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P.A. Garćıa-Sánchez and J.C. Rosales

We give an arithmetic characterization which allow us to de-
termine algorithmically when the semigroup ring associated
to a simplicial affine semigroup is Buchsbaum. This charac-
terization is based on a test performed on the Apéry sets of
the extremal rays of the semigroup. We use this method to
obtain the cardinality of minimal presentations for semigroups
with minimal Apéry set.

Introduction.

Let S = 〈n1, . . . , nr, nr+1, . . . , nr+m〉 ⊆ Nr be a simplicial affine semi-
group, that is LQ+

0
(S) = LQ+

0
({n1, . . . , nr}), where LQ+

0
(A) = {

∑
qiai | qi ∈

Q+
0 and ai ∈ A}. We assume that the elements n1, . . . , nr are linearly inde-

pendent (otherwise S can be embedded in Ns with s < r). This enables us
to suppose that, up to isomorphism, ni = αiei with αi ∈ N\{0} (as usual, ei

denotes the element in Nr all of whose coordinates are equal to zero except
the i-th which is equal to one). We will refer to n1, . . . , nr as the extremal
rays of S.

Let K[S] =
⊕

s∈S Kys be the semigroup ring associated to S. We say
that S is Cohen-Macaulay if the ring K[S] is Cohen-Macaulay. The same
stands for the notions of Gorenstein, Buchsbaum and complete in-
tersection semigroup. In [10] the authors gave a characterization of the
Cohen-Macaulay and Gorenstein property for simplicial affine semigroups in
terms of the Apéry sets of its extremal rays. In that paper we also studied
the form and cardinality of a minimal system of generators of the defining
ideals of this type of semigroup rings. The mentioned paper was inspired
mostly in the characterization given by Goto, Suzuki and Watanabe in [5]
and in the generalization given in [16] by Trung and Hoa. Here we focus
our attention on Buchsbaum semigroups. There are a lot of papers devoted
to the study of the structure of arithmetically Buchsbaum monomial curves
(see for instance [1, 7, 12, 15]). Using as a starting point the characteriza-
tions given by Trung in [14] and by Kamoi in [8], we present an alternative
characterization of the Buchsbaum property in Theorem 5 (compare with
Theorem 1.1, page 230, in [13]). This result is used later to achieve The-
orem 9 which is the main result of this paper and presents an arithmetical
characterization of the Buchsbaum property for simplicial affine semigroups
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in terms of the Apéry sets of their extremal rays. This main theorem pro-
vides us with a procedure for deciding whether or not a given simplicial
affine semigroup is Buchsbaum. Finally these results are also used to give
the exact cardinality of a minimal presentation of a Buchsbaum simplicial
affine semigroup with minimal Apéry sets (using the notation in [4], these
are Buchsbaum simplicial affine semigroups with maximal embedding di-
mension, and what we count here is the number of elements in a minimal
system of generators of the defining ideal of the semigroup ring associated to
the given monoid; see this reference for an explicit expression of the Hilbert
polynomial for this semigroup ring). The number of elements of a minimal
presentation for this kind of monoids is obtained from the Apéry sets of
its extremal rays and in this way this result generalizes the bound given
for Cohen-Macaulay simplicial affine semigroups with maximal codimension
presented in [10].

1. A characterization of Buchsbaum semigroups.

For every k ∈ N, define

Sk = {x ∈ Nr | there exists 1 ≤ i < j ≤ r

such that x + kni ∈ S, x + knj ∈ S}.

The characterizations given here for Buchsbaum semigroups are based on
the following result.

Proposition 1. The following conditions are equivalent.
(i) S is a Buchsbaum semigroup.
(ii) S2 + (S \ {0}) ⊆ S.
(iii) For every 1 ≤ i < j ≤ r and u, v ∈ S, if v + 2nj = u + 2ni then

v + (S \ {0}) ⊆ 2ni + S.
(iv) For every x ∈ S, if x− 2ni, x− 2nj ∈ S, for some i 6= j ∈ {1, . . . , r},

then x + nk − (2ni + 2nj) ∈ S for all k ∈ {1, . . . , r + m}.

