ))
Decomposing f, into its positive and negative parts, we note that

S (D) = (log o,(1))”

and
lim,. ./, " (L) =0 (by Theorem 6)

where f({) = log ¢;,(a(T?7)).
Thus, by Lemma 6, we get

(50) lim, ., n” Y20 4(T D) = EF*(0) a.s.

Next let us examine n~ 'Y 325 f,7(T"’0). To estimate its limit we employ a
truncation argument. Fix N and set #;™({) = min (f;7({), N), and A™({) =
min (/~({), N). Noting h,™({) > "™({) and with the aid of Lemma 6’ and
obvious inequalities we infer

liminf,.,n Y1287 (T" 90 2 lim, L o n ™ 'Y 028 1, M(T"IT) = ER™M(D) aus.
Letting N — o0, we get
(51) liminf,, , n ™' Y128 fAT"0) 2 Ef ~(0) a.s.
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It is clear from (50) and (51) that
limsup,..., n™* Tz £(0"0) < EF (D)~ Ef~(0)
= Ef({) = Elog ¢;,(4(T?T)).
But by Theorem 1 we have the fact that

0= E[log <1—“1—(’fq((q;—§)c))>] z E[log ¢3,(4(T0))]

with equality holding only if { has a degenerate distribution, a case of no interest
to us. Thus the proof of (49) is complete. []
The following corollary to the above theorem is a restatement of (18).

CorOLLARY 1. Let E(log qogo(l))+ < oo and P(q(0) < 1) = 1. Then,
(52) P{Z,— o |F()} =1-P{Z,- 0| F()}.

ProOF. We need to show that for every finite K, Z, stays in [1, K] only finitely
often a.s. By Borel-Cantelli it suffices to show Y, P{l < Z, < K| F())} < 0.
But forany 0 < s < 1,

P{1=Z, S K|F} = 50 * X1 P(Z, =7 | F(D)so’

= SO_K(’II,,(SO, z) - T["(O, f))
Now use Theorem 7 to get (52). [J

4, Extinction criteria for multi-type B.P.R.E. model. The reader is referred to
Section 1 concerning notation and background material. Let {,, ¢ = 0 be a station-
ary metrically transitive process and associated with {, a p-vector p.g.f. @;(s)
(cf. Section 1) with mean matrix A, = ||09()(1)/3s;||. We assume that w.p.1

(1
(53) 0<C=—F— q%( )<D<oo j=1,p
52¢‘£3(1) .
0<—5W§D<OO 1,],k=1,...,p
and
(54) E[—log(l—tpgo(O)J)] < o0

where (x, y) designates the inner product of the indicated vectors and 1 represents

the vector with all components one.
Subject to the restrictions (53) and (54) we recall from (24) the result of
Furstenberg and Kesten (1960) asserting the existence of the limits

(55) lim,,,n"'log||d Ay, Agl| =7 w.p. 1
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and
lirnn—voo n_l E[log HAZnACn—l ACoH] =T

In our case because of (53) it is clear that = is finite.
The limit relation (55) can be expressed equivalently in the form

(56) lim,, ,n~"log1,({) =lim,, ,n" 'Elogi,(l) ==

where 4,({) is the spectral radius of the matrix I'({) =A4,,_ A4, ,--- A, and
E = (Co, ¢1, Clzy )

The confirmation of (56) relies on (55) and familiar characterizations of the
spectral radius for positive matrices. Let

(57) () = limy., o, (@1, (- 94,(0) ) = lim,,. ., .({)

denote the extinction probability vector. In terms of components we write

0(0) = (&0, 2.0+ ¢.7(D)-

Manifestly q,(0) < q,+.(0). (Recall that the notation x < y signifies that every
component of y—x is positive.)

THEOREM 12. Let the conditions (53) and (54) hold.

() Ifn <OthenP(q) =1) = 1.

(i) If 1 > O then P(q({) < 1) = 1.

ReMARK. The restrictions (53) and (54) can be considerably weakened with the
validity of assertion (i) retained as the proof will amply demonstrate.

