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ON BROWNIAN MOTION, BOLTZMANN’S EQUATION,
AND THE FOKKER-PLANCK EQUATION*

BY
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JAMES E. STORER
Cruft Laboratory, Harvard University

Abstract. In order to describe Brownian motion rigorously, Boltzmann’s integral
equation must be used. The Fokker-Planck type of equation is only an approximation
to the Boltzmann equation and its domain of validity is worth examining.

A treatment of the Brownian motion in velocity space of a particle with known
initial velocity based on Boltzmann’s integral equation is given. The integral equation,
which employs a suitable scattering kernel, is solved and its solution compared with
that of the corresponding Fokker-Planck equation. It is seen that when M /m, the mass
ratio of the particles involved, is sufficiently high and the dispersion of the velocity
distribution sufficiently great, the Fokker-Planck equation is an excellent description.
Even when the dispersion is small, the first and second moments of the Fokker-Planck
solution are reliable. The higher moments, however, are then in considerable error—an
error which becomes negligible as the dispersion increases.

1. In the treatment of Brownian motion, it is customary to assume a Langevin
equation and simple dynamical statistics of the individual collisions and then to deduce
a Fokker-Planck equation describing the random motion of the heavy particle. The
Fokker-Planck equation obtained is a second-order partial differential equation and the
absence of higher-order differential terms is inferred directly from the above assumptions.
As will be seen, the solution of this Fokker-Planck equation does not provide a com-
pletely satisfactory physical description. Consequently, the assumptions underlying the
equation cannot be correct [1, 2, 3, 4] and the extent of their approximate validity comes
under question.

That the solution of the Fokker-Planck equation is not a wholly satisfactory repre-
sentation of Brownian motion may be seen in the following way. Consider a heavy
particle known to have the velocity v, at £ = 0. For all subsequent time, there is a finite
probability that the particle will have undergone no collision. It must, therefore, be
expected that the probability density w(v, {)** describing the stochastic motion in velocity
space will always have a singular component of the form f(f)6(v — v,), where §(v — v,)
is the Dirac delta-function. If one were to try to describe the motion by the Fokker-
Planck equation

2D _ 1 Dvu(s, 1) + 99 v, ), M
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**The function w(v, 0) obeying (2) is often represented in the literature by P,(vo/v; t), the probability
density for velocity v, ¢ seconds after there is a known velocity v.
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subject to the initial condition
’LU(V, O) = 5(V - Vo)y (2)

no such singular component would be available in the solution. The immediate dis-
appearance of an initial singularity is, indeed, characteristic of all diffusion equations of
finite order. Only by means of an integral equation can such a singularity be maintained.

All of this, of course, is in keeping with the fact that fundamental to the description
of Brownian motion is Boltzmann’s equation, an integral equation of the type desired [4].
If A(v’, v) dv is the probability per unit time that a particle with velocity v’ will undergo
a transition to a volume dv about v, the Boltzmann equation describing the motion is

28— [, pA@, v av = wiv, i [ A, v) dv. ®

This is simply an expression of the fact that the rate of change of the population of a
cell in velocity space is the difference between the rate of departures from the cell and
the rate of arrivals.

From this Boltzmann equation a corresponding Fokker-Planck equation may be

derived. If Eq. (3) is multiplied by an arbitrary, but suitably behaved function R(v),
and integrated over v,

[ B ) 2290 4y [ R, 94w, v) dv’ dv
— [[ B, paw, v) dvay
- ff {Z:: (l__vlm'v"”R(v')}w(v', HAW', v) dv dv’ @)
- f f Rw(v, ) A(v, v') dv dv’

ff{z (v — v’)< V’("’R(v’)}w(v’ DA, V) av’ dv.