Proof. The equivalence between (i) and (ii) appears in Lemma 3 of [14].
The conditions (i) and (iii) are equivalent by Proposition 2.3 of [8]. Finally
(iii) if and only if (iv) follows easily taking x = v + 2nj = u + 2ni. �

There are several characterizations of the Cohen-Macaulay property sim-
ilar to Proposition 1. Next we give one of them.

Proposition 2. The semigroup S is a Cohen-Macaulay semigroup if and
only if Sk = S for every k ∈ N \ {0}.

Proof. The fact that S1 = S is equivalent to the Cohen-Macaulay property
for S is part of Corollary 4.4 in [16]. Besides, once S1 = S, one can prove
that Sk = S for all k ≥ 2. �
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In order to reformulate the Buchsbaum property for simplicial affine semi-
groups, we have to introduce some notation. The Apéry set of an element
n of S is the set

S(n) = {s ∈ S | s− n 6∈ S}.
The subgroup of Zr generated by {n1, . . . , nr} is denoted by G({n1, . . . , nr}).
Let S be the set of elements x in Zr such that x + ni ∈ S for all i ∈
{1, . . . , r + m}. Note that this set is a semigroup that contains S and that

S = {x ∈ Nr | x + ni ∈ S for all i ∈ {1, . . . , r + m}} .

Since S ⊆ Nr and LQ+
0
(n1, . . . , nr) = (Q+

0 )r, then S is simplicial as well.

As a consequence of the following result, S is finitely generated.

Lemma 3. Every submonoid T of Nr containing {n1, . . . , nr} is finitely
generated.

Proof. It is easy to see that since T is simplicial, every element t in T can
be written as t =

∑r
i=1 aini + w for some ai ∈ N and w ∈

⋂r
i=1 T(ni). If we

want to demonstrate that T is finitely generated, it suffices to prove that
the set

⋂r
i=1 T(ni) has a finite number of elements. For proving this, define

in
⋂r

i=1 T(ni) the following equivalence relation:

x ∼ y if x− y ∈ G({n1, . . . , nr}).
Since there are at most α1 · · ·αr elements in Nr modulo G({n1, . . . , nr}),
there is a finite number of ∼-classes in

⋂r
i=1 T(ni). If we show that for every

x = (x1, . . . , xr) ∈
⋂r

i=1 T(ni), its ∼-class [x] is finite, then we conclude
the proof. Set m = (x1 mod α1, . . . , xr mod αr). Clearly, for every element
y ∈ [x], there exists ay

1, . . . , ay
r ∈ N such that y =

∑r
i=1 ay

i ni + m. If there
exists y, z ∈ [x] for which (ay

1, . . . , ay
r) < (az

1, . . . , az
r), then z = y+

∑r
i=1(a

z
i−

ay
i )ni 6∈

⋂r
i=1 T(ni), which contradicts z ∈

⋂r
i=1 T(ni). Hence the set of

elements A = {(ay
1, . . . , ay

r) | y ∈ [x]} is a set of incomparable elements with
respect to the usual partial order in Nr (product order). Using Dickson’s
lemma, it follows that there exists a finite number of elements in A and thus
a finite number of elements in [x]. �

The following result indicates a connection between Sk and S.

Lemma 4.

S ⊆ S ⊆ S1 ⊆ (S)1 ⊆ S2 ⊆ (S)2.

Proof. Follows easily from the definitions of Sk and S. �

The next statement justifies the definition of the semigroup S.

Theorem 5. The semigroup S is Buchsbaum if and only if S is Cohen-
Macaulay.
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Proof. Necessity. By Proposition 1, we have S2 + (S \ {0}) ⊆ S, whence
S2 ⊆ S. Since the opposite inclusion always holds, S2 = S and by Lemma 4,
it follows that S = (S)1, which by Proposition 2 implies that S is Cohen-
Macaulay.

