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Abstract

This paper presents a GPU-based stereo matching sys-
tem with good performance in both accuracy and speed.
The matching cost volume is initialized with an AD-Census
measure, aggregated in dynamic cross-based regions, and
updated in a scanline optimization framework to produce
the disparity results. Various errors in the disparity results
are effectively handled in a multi-step refinement process.
Each stage of the system is designed with parallelism con-
siderations such that the computations can be accelerated
with CUDA implementations. Experimental results demon-
strate the accuracy and the efficiency of the system: cur-
rently it is the top performer in the Middlebury benchmark,
and the results are achieved on GPU within 0.1 seconds.
We also provide extra examples on stereo video sequences
and discuss the limitations of the system.

1. Introduction

Stereo matching is one of the most extensively studied
problems in computer vision [11]. Two major concerns in
stereo matching algorithm design are the matching accura-
cy and the processing efficiency. Although many algorithms
are introduced every year, the two concerns tend to be con-
tradictory in the reported results: accurate stereo methods
are usually time consuming [6, 17, 20], while GPU-based
methods achieve high processing speed with relatively low
disparity precision [10, 18, 24]. To the best of our knowl-
edge, most top 10 Middlebury algorithms require at least 10
seconds to process a 384×288 image pair, and the only two
GPU-based methods in top 20 are CostFilter [9] and Plane-
FitBP [19], both working with near real-time performance.

The reason behind this contradiction is straightforward:
some key techniques employed by accurate stereo algo-
rithms are not suitable for parallel GPU implementation.
A careful analysis of the leading Middlebury algorithm-
s [6, 17, 20] shows that these algorithms have several com-
mon techniques in the matching process: they use large
support windows for robust cost aggregation [5, 16, 21];

they formulate the disparity computation step as an ener-
gy minimization problem and solve it with slow-converging
optimizers [14]; they extensively use segmented image re-
gions as matching units [17], surface constraints [6, 20] or
post-processing patches [2]. These techniques significant-
ly improve the matching quality at the cost of consider-
able computation costs. Directly porting these techniques
to GPU or other multi-core platforms, however, is trick-
y and cumbersome [4, 7, 18, 19]: large aggregation win-
dows require extensive iterations over each pixel; some op-
timization, segmentation and post-processing methods re-
quire complex data structures and sequential processing. As
a result, simple correlation-based techniques are more pop-
ular for GPU and embedded stereo systems. Designing a
stereo matching system with good balance between accura-
cy and efficiency remains a challenging problem.

In this paper, we aim to meet this challenge by provid-
ing an accurate stereo matching system with near real-time
performance. Currently (August 2011), our system is the
top performer in the Middlebury benchmark. Briefly, we
integrate several techniques into an effective stereo frame-
work. These techniques guarantee high matching quality
without involving expensive aggregation or segmented re-
gions. Furthermore, they show moderate parallelism such
that the entire system can be mapped on GPU for computa-
tion acceleration. The key techniques of our system include:

∙ An AD-census cost measure which effectively com-
bines the absolute differences (AD) measure and the
census transform. This measure provides more ac-
curate matching results than common individual mea-
sures with robust aggregation methods. A similar mea-
sure has been adopted in a recent stereo algorithm [13].

∙ Improved cross-based regions for efficient cost aggre-
gation. Support regions based on cross skeletons are
first proposed by Zhang et al. [23], which allow fast
aggregation with middle-ranking disparity results. We
enhance this technique with more accurate cross con-
struction and cost aggregation strategy.

∙ A scanline optimizer based on Hirschmüller’s semi-



global matcher [2] with reduced path directions.

∙ A systematic refinement process which handles vari-
ous disparity errors with iterative region voting, inter-
polation, depth discontinuity adjustment and sub-pixel
enhancement. This multi-step process proves to be
very effective for improving the disparity results.

∙ Efficient system implementation on GPU with CUDA.

2. Algorithm

Following Scharstein and Szeliski’s taxonomy [11], our
system consists of four steps: cost initialization, cost aggre-
gation, disparity computation and refinement. We present a
detailed description of these individual steps.