Here (v — v/)™-V¥’'™ is to be understood as the dot product of two n-th-rank tensors.
Integrating by parts, one has

f R "w(" O, 8) o ff R(v') i% VIO — AW, WV, D) dv dv. (5)

Since R(v’) is an arbitrary function, the associated coefficients may be equated to yield

2t = Z AARIERGIAI ©

where A4,(v) is the tensor

Ay = / ¥ — V)" A, V) dv. 7)

Equations (3) and (6) are equivalent and provide an exact description of Brownian
motion.
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This treatment may be readily generalized to include Brownian motion in coordinate
and velocity space.

2. In those treatments of Brownian motion based on Langevin’s equation, moments
higher than the second are found to vanish, and the Fokker-Planck equation (3) is
obtained. As already noted, such an equation is certainly unsatisfactory when the dis-
persion is small. It would, therefore, be desirable to try to treat the Boltzmann equation
directly. Plainly an exact kernel A (v, v') is unavailable and its use is almost certainly
not feasible. However, it is possible to introduce a kernel which provides a reasonably
accurate description of the microscopic scattering process and which is, at the same time,
amenable to treatment. Such a kernel is of the form A(v, v) = @(v" — yv), where v
is a dynamical damping parameter close in value to, but less than, one. Some justification
for this form may be found along the following lines:

Let B(v, v') dv’ be the probability per unit time of a particle with initial velocity »
making a transition to a volume element dv’ about v/, when all the particles with which
the heavy particle collides are stationary. If the lighter particles have an equilibrium
distribution w(v’’), then

A, V) = f B(v — V', v — vw(") dv’’. (8)

Since the particle under observation is very much heavier than the particles with
which it collides, B(v, v') is a highly localized function of v/, centered roughly about
v where again v is very close to but less than unity. If B(v, v’) is assumed to have the
form B(v' — vv), then

A(v, V) = fB[v' — Vv = y(v — V) ]w"’) dv"’

- fB[v' — v =(1 — ) V' (V") v,

so that this will have the form of @(v' — v).
Note that the form of @(v/ — yv) implies that the mean free time r of a heavy particle
is independent of its velocity, since

% = f A(v, V) dv/ = f@(v’ —_ ’”yv) dv’ = f@(v,,) v’ ©

a constant. This behavior is proper to Brownian motion where the heavy particle moves
so slowly compared to the lighter particles that the mean relative velocity of the heavy
particle does not vary significantly.

It would appear offhand that the functional form of @(v) could be chosen arbitrarily.
However, this is not the case since @(v, v/) must satisfy the equilibrium condition:

o(V)AWV, v) = o(V)A(v, V) (10)

where w(v) is the equilibrium distribution of the heavy particles which the particle will
ultimately assume. If it is also demanded that w(v) depend only on | v [, the two re-
strictions imply that @(v) must have the form @, exp {—Bv’} and that »(v) must
have the corresponding form w, exp {—8(1 — ¥°)v’}, where @, and w, are constants
(see Appendix 1). That the Gaussian character of the equilibrium distribution follows
from the form of @(v — yv’) is reassuring.
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Thus, the Boltzmann equation to be solved is

____aw(;rt ) _ Q@ f w(v’, ) exp {—B(v — yv')*} dv’ — %w(v, 9, (11)
where
1= [av -mav =a [ e (-80 — ) av'

(12)

3/2
1,2 "o s
—Ctofexp{-ﬂv } dv —Qo(ﬂ) .

Before discussing the solution of this equation, it is worth while to put down the
corresponding Fokker-Planck equation. The first moment will be given by

A =@ f (v — V) exp {—B(V — yv)*} dv’

& [ v = v) + (1 = D] exp (—6 — %)} dv
(13)
= @l =)V [ exp (=8 — )"} av’

ol 6= - (52,

Similarly for the second moment,

4= a [ (7= V)0 = V) exp =B — v’} dv’

=@ [ 10 = W@ = 1) + (1 = 7] exp (B — 9)Z} av
(14)

_ Gy 3/2,-5,2 2 (‘{)3/2
=57 87 % + (1 — v)*v@, 8

1 (1 — y)’wv
287 ¢+ Bt ?

where e is the unit tensor.
If the latter part of A, is ignored since (1 — v)* is small and if the higher moments
(whose effect will be small for ¢ >> 7) are ignored, Eq. (1) is regained where now

_ 1 _1-v
D=5 amd g=-T (15)

As is seen in Appendix 2, the solution of the Boltzmann equation (11) subject to
condition (2) is given by

watr, 0 =[ o = v+ S 4 (V)" ew {~Lov - v} ew {5, a0
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where

_ 1=

An——1_72.