Sufficiency. By Proposition 2, S = (S)2. From Lemma 4 it follows that
S2 = S, which by the definition of S leads to S2+(S\{0}) ⊆ S. Proposition 1
asserts that S is Buchsbaum. �

From the characterization of the Cohen-Macaulay property, if S is Cohen-
Macaulay and x + ni, x + nj are in S, for i 6= j ∈ {1, . . . , r}, then is x ∈ S.
Thus if S is Cohen-Macaulay and r ≥ 2, then S = S. (The case r = 1 is
the numerical case and all numerical semigroups are Cohen-Macaulay and
Buchsbaum.)

As an easy consequence of Theorem 5 we obtain the following remark (the
proof is left to the reader).

Corollary 6. Let T be a simplicial affine Cohen-Macaulay semigroup mini-
mally generated by {n1, . . . , nr, nr+1, . . . , nr+m} and A be a nonempty subset
of {nr+1, . . . , nr+m}. Then T \A is Buchsbaum but not Cohen-Macaulay.

We illustrate this with an example.

Example 7. Let S be the semigroup finitely generated by

{(2, 0), (0, 2), (1, 1)}.
Clearly S is Cohen-Macaulay (it is even a complete intersection). The semi-
group S \ {(1, 1)} can be generated by

{(2, 0), (0, 2), 2(1, 1), 3(1, 1), (2, 0) + (1, 1), (0, 2) + (1, 1)},
whence S\{(1, 1)}=〈(2, 0), (0, 2), (3, 1), (1, 3)〉 is Buchsbaum but not Cohen-
Macaulay.

2. How to determine whether a simplicial affine semigroup is
Buchsbaum.

As we did in the previous section, we define in
⋂r

i=1 S(ni) the following
binary relation:

x ∼ y if x− y ∈ G({n1, . . . , nr}).
The next result is used in [10] for giving a procedure for determining whether
a simplicial affine semigroup is Cohen-Macaulay.

Proposition 8. The following statements are equivalent.
(i) S is a Cohen-Macaulay semigroup.
(ii) For any s ∈ S and i 6= j ∈ {1, . . . , r}, if s − ni and s − nj are in S

then s− (ni + nj) also belongs to S.
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(iii) For every element s ∈ S there exists a unique element (a1, . . . , ar) ∈
Nr and a unique element w in

⋂r
i=1 S(ni) such that s =

∑r
i=1 aini +w.

(iv) For every x, y ∈
⋂r

i=1 S(ni), if x− y ∈ G({n1, . . . , nr}), then x = y.
(v) For every x ∈

⋂r
i=1 S(ni), [x] = {x}.

Proof. The equivalence between (i)-(iv) appears in [10]. Condition (v) is a
reformulation of (iv). �

The next proposition shows what happens in the Buchsbaum case.

Theorem 9. The affine semigroup S is Buchsbaum if and only if, for every
x ∈

⋂r
i=1 S(ni), if #[x] ≥ 2, then there exists m ∈ S such that [x] =

{m + n1, . . . , m + nr}.

Proof. Necessity. Let us assume that #[x] ≥ 2. By Theorem 5, S is Cohen-
Macaulay (recall that S is a simplicial affine semigroup whose extremal rays
are the extremal rays of S). Proposition 8 ensures that there exist unique
m ∈

⋂r
i=1 S(ni) and (a1, . . . , ar) ∈ Nr such that x =

∑r
i=1 aini + m. In

particular, this implies that x − m ∈ G({n1, . . . , nr}), whence y − m ∈
G({n1, . . . , nr}) for all y ∈ [x]. We show that in this case m cannot be in S.
If this were not the case, then a1 = · · · = ar = 0, since x ∈

⋂r
i=1 S(ni). Thus

m = x. Recall that #[x] ≥ 2 and hence there exists y ∈ [x] \ {x}. Using
once more Proposition 8, there exist m′ ∈

⋂r
i=1 S(ni) and (b1, . . . , br) ∈ Nr

such that y =
∑r

i=1 bini + m′. It follows that m′ − m = (x − m) + (y −
x) + (m′ − y) ∈ G({n1, . . . , nr}). Condition (v) of Proposition 8 ensures
that [m] = {m}, which leads to m = m′. Therefore b1 = · · · = br = 0, since
y ∈ [x] ⊆

⋂r
i=1 S(ni). This means that y = m = x, which contradicts y 6= x.