2.1. AD-Census Cost Initialization

This step computes the initial matching cost volume.
Since the computation can be performed concurrently at
each pixel and each disparity level, this step is inherently
parallel. Our major concern is to develop a cost measure
with high matching quality. Common cost measures in-
clude absolute differences (AD), Birchfield and Tomasi’s
sampling-insensitive measure (BT), gradient-based mea-
sures and non-parametric transforms such as rank and cen-
sus [22]. In a recent evaluation by Hirschmüller and
Scharstein [3], census shows the best overall results in local
and global stereo matching methods. Although the idea of
combining cost measures for improved accuracy seems s-
traightforward, relatively less work has explored this topic.
Klaus et al. [6] proposed to linearly combines SAD and a
gradient based measure for cost computation. Their dispari-
ty results are impressive, but the benefits of the combination
are not clearly elaborated.

Census encodes local image structures with relative or-
derings of the pixel intensities other than the intensity val-
ues themselves, and therefore tolerates outliers due to radio-
metric changes and image noise. However, this asset could
also introduce matching ambiguities in image regions with
repetitive or similar local structures. To handle this prob-
lem, more detailed information should be incorporated in
the measure. For image regions with similar local struc-
tures, the color (or intensity) information might help allevi-
ate the matching ambiguities; while for regions with similar
color distributions, the census transform over a window is
more robust than pixel-based intensity difference. This ob-
servation inspires a combined measure.

Given a pixel p = (𝑥, 𝑦) in the left image and a dis-
parity level 𝑑, two individual cost values 𝐶𝑐𝑒𝑛𝑠𝑢𝑠(p, 𝑑) and
𝐶𝐴𝐷(p, 𝑑) are first computed. For 𝐶𝑐𝑒𝑛𝑠𝑢𝑠, we use a 9× 7
window to encode each pixel’s local structure in a 64-bit
string. 𝐶𝐶𝑒𝑛𝑠𝑢𝑠(p, 𝑑) is defined as the Hamming distance
of the two bit strings that stand for pixel p and its corre-
spondence pd = (𝑥 − 𝑑, 𝑦) in the right image [22]. 𝐶𝐴𝐷

is defined as the average intensity difference of p and pd in
RGB channels:

𝐶𝐴𝐷(p, 𝑑) =
1

3

∑

𝑖=𝑅,𝐺,𝐵

∣𝐼𝐿𝑒𝑓𝑡
𝑖 (p)− 𝐼𝑅𝑖𝑔ℎ𝑡

𝑖 (pd)∣ (1)

The AD-Census cost value 𝐶(p, 𝑑) is then computed as fol-
lows:

𝐶(p, 𝑑) = 𝜌(𝐶𝑐𝑒𝑛𝑠𝑢𝑠(p, 𝑑), 𝜆𝑐𝑒𝑛𝑠𝑢𝑠)+

𝜌(𝐶𝐴𝐷(p, 𝑑), 𝜆𝐴𝐷)
(2)

where 𝜌(𝑐, 𝜆) is a robust function on variable 𝑐:

𝜌(𝑐, 𝜆) = 1− exp(− 𝑐

𝜆
) (3)

The purpose of the function is twofold: first, it maps differ-
ent cost measures to the range [0, 1], such that equation (2)
won’t be severely biased by one of the measures; second,
it allows easy control on the influence of the outliers with
parameter 𝜆.

To verify the effect of the combination, some close-up
disparity results on the Middlebury data sets with AD, Cen-
sus and AD-Census are presented in Figure 1. Cross-based
aggregation is employed. Census produces wrong matches
in regions with repetitive local structures, while pixel-based
AD can not handle well large textureless regions. The com-
bined AD-Census measure successfully reduces the errors
caused by individual measures. For quantitative compari-
son, AD-Census reduces Census’s non-occlusion error per-
centage by 1.96% (Tsukuba), 0.4% (Venus), 1.36% (Ted-
dy) and 1.52% (Cones) respectively. And this improvement
comes at low additional computation cost.

AD Census AD-Census

repetitive 
structures

textureless
regions

Figure 1. Some close-up disparity results on Tsukuba and Teddy
image pair, which are computed with AD, Census, AD-Census
cost measures and cross-based aggregation. AD-Census measure
produces proper disparity results for both repetitive structures and
textureless regions.