17)

The solution of the Fokker-Planck equation (1) subject to condition (2) may be
taken directly from Wang and Uhlenbeck [1] and is given by

_ . Ve —n(v — Vo exp {—nt})’
wer(V, 1) = [rD(l —exp {—m})] e"p{ D — exp {—2nt}) } (9

Note that the singularity 6(v — v,) is preserved in the solution of the integral equation
but is not in the solution of the Fokker-Planck equation. For ¢ > 7, however, the delta-
function ceases to play a prominent role.

From Egs. (16), (17) one finds that the equilibrium distribution for the solution of
the Boltzmann equation is given by

os(@) = lim wa(v, &) = [-ﬁ—(l—;—ﬁ] exp (—B(1 — 407, 19

t—o

For the Fokker-Planck equation,

wrp(v) = (1r—"D>3/2 exp {—j’vz}. (20)

Inserting the values of 5, D from (15), this becomes:
%1 — 3/2
wrp(V) = (_(_1%)ﬁ> exp {—28(1 — y)0°}. (21)

Plainly if v is sufficiently close to one, then
I=7)=0Q-N0+7==201-7

and the two equilibrium distributions are identical.
It is also of interest to compare the manner in which the average velocity and the
variance vary in time. These quantities are defined by

W) = f vw(v, t) dv
and
() = f W — @), &) dv.

Ws(t), (Mep(), o5(t), and o7 ,(f) may be computed directly from their respective equa-
tions of motion. Thus, if Eq. (1) is multiplied on both sides by v and integrated over v,
then

%%2 = —n(v), so that (Vep(t) = vo exp {—nt} = v, exp {—1 : 7t}. (22)
Similarly, multiplying by v* and integrating, it is found that

4) ~ 3D - 2w, (23)
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which yields in turn

22— L () — ) = 3D — 2% 21)

and so

e = 32 (1 — e (—2) = gt (1 - ew {-Za - ). 9

The same procedure may be applied to the integral equation (11) to give

W)a(t) = Vo exp {—(1 — 7)t} (26)

T

@)a(t) = %(1—3_75 [1 — exp {-(1 :72>t}] + V2 exp {—(1 ‘772)t}. @7)

Correspondingly, one finds that

2,08 3 _ _ _(1 - 72)’:
7o) = 5801 — 77 [1 e"p{ r }]

oo (=L - e (o 5)1 )

These same results could also have been obtained from the solutions (16) and (18),
but the computations are more tedious.

It is seen that (v5)(f) and (vep)() are identical and that ¢5(f) and o7s(t) are nearly
identical. Indeed, if the smaller term in 4, had not been ignored in obtaining the corre-
sponding Fokker-Planck approximation, o7(f) and ¢%p(f) would have been precisely the
same. For consider the Boltzmann equation in its differential form:

and

W _ N o
3= 2V (4w,

The above procedure yields

d_(‘ﬁ _ 2=y (1) 2y (2)

F7Ri /VV -(4,w) dv+va -(Aw) dv,

since all integrals involving higher moments vanish when integration by parts is carried
out. Moreover, from the choice of A (v, v’), the two integrals are simple functions of
(v*) and the above differential equation does determine (v*)(f). The same procedure
applied to the Fokker-Planck equation can only yield the same result, because all con-
tributing terms are present.