We show next that {m + n1, . . . , m + nr} ⊆ [x]. Since m ∈ S, we get
that m + nk ∈ S for all 1 ≤ k ≤ r. The affine semigroup S is simplicial and
for this reason there exists (c1, . . . , cr) ∈ Nr and w ∈

⋂r
i=1 S(ni) such that

m+n1 =
∑r

i=1 cini+w (observe that this forces w to be in [x]). In addition,
w ∈ S and S is Cohen-Macaulay, which by Proposition 8 implies that there
exist (d1, . . . , dr) ∈ Nr and m′ ∈

⋂r
i=1 S(ni) such that w =

∑r
i=1 dini + m′.

As before, we can deduce that m = m′. It follows m + n1 = (c1 + d1)n1 +
· · ·+ (cr + dr)nr + m. From Proposition 8 we get that c1 + d1 = 1 and that
c2 + d2 = · · · = cr + dr = 0. This leads to w = m + n1 ∈ [x]. Similarly it is
shown that m + ni ∈ [x] for all i ∈ {2, . . . , r}.

For the opposite inclusion, take y ∈ [x]. Then y ∈ S ⊆ S. By the
same argument used above, there exists (a1, . . . , ar) ∈ Nr for which y =∑r

i=1 aini + m. The fact that y ∈ S implies that
∑r

i=1 ai ≥ 1 and y ∈⋂r
i=1 S(ni) forces

∑r
i=1 ai = 1. Hence y = m + ni for some i ∈ {1, . . . , r}.

Sufficiency. Define

A =
{

m[x] [x] ∈
⋂r

i=1 S(ni)/ ∼
}

,
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where m[x] =
{

x if #[x] = 1,
m if [x] = {m + n1, . . . , m + nr}.

From the definition of A, any two of its elements are incongruent modulo
G({n1, . . . , nr}). If we prove that

⋂r
i=1 S(ni) ⊆ A, we get that

⋂r
i=1 S(ni)

fulfills the same condition, which by Proposition 8 means that S is Cohen-
Macaulay and by Theorem 5 that S is Buchsbaum. Thus it suffices to
show that

⋂r
i=1 S(ni) ⊆ A. Take x ∈

⋂r
i=1 S(ni). Then x ∈ S, whence

x+n1, x+n2 ∈ S. Since S is simplicial, there exist (c1, . . . , cr), (d1, . . . , dr) ∈
Nr and w,w′ ∈

⋂r
i=1 S(ni) such that x + n1 =

∑r
i=1 cini + w and x + n2 =∑r

i=1 dini + w′. It follows that w′ ∈ [w]. By the definition of A, there exists
m ∈ A for which w = m or w = m + ni for some i ∈ {1, . . . , r} and m′ ∈ A
such that w′ = m′ or w′ = m′ + nj for some j ∈ {1, . . . , r}. In any case,
since w′ ∈ [w], we have m = m′. Thus both x + n1 and x + n2 can be
written as x + n1 =

∑r
i=1 aini + m and x + n2 =

∑r
i=1 bini + m for some

(a1, . . . , ar), (b1, . . . , br) ∈ Nr, which this leads to

a1n1 + (a2 + 1)n2 + a3n3 + · · ·+ arnr = (b1 + 1)n1 + b2n2 + · · ·+ brnr.