2.2. Cross-based Cost Aggregation

This step aggregates each pixel’s matching cost over a
support region to reduce the matching ambiguities and noise
in the initial cost volume. A simple but effective assump-
tion for aggregation is that neighboring pixels with simi-
lar colors should have similar disparities. This assumption



has been adopted by recent aggregation methods, such as
segment support [16], adaptive weight [21] and geodesic
weight [5]. As stated in the introduction, these aggregation
methods require segmentation operations or expensive iter-
ations over each pixel, which are prohibitive for efficient
GPU implementation. Although simplified adaptive weight
techniques with 1D aggregation [13, 18] and color averag-
ing [4, 19] have been proposed for GPU systems, the aggre-
gation accuracy usually degenerates. Recently, Rhemann
et al. [9] formulated the aggregation step as a cost filter-
ing problem. By smoothing each cost slice with a guided
filter [1], good disparity results can be achieved.

We instead focus on the cross-based aggregation method
proposed recently by Zhang et al. [23]. We show that by im-
proving support region construction and aggregation strate-
gy, this method can produce aggregated results comparable
to the adaptive weight method with much less computation
time. Another advantage over the adaptive weight method is
that an explicit support region is constructed for each pixel,
which can be used in later post-processing steps.

p

q

left arm of p

support region of p

up arm of p

bottom arm of p

horizontal arms of q

right arm of p

(a) Cross Construction

p =

horizontal vertical 
(b) Cost Aggregation

Figure 2. Cross-based aggregation: In the first step, an upright
cross is constructed for each pixel. The support region of pixel p
is modelled by merging the horizontal arms of the pixels (q for
example) lying on the vertical arms of pixel p. In the second step,
the cost in the support region is aggregated within two passes along
the horizontal and vertical directions.

Cross-based aggregation proceeds by a two-step process,
as shown in Figure 2. In the first step (Figure 2(a)), an
upright cross with four arms is constructed for each pixel.
Given a pixel p, its left arm stops when it finds an endpoint
pixel pl that violates one of the two following rules:

1. 𝐷𝑐(pl,p) < 𝜏 , where 𝐷𝑐(pl,p) is the color differ-
ence between pl and p, and 𝜏 is a preset threshold val-

ue. The color difference is defined as 𝐷𝑐(pl,p) =
max𝑖=𝑅,𝐺,𝐵 ∣𝐼𝑖(pl)− 𝐼𝑖(p)∣.

2. 𝐷𝑠(pl,p) < 𝐿, where 𝐷𝑠(pl,p) is the spatial dis-
tance between pl and p, and 𝐿 is a preset maximum
length 𝐿 (measured in pixels). The spatial distance is
defined as 𝐷𝑠(pl,p) = ∣pl − p∣.

The two rules pose limitations on color similarity and arm
length with parameter 𝜏 and 𝐿. The right, up and bottom
arms of p are built in a similar way. After the cross con-
struction step, the support region for pixel p is modelled
by merging the horizontal arms of all the pixels lying on
p’s vertical arms (q for example). In the second step (Fig-
ure 2(b)), the aggregated costs over all pixels are computed
within two passes: the first pass sums up the matching costs
horizontally and stores the intermediate results; the second
pass then aggregates the intermediate results vertically to
get the final costs. Both passes can be efficiently computed
with 1D integral images. To get a stable cost volume, the
aggregation step usually runs 2− 4 iterations, which can be
seen as an anisotropic diffusion process. More details about
the method can be found in [23].

The accuracy of cross-based aggregation is closely re-
lated to parameter 𝐿 and 𝜏 , since they control the shape of
the support regions with the construction rules. Large tex-
tureless regions may require large 𝐿 and 𝜏 values to include
enough intensity variation, but simply increasing these pa-
rameters for all the pixels would introduce more errors in
dark regions or at depth discontinuities. We therefore pro-
pose to construct each pixel’s cross with the following en-
hanced rules (we still use pixel p’s left arm and the endpoint
pixel pl as an example):

1. 𝐷𝑐(pl,p) < 𝜏1 and 𝐷𝑐(pl,p1 + (1, 0)) < 𝜏1

2. 𝐷𝑠(pl,p) < 𝐿1

3. 𝐷𝑐(pl,p) < 𝜏2, if 𝐿2 < 𝐷𝑠(pl,p) < 𝐿1.

Rule 1 restricts not only the color difference between pl and
p, but also the color difference between pl and its predeces-
sor p1+(1, 0) on the same arm, such that the arm won’t run
across the edges in the image. Rule 2 and 3 allow more flex-
ible control on the arm length. We use a large 𝐿1 value to
include enough pixels for textureless regions. But when the
arm length exceeds a preset value 𝐿2 (𝐿2 < 𝐿1), a much
stricter threshold value 𝜏2 (𝜏2 < 𝜏1) is used for 𝐷𝑐(pl,p)
to make sure that the arm only extends in regions with very
similar color patterns.