It is seen then that the validity of the Fokker-Planck approximation is excellent
when v is sufficiently close to one. For the ordinary domain of Brownian motion this
will certainly be the case. For the elastic collision of hard spheres, for example, it is
easily found that

—4 m
(M =3 F "
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where (4v) is the mean change in velocity suffered by a particle of mass M and velocity
v in a single collision with particles of mass m. Then
dv) (v) _ -4 m

dt = 1 3 M+ mr"

so that, from Eqgs. (15) and (22)

_ (=7 _4 m
T T3 (M + myr

1 — « then is given by 4/3 m/(M + m) and for typical Brownian motion will be ex-
tremely small.

If it were possible to treat the exact kernel A (v, v'), one would still expect to find
excellent agreement between the Fokker-Planck and Boltzmann solutions for ¢ > r.
Even when ¢ ~ 7, the first and second moments of the Fokker-Planck equation should
be reliable. But for ¢ ~ 7, higher-order moments would be in considerable error. However,
for £ >> 7, these errors will become entirely negligible.
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Appendix 1
The Restrictions on @(v) and w(v) Imposed by Equilibrium

Denoting the rectangular components of v by v , ¢ = 1, 2, 3, and letting
‘l’(vl y U2, 7)3) = IIl @(V),
the equilibrium relation (10) can be written in the form

In w(v') 4+ Y@, — v, v — v}, vs — y05)

(1-1)
= Inw(v) + Y@ — v, , 0 — Y, , 05 — ).

Taking the partial derivative of Eq. (1-1) with respect to v, , ¢/ , and noting that

9 o) = =L ) = 0
dv; 9" I, o) ’

it is seen that

=y — Y0l , 0 — s, 05 — WE) = —y¥E] — 01, 05 — 0., 0f — ), (1-2)
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where
62
av; o;

Vi = Y1, 0; ,0;5).

Setting v} = yv;, v/ = (1 — %o, in (1-2), it is further observed that
'pii(v{’) v;,) v:{)l) = ‘pii(oy 0: O) = _Isii )
where 3;; is a constant. Hence y¢/(v, , v, , v;) must be of the form
3 3 3
Y, ,0;) = — Z Z Bivv; + Z ap; + A,

i=1 j=1 1

where o; and A are constants. Inserting this result into (1 — 1), one finds that
3 3 3

Ino® = =2 2 Bl — ¥, + 2 el + v + 4. (1-3)

i=1 j=1 1

But, since the distribution of small particles is assumed to be isotropic, one has

o) = o(| v ]) = (@ + v; + ). (1-4)
The only possible way (1 — 3) can satisfy this condition is for
B,',' = BB;; 5 a; = 0. (1-5)

Hence

Q@) = Qo exp {—B’},  w@) = wo exp {—B(1 — ¥)'},

where @, and w, are constants.

Appendix 2
Solution of the Boltzmann Equation

It is desired to solve Eq. (11) subject to the condition (2). Two methods will be given.
One procedure is to introduce the Fourier transform of w(v, ), i.e.,

Tk, §) = f exp {fk-v}w(v, §) dv
with
T.,k, 0) = f exp {1k-v} 8(v — Vo) dv = exp {ik-v,}.

Taking the Fourier transform of Eq. (11) one obtains the following equation for
T,k t):

21 ) = AWT.0k, ) — 1T.6 0, )
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where
Ak) = f exp {ik-v}a(v) dv = @, f exp {ik-v — 8°} dv
)\ K 1 K
- aly) " en {5} = oo {8}
It is now convenient to introduce the Laplace transform
Lk, o) = [ ew (st T, 0 d;
then

fo " exp {—st} a%T.,,(k, ) dt = —T,(k, 0) + sL.(k, ) = —exp {ik-vo} + sLu(k, ).