Since {n1, . . . , nr} is a basis of Qr, we get that a1 = b1 + 1, which implies
that a1 ≥ 1. Hence x = (a1 − 1)n1 + a2n2 + · · · + arnr + m. In addition,
m ∈ S and x ∈

⋂r
i=1 S(ni), which forces x to be equal to m. �

If we know
⋂r

i=1 S(ni), then we can check for every x ∈
⋂r

i=1 S(ni),
whether #[x] = 1 or [x] = {m + n1, . . . , m + nr} for some m ∈ S. If
this is not the case, then S is not Buchsbaum. In [3, 10] an algorithm for
computing the set

⋂r
i=1 S(ni) is presented. This idea is based on the fact

that
r⋂

i=1

S(ni) ⊆
{∑m

i=1 γr+inr+i γr+i < cr+i for all i ∈ {1, . . . , m}
}

,

where cr+i = min{k ∈ N− {0} : knr+i ∈ 〈n1, n2, . . . , nr〉} ≤ α1 · · ·αr.

Thus Theorem 9, together with the algorithm for computing
⋂r

i=1 S(ni),
constitutes a method for deciding whether a simplicial affine semigroup is
Buchsbaum.

Example 10. Let S = 〈(2, 0), (0, 1), (1, 2), (3, 1)〉. We compute S((2, 0)) ∩
S((0, 1)) as explained in [10] and obtain

S((2, 0)) ∩ S((0, 1)) = {(0, 0), (1, 2), (3, 1)}.
Observe that

[(0, 0)] = {(0, 0)}, [(1, 2)] = {(1, 2), (3, 1)} = {(1, 1) + (2, 0), (1, 1) + (0, 1)}.
Taking m = (1, 1), m+(2, 0),m+(0, 1),m+(1, 2),m+(3, 1) ∈ S and hence
m ∈ S. By Theorem 9, S is Buchsbaum but not Cohen-Macaulay, since
#[(1, 2)] 6= 1 (Proposition 8).
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The condition #[x] ∈ {1, r} is not sufficient for S to be Buchsbaum, as
the following example shows.

Example 11. Let S = 〈(2, 0), (0, 2), (3, 1), (1, 3), (1, 2)〉. Using the proce-
dure presented in [10] to compute

⋂r
i=1 S(ni) = S((2, 0)) ∩ S((0, 2)), we get

S((2, 0)) ∩ S((0, 2)) = {(0, 0), (3, 1), (1, 3), (1, 2), (4, 3), (2, 5)}.
It follows that

[(0, 0)] = {(0, 0)}, [(3, 1)] = {(3, 1), (1, 3)},

[(1, 2)] = {(1, 2)}, [(4, 3)] = {(4, 3), (2, 5)}.
By looking at [(3, 1)], the only possible candidate to be m is (1, 1). However,
m+(1, 2) = (2, 3) 6∈ S, which by Theorem 9 implies that S is not Buchsbaum,
since m 6∈ S.

3. Buchsbaum semigroups with minimal Apéry set.

In the sequel we assume that {n1, . . . , nr, nr+1, . . . , nr+m} is a minimal sys-
tem of generators of S. By the definition of

⋂r
i=1 S(ni), this implies that

{nr+1, . . . , nr+m} is included in
⋂r

i=1 S(ni) \ {0}. We say that S has mini-
mal Apéry set if

{0, nr+1, . . . , nr+m} =
r⋂

i=1

S(ni).

Here we transfer a result known for Cohen-Macaulay simplicial affine
semigroups fulfilling this condition to the Buchsbaum case. To this end,
we need to recall some basic concepts in order to fix notation.

Let ϕ be the map defined by

ϕ : Nr+m → S, ϕ(a1, . . . , ar+m) =
r+m∑
i=1

aini,

and denote its kernel congruence by σ. Then S is isomorphic to Nr+m/σ.
We say that ρ is a minimal system of generators of σ if ρ generates

σ and its cardinal is minimal among the cardinal of the sets generating σ.
In this case we also say that ρ is a minimal presentation of S. It can be
shown that #ρ ≥ r + m− r = m (see [6]).