For the cost aggregation step, we also propose a different
strategy. We still run this step for 4 iterations to get stable
cost values. For iteration 1 and 3, we follow the original
method: the costs are first aggregated horizontally and then
vertically. But for iteration 2 and 4, we switch the aggre-
gation directions: the costs are first aggregated vertically



and then horizontally. For each pixel, this new aggregation
order leads to a cross-based support region different from
the one in the original method. By altering the aggrega-
tion directions, both support regions are used in the itera-
tive process. We find that such an aggregation strategy can
significantly reduce the errors at depth discontinuities.

The Tsukuba disparity results computed by the original
cross-based aggregation method and our improved method
are presented in Figure 3, which shows that the enhanced
cross construction rules and aggregation strategy can pro-
duce more accurate results in large textureless regions and
near depth discontinuities.

The WTA disparity results with three aggregation meth-
ods (adaptive weight, the original cross-based aggregation
method and our enhanced method) are evaluated. For adap-
tive weight, the parameters follow the settings in [21]. For
the original cross-based method, 𝐿 = 17, 𝜏 = 20 and 4
iterations are used. The average error percentages on the
four data sets (in non-occlusion, discontinuity and all re-
gions) are given in Figure 4. Our enhanced method pro-
duces the most accurate results in all kinds of regions, es-
pecially around depth discontinuities. Our implementation
of the adaptive weight method usually takes more than 1
minute on CPU to produce the aggregated volume, while
our method requires only a few seconds.

(a) original aggregation (b) improved aggregation

Figure 3. Comparison of the original cross-based aggregation
method and our improved method on the Tsukuba image pair. Our
aggregation method can better handle large textureless regions and
depth discontinuities.

2.3. Scanline Optimization

This step takes in the aggregated matching cost volume
(denoted as 𝐶1) and computes the intermediate disparity re-
sults. To further alleviate the matching ambiguities, an opti-
mizer with smoothness constraints and moderate parallelis-
m should be adopted. We employ a multi-direction scan-
line optimizer based on Hirschmüller’s semi-global match-
ing method [2].

Four scanline optimization processes are performed in-
dependently: 2 along horizontal directions and 2 along ver-
tical directions. Given a scanline direction r, the path cost
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Figure 4. The average disparity error percentages in various re-
gions for adaptive weight, the original cross-based aggregation
method and our enhanced method.

𝐶r(p, 𝑑) at pixel p and disparity 𝑑 is updated as follows:

𝐶r(p, 𝑑) = 𝐶1(p, 𝑑) + min(𝐶r(p− r, 𝑑),

𝐶r(p− r, 𝑑± 1) + 𝑃1,

min
𝑘

𝐶r(p− r, 𝑘) + 𝑃2)−min
𝑘

𝐶r(p− r, 𝑘)

(4)

where p − r is the previous pixel along the same direc-
tion, and 𝑃1, 𝑃2 (𝑃1 ≤ 𝑃2) are two parameters for pe-
nalizing the disparity changes between neighboring pixels.
In practice, 𝑃1, 𝑃2 are symmetrically set according to the
color difference 𝐷1 = 𝐷𝑐(p,p − r) in the left image and
𝐷2 = 𝐷𝑐(pd,pd− r) in the right image [8]:

1. 𝑃1 = Π1, 𝑃2 = Π2, if 𝐷1 < 𝜏𝑆𝑂, 𝐷2 < 𝜏𝑆𝑂.

2. 𝑃1 = Π1/4, 𝑃2 = Π2/4, if 𝐷1 < 𝜏𝑆𝑂, 𝐷2 > 𝜏𝑆𝑂.

3. 𝑃1 = Π1/4, 𝑃2 = Π2/4, if 𝐷1 > 𝜏𝑆𝑂, 𝐷2 < 𝜏𝑆𝑂.

4. 𝑃1 = Π1/10, 𝑃2 = Π1/10, if 𝐷1 > 𝜏𝑆𝑂, 𝐷2 > 𝜏𝑆𝑂.

where Π1,Π2 are constants, and 𝜏𝑆𝑂 is a threshold value
for color difference. The final cost 𝐶2(p, 𝑑) for pixel p and
disparity 𝑑 is obtained by averaging the path costs from all
four directions:

𝐶2(p, 𝑑) =
1

4

∑

r

𝐶r(p, 𝑑) (5)

The disparity with the minimum 𝐶2 value is selected as pix-
el p’s intermediate result.