To ease the exposition of the proof of assertion (ii), we separate out two technical
lemmas.

LEMMA A. Assume the hypothesis of the theorem holds. Let
vk(Z) = (Ul(s1)9 Ul(cZ)’ Tty Ul(cp))

be the unique right eigenvector for the matrix r(l) =4, _,Ag_, - Ay, normalized
so that <v(0),1y =Y ?_, v = 1. For each fixed k, the sequence of functions

1 “qu(g), Vk(Z)> :l _
%) log[<1—Q<r-1)k(T"f),Vk(T"Z)> ’ b

is dominated by an integrable function depending on k but independent of r.

ProoF. Since I',(0) is a positive matrix with elements bounded away from zero
(condition (53)) we infer the existence of positive constants such that

(59) 0 < C £min, ¢;,0,(0) £ max; ¢, 0, £ D < 0

and corresponding positive constants C,”,D,” apply for the vector v,(T*{).
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Set /i(s) = 05(@0( 05, (5) ) = (LD A2N5), - PXs)).

Now determine ¢, > 0 so that for

o 1 2%,9(1)
k= Ckllp ma’xléi,v,ugpm ’
we have
(60) &S, < G,

where C, satisfies T (0)vi(0) = Cvi(T,.0) and this vector inequality is interpreted
as valid for all components. Conditions (53) and (59) assure the existence of such
G, >0. :

Note on the basis of (53) that «;, > 0 exists fulfilling the inequality

(61) min, ¢; ., [1 AP, L,1—¢g, 1, 1)] 2 &, >0

where f,(” is evaluated at a vector point having one coordinate equal to 1—g,
with the remaining coordinates equal to one.

We are now prepared to estimate (58). Specify E, (0 < E, < oo) such that
T (Dvi(D) £ Ew(0) which is clearly feasible by virtue of (53). Convexity and this
last inequality yield

(62) =40, vD)> = A=l - 1 T*D)), Vil D))
=<1—-q,- 1)k(T"f), Fk(C)vk(f)>
< EfQ —q¢- l)k(TkZ)’ vk(5)>]

The desired upper bound becomes

1 —qu(Z), vk(Z)> <E 1 —q,- 1)k(TkC),Vk(E)> < E.D}/
1 —q¢- 1)k(TkZ)9 Vk(TkZ» =Tk A-q,_ l)k(TkZ)a Vk(TkZ)> =G
With view to establish a lower bound for (58) we define
Ry, = 1—q— 1y (T*0), T(Ovil0)> — (1= 41 D), Vil D).

which is manifestly nonnegative (see (62)).
Taylor’s expansions of 1—£,(q,, - 1)k(T"C)) reveals that

(63) R, = Sk{maxl <i<p [1 - ‘18)— 1)k TkZ)]Kl —q¢- 1)k(TkZ)’ Vk(TkZ»-
Now using this inequality on the set I = {{; max, ;;c,[1—g{- W(T*))] < ¢} and
referring to (60), we obtain

A=0aDvD) A=l T). TN —Re _ .
(64) <1_q(r—1)k(T"C),vk(T"E)> - <1—q(r—1)k(TkE),vk(TkZ)> 2 C, >0.
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For { € I (complement of I) we have max, <;<,[1 —q{- 1, (T*])] > &. It follows
by virtue of (61) and (59) that

(65) < _qu(Z)a Uk(Z)> <1 _fk(‘I(r 1)k(TkC) vk(C)> Gy
<1—‘1(r—1)(TkC), Uk(TkE» Ad=qq- 1)k(C) Uk(T C) aka”

The inequalities (64) and (65) together exhibit a lower bound for (58) independent
of r. The proof of Lemma A is complete.

> 0.

LEMMA B. For every |, j satisfying 1 £ i,j < p, we have

— g &
(69) = I

where B and B’ are constants independent of { and n.