Let n ∈ S − {0}. Define the graph Gn as the graph whose vertices are

V(Gn) = {ni | n− ni ∈ S, i ∈ {1, . . . , r + m}}
and whose edges are

E(Gn) = {ninj | n− (ni + nj) ∈ S, i, j ∈ {1, . . . , r + m}, i 6= j}.
Define ρn as follows.

1) If Gn is connected, then ρn = ∅.
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2) If Gn is not connected and G1
n, . . . , Gt

n are the connected compo-
nents of Gn, then choose a vertex nji ∈ V(Gi

n) and an element αn
i =

(ai
1, . . . , ai

r+m) ∈ Nr+m such that ϕ(αn
i ) = n and ai

ji
6= 0; define

ρn = {(αn
2 , αn

1 ), . . . , (αn
t , αn

1 )}.

Take ρ =
⋃

n∈S ρn. Then ρ is a minimal system of generators of σ (this
follows from a straightforward generalization presented in [3, 11] of the
results given in [9]). Furthermore, every minimal system of generators of σ
has the same cardinality.

Example 12. Let

S = 〈(2, 0), (0, 1), (1, 2), (3, 1)〉 ⊆ N2.

The elements n ∈ S for which Gn is not connected are (3, 2), (6, 2), (4, 3)
and (2, 4).

Graph Connected components Relators

G(3,2) {(2, 0), (1, 2)}, {(0, 1), (3, 1)} e1 + e3 = e2 + e4

G(6,2) {(2, 0), (0, 1)}, {(3, 1)} 3e1 + 2e2 = 2e4

G(4,3) {(2, 0), (0, 1)}, {(1, 2), (3, 1)} 2e1 + 3e2 = e3 + e4

G(2,4) {(2, 0), (0, 1)}, {(1, 2)} e1 + 4e2 = 2e3

Hence

ρ = {((1, 0, 1, 0), (0, 1, 0, 1)), ((3, 2, 0, 0), (0, 0, 0, 2)),

((2, 3, 0, 0), (0, 0, 1, 1)), ((1, 4, 0, 0), (0, 0, 2, 0))}

is a minimal presentation of S.

In [10] the authors show that if S is a Cohen-Macaulay simplicial affine
semigroup with minimal Apéry set (there called with maximal codimen-
sion), then #ρ = m(m+1)/2. Moreover, this property characterizes Cohen-
Macaulay simplicial affine semigroup with minimal Apéry set. Let us see
what happens in the Buchsbaum case.

Theorem 13. Let S be a Buchsbaum simplicial affine semigroup with min-
imal Apéry set. Let ∼ be the equivalence relation defined over

⋂r
i=1 S(ni)

as before and λ = #{[x] ∈
⋂r

i=1 S(ni)/ ∼ : #[x] = r}. For every minimal
system of presentation ρ of S,

#ρ =
m(m + 1)

2
+ λ

r(r − 1)
2

.
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Proof. As we have indicated before, every minimal system of generators has
the same cardinality. Hence it suffices to count the elements belonging to
ρ =

⋃
n∈S ρn. For doing this, we must know which are the elements in S

fulfilling that Gn is not connected. If n ∈ S and Gn is not connected, then
this graph must contain a connected component with some of its vertices
lying in {n1, . . . , nr}, otherwise n − ni 6∈ S for all i ∈ {1, . . . , r} and thus
n ∈

⋂r
i=1 S(ni) = {0, nr+1, . . . , nr+m}, contradicting that {n1, . . . , nr+m} is

a minimal system of generators of S. For the rest of the proof and for a given
n ∈ S such that Gn is not connected, we fix G1

n (defined in the description
of ρ given above) as one of these connected components of Gn fulfilling that
some of its vertices are contained in {n1, . . . , nr}. From the construction
of ρ, for every n ∈ S and every component of Gn other than G1

n, we get
a new element in ρ. It follows that in order to count the cardinality of ρ,
we only have to decide how many connected components different from the
fixed G1

n’s are in all the possible non-connected graphs Gn’s. We first count
those connected components in all the possible non-connected graphs not
having vertices in {n1, . . . , nr} (these are of course different from any G1

n)
and then we will count those connected components having some vertices in
{n1, . . . , nr} and different from the fixed G1

n’s.
Take n ∈ S such that Gn is not connected and contains a connected

component C whose vertices belong to {nr+1, . . . , nr+m}. Then n can
be expressed as n =