2.4. Multi-step Disparity Refinement

The disparity results of both images (denoted as 𝐷𝐿 and
𝐷𝑅) computed by the previous three steps contain outliers
in occlusion regions and at depth discontinuities. After de-
tecting these outliers, the simplest refinement method is to
fill them with nearest reliable disparities [11], which is only
useful for small occlusion regions. We instead handle the



disparity errors systematically in a multi-step process. Each
step tries to remove the errors caused by various factors.

Outlier Detection: The outliers in 𝐷𝐿 are first detect-
ed with left-right consistency check: pixel p is an outlier if
𝐷𝐿(p) = 𝐷𝑅(p − (𝐷𝐿(p), 0)) doesn’t hold. Outliers are
further classified into occlusion and mismatch points, since
they require different interpolation strategy. We follow the
method proposed by Hirschmüller [2]: for outlier p at dis-
parity 𝐷𝐿(p), the intersection of its epipolar line and 𝐷𝑅

is checked. If no intersection is detected, p is labelled as
’occlusion’, otherwise ’mismatch’.

Iterative Region Voting: The detected outliers should
be filled with reliable neighboring disparities. Most accu-
rate stereo algorithms employ segmented regions for outlier
handling [2, 20], which are not suitable for GPU implemen-
tation. We process these outliers with the constructed cross-
based regions and a robust voting scheme.

For an outlier pixel p, all the reliable disparities in its
its cross-based support region are collected to build a his-
togram 𝐻p with 𝑑max + 1 bins. The disparity with the
highest bin value (most votes) is denoted as 𝑑∗p. And the
total number of the reliable pixels is denoted as 𝑆p =∑𝑑=𝑑max

𝑑=0 𝐻p(𝑑). p’s disparity is then updated with 𝑑∗p if
enough reliable pixels and votes are found in the support
region:

𝑆p > 𝜏𝑆 ,
𝐻p(𝑑

∗
p)

𝑆p
> 𝜏𝐻 (6)

where 𝜏𝑆 , 𝜏𝐻 are two threshold values.
To process as many outliers as possible, the voting pro-

cess runs for 5 iterations. The filled outliers are marked
as ’reliable’ pixels and used in the next iteration, such that
valid disparity information can gradually propagate into oc-
clusion regions.

Proper Interpolation: The remaining outliers are filled
with a interpolation strategy that treats occlusion and mis-
match points differently. For outlier p, we find the nearest
reliable pixels in 16 different directions. If p is an occlu-
sion point, the pixel with the lowest disparity value is se-
lected for interpolation, since p most likely comes from the
background; otherwise the pixel with the most similar col-
or is selected for interpolation. With region voting and in-
terpolation, most outliers are effectively removed from the
disparity results, as shown in Figure 5.

Depth Discontinuity Adjustment: In this step, the dis-
parities around the depth discontinuities are further refined
with neighboring pixel information. We first detect all the
edges in the disparity image. For each pixel p on the dis-
parity edge, two pixels p1, p2 from both sides of the edge
are collected. 𝐷𝐿(p) is replaced by 𝐷𝐿(p1) or 𝐷𝐿(p2)
if one of the two pixels has smaller matching cost than
𝐶2(p, 𝐷𝐿(p)). This simple method helps to reduce the s-
mall errors around discontinuities, as shown by the error
maps in Figure 6.

(a) before outlier handling (b) after outlier handling

Figure 5. The disparity error maps for the Teddy image pair. The
errors are marked in gray (occlusion) and black (non occlusion).
The disparity errors are significantly reduced in the outlier han-
dling process.

(a) before discontinuity adjustment (b) after discontinuity adjustment

Figure 6. The errors around depth discontinuities are reduced after
the adjustment step.