Proor. We develop the proof for the lower bound since the discussion for the
upper bound is analogous. Start with the obvious inequality

(l)( ) 1—gW (TC R
1— q(:)(g) Z [1—a2(TO)]-
=470 - i <P2£(1)

(u) (T C)]

where by definition

§ 20y,

Determine & such that pD < C. On the set {{; max,<,<,[1—q,(TC)] £ 6}
we secure (66) as in Lemma A. On the complementary set, we have

1—(1,,(i)(zj) 1— q,(r)(q" 1(Tz;) (‘)(1 G1,1-6,1,-,1)
=400 1-9%(a,-(T0) = —oP(0)
The proof is complete.

With the aid of this lemma, and since v,({) and v,(T*{) are normalized vectors,
we deduce

a.2(T)]-(1-4,() =R 2 0.

= p>0.

COROLLARY A. For all positive integers r and k,

1 —q— T, V(D))
<1_q(r—1)k(TkZ),vk(TkE)> 2 ﬁ > 0.

PrGOF OF THEOREM 12. (i) Suppose n < 0. On the basis of (55) we see that

o> fz

limn-’oologHAgo'”AC"H =]imn—>0010g]|A/§n”. 200“ = —0.
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+logp,

Obviously

log(1—q,(0), 1> < log||4,, - 4,
and the right side goes to —oo w.p.1. Whence

lim,, ,q,({) =1 w.p. 1.

(ii) Let m > 0. Assume to the contrary that P(; q(f)_ = 1) > 0 and so by the

zero one law P({; q({) = 1) = 1. Therefore lim,_, » q.,({) = 1 w.p.1. Since = > 0

we know that En~! log 4,({) —» m and consequently E log 1,({) — oo. This fact in
conjunction with the conclusion of Corollary A for k large enough implies

E{log 4,()} — {max |log B, [log f'|} =7 > 0.

Next, write the identity

(67)  log<1—q,(D), V(D)
A =q (T, v (T~ X0)> }

= r:llog{<1_q(r_l)k(T(m—r+l)kZ)’vk(T(m—r+ 1)kz)>

IngE}

+log {1 —q(T™T), vi(T™])>.
Because of (54) we may take expectations in (67). Invoking stationarity leads

to the identity
(68) Hm = E[lOg <1 - qu(Z)’ vk(Z)>]

= 1 —qu(g)’ Vk(f)) _
= r;1 E [log {<1 “qo_ l)k(TkE)’ v,(T"f))jI} +E[log{1— Qk(C), Vk(c»]

=

0.+ u,.
1

r

But
0. =Elo {<l Y- 1)k(TkE)’ACk— lACk—Z. ’ .ACOV"(Z)> - R'vk}
T g <1_q(r—l)k(Tk€)’ Vk(TkZ»

where
R =<{1-q,_ 1)k(TkC)’ Fk(C) Vk(i)> —1- qu(Z)’ Vk(Z)>

Since q,,(T,{) - 1 w.p.1 and R, is bounded by the quadratic form

S E, Z£j=l (1 - Qf?— l)k(TkE))((l - q}i’— nk(Tkz))

Rr,k

we may infer that
Rr,k 0 ]
= - w.p.i.
<1_q(r—1)k(TkC)’vk(TkC)> P

(69)
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Now Lemma A tells us that the integrand in the definition of 0, is uniformly
dominated by an integrable function and therefore in view of (69) we have

=g o T0) T OVl
log|: A =g (TO), v(TH)> ]}
> E{log 4({)} —max {|log ], [log '}

the last inequality resulting by virtue of Corollary A and the fact I'(D)u () =
Ay AclAcon(Z) = A (Duv (D). But (70) compared to (68) clearly implies

r— o

(70) liminf,_ 0, 2 E{lim inf,

limm—*oo {Z:'n=l 9r+u0} — +00.

On the other hand, since g,,({) increases to 1 we see that u,, - —oco. These evalu-
ations manifest a contradiction and the proof of (ii) is complete by reductio ad
absurdum.

RemARK. The conditions (53) and (54) are more stringent than necessary. They
served in a technical capacity in order to justify suitable interchanges of limits
with integral.

Acknowledgment. We express our gratitude to Norman Kaplan for a number of
helpful discussions.
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