Thus, taking the Laplace transform of (2-1), one obtains the equation for L, (k, s),

2
—exp {k-Vo) + sLo(k, s) = %exp {—f}Lw(yk, 9 = 1 Lk, 9.
This may be rearranged to give
L.k, s) = L exp {ik-vo} + Lp— exp {—E}Lw(vk, s). (2-2)
s+ 77" Ts4 7! 48

The finite difference equation (2-2) may be solved by the following procedure: Replace
k by vk. This yields

1 . 1 1
L,(vk, s) = +8 g exp {ivk-vo} + B T

Equation (2-3) may be used to eliminate L,(vk, s) from (2-2), yielding

1 €Xp {—742 }Lw('y2k’ S). (2'3)

kv, — k*/48}
s+ °

Lu(k, 9) = - _'_1 exp {ik-vo} + l;eXp {

(2-9)
_22
_|_leXP{ 71:/465
T s+ 7

Replacing k by v’k in (2-2), the resulting equation may be used to eliminate L, (’k, s)
from (2-4). Continuing in this fashion yields the solution

L.k, s).

— (=1)" exp {iv'k-v, — (K*/48)A,}
Lw ky = n )
(&, 5) = D " 5+

n=0

where

It is to be noted that the series is absolutely convergent.
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T,(k, {) may readily be obtained from L, (k, s) by taking the inverse Laplace trans-
form. Using a Bromwich contour it is apparent that

Tk, f) = 2—71” Ll o) ds
1

omi |, e''L,(k, s) ds

= Residue at s = —l_r of L,(k, s)

Zw: (_l)n exp {i'ynk'vo - (k2/4B)An} (2_5)

n

&t
X [Residue ats = 1L of _eﬁ]
T (s4 )"

=3 (1) R ARV — (k*/48) A, (;D" exp {_;‘}

n !

[ > % ('t> exp {#Y'k-vo — <k*/4B>A,.}] exp {—!}

0 Y

The inverse Fourier transform may now be performed and this yields

w(v, 1) = (—211:)—3f exp {—1k-v}T.(k, ) dk

_exp {—t/7} < 1 () B
- SRy () fexp{z(yvo vk 4BA,.}dk

on! T

exp {—;t}l: o — vy) + Z.::r% (;15)”(15;)3/2 exp {——% (v — 'y"vo)z}]. (2-6)

This solution may be verified by substitution.
Equation (11) may also be solved in the following way [4]. Consider the sequence
of equations,

(')wn(V, t) _ —wo(vy t)
at B T
aw\g;’ 1) _ —w(v, ) + f wo(v', DRV — V') dv’
! (2-7)
P (v ) _ —wle. 8 fwn_l(V', Ha(v — yv') dv’, etc.,
at T
subject to the initial conditions
w(,(V, O) = 6(V - VO)
(2-8)
wi(vy 0) = 0, Z # 0.
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Plainly,
w(v) t) = Z wn(v; t) (2'9)
0
satisfies Eq. (11) and the condition w(v, 0) = &(v — v,).
Then
wo(v, &) = (v — Vo) exp {—¢/7}
and

w,(V, ) = exp {—;t_} f‘ exp {f} f w,_, (v, 8)@(v — yv'’) dv’’ ds (2-10)

satisfy the equations and one need only evaluate the sequence of functions, w,(v, £). It
is seen from this last equation that if w,_,(v, f) is a product of a function of v and a
function of ¢, w,(v, {) is also such a product. Since w, has such a form, all our w, de-
compose in this way. Assume w,(v, {) = U,(v)g.(t). Then

g.(t) = exp {——f} fo t exp {f}gn_l(s) ds

U@ = @ [ Up¥) exp (=67 — v')"} dv'. (2-11)

and

It is now easy to see that

g.(t) = ni, exp {—;t} (2-12)

U,.(v) has the form a, exp {—8.(v — §,)°}, and a, , 8., 5, are connected by recursion
relations derived from Eq. (2-11), stating

Ciy €XP { =B — 8,.1)°} = @ f a, exp {—B.(v/ — 5,)°} exp {—B(v — v’} dv'.

This gives

3/2
T .
Ay = I:m] Qo with a; = Q@

Bl =B
n 2-13
o = 5 b = v (213)
8n+1 = 78n .
. 8,, = ‘Y"VO
_B8 _r =1
B. = A where A, = 1 (2-14)
372
o L(2)
T \TA,

When these are substituted into the series of Eq. (2-9), the solution is again obtained.