Sub-pixel Enhancement: Finally, a sub-pixel enhance-
ment process based on quadratic polynomial interpolation
is performed to reduce the errors caused by discrete dispar-
ity levels [20]. For pixel p, its interpolated disparity 𝑑∗ is
computed as follows:

𝑑∗ = 𝑑− 𝐶2(p, 𝑑+)− 𝐶2(p, 𝑑−)
2(𝐶2(p, 𝑑+) + 𝐶2(p, 𝑑−)− 2𝐶2(p, 𝑑))

(7)

where 𝑑 = 𝐷𝐿(p), 𝑑+ = 𝑑 + 1, 𝑑− = 𝑑 − 1. The final
disparity results are obtained by smoothing the interpolated
disparity results with a 3× 3 median filter.

To verify the effectiveness of the refinement process, the
average error percentages in various regions after perform-
ing each refinement step are presented in Figure 7. The four
refinement steps successfully reduce the error percentage in
all regions by 3.8%, but their contributions are distinct for
different regions: for non-occluded regions, voting and sub-
pixel enhancement are most effective for handling the mis-
match outliers; for discontinuity regions, the errors are sig-
nificantly reduced by voting, discontinuity adjustment and
sub-pixel enhancement; most outliers in all regions are re-
moved with voting and interpolation, and small errors due
to discontinuities and quantization are reduced by adjust-
ment and sub-pixel enhancement. A systematic integration
of these steps guarantees a strong post-processing method.



3. CUDA Implementation

Compute Unified Device Architecture (CUDA) is a pro-
gramming interface for parallel computation tasks on N-
VIDIA graphics hardware. The computation task is cod-
ed into a kernel function, which is performed concurrently
on data elements by multiple threads. The allocation of the
threads is controlled with two hierarchical concepts: grid
and block. A 𝑘𝑒𝑟𝑛𝑒𝑙 creates a grid with multiple blocks, and
each block consists of multiple threads. The performance of
the CUDA implementation is closely related to thread allo-
cation and memory accesses, which needs careful tuning in
various computation tasks and hardware platforms. Given
image resolution 𝑊 ×𝐻 and disparity range 𝐷, we briefly
describe the implementation issues of our algorithm.

Cost Initialization: This step is parallelized with 𝑊 ×
𝐻 threads. The threads are organized into a 2D grid and
the block size is set to 32 × 32. Each thread takes care of
computing a cost value for a pixel at a given disparity. For
census transform, a square window is require for each pixel,
which requires loading more data into the shared memory
for fast access.

Cost Aggregation: A grid with 𝑊 × 𝐻 threads is cre-
ated for both steps of the aggregation process. For cross
construction, we set the block size to 𝑊 or 𝐻 , such that
each block can efficiently handle a scanline. For cost aggre-
gation, we follow the method proposed by Zhang et al. [24],
which works similar to the first step. Each thread sums up a
pixel’s cost values horizontally and vertically in two passes.
Data reuse with shared memory is considered in both steps.

Scanline Optimization: This step is different from the
previous steps, because the process is sequential in the s-
canline direction and parallel in the orthogonal direction.
A grid with 𝑊 × 𝐷 or 𝐻 × 𝐷 threads is created accord-
ing to the scanline direction. 𝐷 threads are allocated for
each scanline, such that path costs on all disparity level-
s can be computed concurrently. Synchronization between
the 𝐷 threads is needed for finding the minimum cost of the
previous pixel on the same path.

Disparity Refinement: Each step of the refinement pro-
cess works on the intermediate disparity images, which can
be efficiently processed with 𝑊 ×𝐻 threads.

4. Experimental Results

We test our system with the Middlebury benchmark [12].
The test platform is a PC with Core2Duo 2.20GHz CPU and
NVIDIA GeForce GTX 480 graphics card. The parameters
are given in Table 1, which are kept constant for all the data
sets.

The disparity results are presented in Figure 8. Our sys-
tem ranks first in the Middlebury evaluation, as shown in
Table 2. Our algorithm performs well on all the data sets,
and gives the best results on the Venus image pair with min-

𝜆𝐴𝐷 𝜆𝐶𝑒𝑛𝑠𝑢𝑠 𝐿1 𝐿2 𝜏1 𝜏2
10 30 34 17 20 6
Π1 Π2 𝜏𝑆𝑂 𝜏𝑆 𝜏𝐻
1.0 3.0 15 20 0.4

Table 1. Parameter settings for the Middlebury experiments

imum errors both in non-occluded regions and near depth
discontinuities. Compared to algorithms such as CoopRe-
gion [17], the results on the Tsukuba image pair are not
competitive. The Tsukuba image pair contains some very
dark and noisy regions near the lamp and the desk, which
lead to incorrect cross-based support regions for aggrega-
tion and refinement.