∑m
i=1 ainr+i with (a1, . . . , am) ∈ Nm. Observe that∑m

i=1 ai ≥ 2, since otherwise n ∈
⋂r

i=1 S(ni). We claim that
∑

ai = 2. If
this were not the case, then there would exist i, j, k ∈ {1, . . . , m} (maybe not
different) such that n = nr+i+nr+j+nr+k+s, for some s ∈ 〈nr+1, . . . , nr+m〉.
Since nr+i + nr+j 6∈

⋂r
i=1 S(ni), there exists l ∈ {1, . . . , r} such that nr+i +

nr+j − nl ∈ S. However, this leads to n − (nr+k + nl) ∈ S, which implies
that nl is a vertex of C, contradicting V(C) ⊆ {nr+1, . . . , nr+m}. Hence n
must be of the form n = nr+i + nr+j with i, j ∈ {1, . . . , m}. Conversely,
since nr+i + nr+j 6∈

⋂r
i=1 S(ni) for all i, j ∈ {1, . . . , m}, each element of this

form yields an element in ρ. In this way we collect m(m + 1)/2 elements in
ρ.

Now we determine for which n ∈ S the graph Gn has at least two
connected components containing vertices belonging to {n1, . . . , nr} (re-
call that one of these was taken to be G1

n). If n fulfills this condition,
then there must exist i, j ∈ {1, . . . , r} such that n − ni, n − nj ∈ S and
n− (ni + nj) 6∈ S (ni and nj are in different connected components of Gn).
Since S is Buchsbaum, Theorem 5 ensures that S is Cohen-Macaulay. The
elements n − ni, n − nj belong to S, which implies that they belong to S

and by Proposition 8, we obtain that n − (ni + nj) ∈ S. This leads to
n− (ni +nj) = m ∈ S \S. As we did in the proof of Theorem 9, it is easy to
show that {m + n1, . . . , m + nr} ⊆

⋂r
i=1 S(ni) = {0, nr+1, . . . , nr+m}. Since

n−ni = m+nj and n−nj = m+ni, there exists s, t ∈ {1, . . . , m} such that
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n = nr+t+nj = nr+s+ni = (m+ni)+nj = (m+nj)+ni, which implies that
nr+s ∈ [nr+t] and thus #[nr+t] = r = #[n − ni]. In addition, m − nk 6∈ S
for all k ∈ {1, . . . , r}, since otherwise (m − nk) + nk = m should belong
to S. Hence m ∈

⋂r
i=1 S(ni). By Proposition 8, if there exists m′ ∈ S \ S

and i′, j′ ∈ {1, . . . , r} such that n = (m + ni) + nj = (m′ + n′
i) + n′

j , then
m must be equal to m′ and {i, i} = {i′, j′}. This implies that in this case
there are exactly two connected components of Gn with some of its vertices
in {n1, . . . , nr} (and this yields a new element in ρ). Thus for a fixed m,
we get as many new elements in ρ as elements of the form (m + ni) + nj we
can write with i < j. This makes r(r − 1)/2 new elements in ρ. Moreover,
for each element x ∈

⋂r
i=1 S(ni) such that #[x] = r, we get an element m as

before. It follows that we obtain λr(r− 1)/2 elements in ρ corresponding to
the graphs having at least two connected components (and therefore exactly
two) with some of its vertices lying in {n1, . . . , nr}.

We conclude that #ρ = m(m + 1)/2 + λr(r − 1)/2. �
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