We run the algorithm both on CPU and on graphics
hardware. For the four data sets (Tsukuba, Venus, Ted-
dy and Cones), the CPU implementation requires 2.5 sec-
onds, 4.5 seconds, 15 seconds and 15 seconds respectively,
while the GPU implementation requires only 0.016 second-
s, 0.032 seconds, 0.095 seconds and 0.094 seconds respec-
tively. The GPU-friendly system design brings an impres-
sive 140× speedup in the processing speed. The average
proportions of the GPU running time for the four compu-
tation steps are 1%, 70%, 28% and 1% respectively. The
iterative cost aggregation step and the scanline optimization
process dominate the running time.

Finally, we test our system on two stereo video se-
quences: a ’book arrival’ scene from the HHI database
(512 × 384, 60 disparity levels), and an ’Ilkay’ scene from
Microsoft i2i database (320 × 240, 50 disparity levels). To
test the generalization ability of the system, we use the same
set of parameters as the Middlebury datasets, and no tempo-
ral coherence information is employed in the computation
process. The snapshots for the two examples are presented
in Figure 9, and a video demo that runs at about 10FPS
is available at http://xing-mei.net/resource/
video/adcensus.avi. Our system performs reason-
ably well on these examples, but the results are not as con-
vincing as the Middlebury datasets: artifacts are visible
around depth boarders and occlusion regions.

We briefly discuss the limitations of the current system
with the video examples. The disparity errors come from
several aspects: first, the support regions defined by the
cross skeleton rely heavily on color and connectivity con-
straints. For practical scenes the cross construction process
can be easily corrupted by dark regions and image noise. S-
mall regions without enough support area can be produced,
which brings significant errors for later computation steps
such as cost computation and region voting. Bilateral fil-
tering might be used as a pre-process to reduce the noise
while preserving the image edges [1, 15]. Second, the well-
designed multi-stage mechanism is a double-edged sword.
It help us to get accurate results and remove the errors step



by step in a systematic way, but it also brings a large set
of parameters. By carefully tuning individual parameters,
the disparity quality can be improved, but such a scheme
is usually laborious and impractical for various real-world
applications. A possible solution is to analyze the robust-
ness of the parameters with ground truth data and adaptively
set the ’unstable’ parameters with different visual contents.
Automatic parameter estimation within an iterative frame-
work [25] might also be used to avoid the tricky parameter
tuning process.

5. Conclusions

This paper has presented a near real-time stereo system
with accurate disparity results. Our system is based on sev-
eral key techniques: AD-Census cost measure, cross-based
support regions, scanline optimization and a systematic re-
finement process. These techniques significantly improve
the disparity quality without sacrificing performance and
parallelism, which are suitable for GPU implementation.
Although our system presents nice results for the Middle-
bury data sets, applying it in real world applications is still
a challenging task, as shown by the video examples. Real
world data usually contains significant image noise, rectifi-
cation errors and illumination variation, which might cause
serious problems for cost computation and support region
construction. And robust parameter setting methods are al-
so important to produce satisfactory results. We would like
to explore these topics in the future.
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Figure 7. The average error percentages in non-occlusion, discontinuity and all regions after performing each refinement step.

Figure 8. Results on the Middlebury data sets. First row: disparity maps generated with our system. Second row: disparity error maps with
threshold 1. Errors in unoccluded and occluded regions are marked in black and gray respectively.

Avg. Tsukuba Venus Teddy Cones
Algorithm Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Our method 5.8 1.0712 1.4810 5.7314 0.092 0.257 1.152 4.104 6.223 10.94 2.423 7.255 6.954
AdaptingBP [6] 7.2 1.1115 1.376 5.7915 0.103 0.214 1.444 4.226 7.066 11.87 2.484 7.929 7.327

CoopRegion [17] 7.2 0.873 1.161 4.612 0.114 0.213 1.546 5.1614 8.3110 13.011 2.7912 7.184 8.0116
DoubleBP [20] 9.7 0.885 1.293 4.765 0.137 0.4517 1.8711 3.533 8.309 9.632 2.9017 8.7824 7.7913

Table 2. The rankings in the Middlebury benchmark. The error percentages in different regions for the four data sets are presented.

Figure 9. Snapshots on ’book arrival’ and ’Ilkay’ stereo video sequences.


