
Mehrabi Koushki et al. Cybersecurity (2022) 5:16
https://doi.org/10.1186/s42400-022-00119-8

SURVEY

On building machine learning
pipelines for Android malware detection:
a procedural survey of practices, challenges
and opportunities
Masoud Mehrabi Koushki1*, Ibrahim AbuAlhaol2, Anandharaju Durai Raju3, Yang Zhou4,
Ronnie Salvador Giagone1 and Huang Shengqiang1

Abstract

As the smartphone market leader, Android has been a prominent target for malware attacks. The number of malicious
applications (apps) identified for it has increased continually over the past decade, creating an immense challenge for
all parties involved. For market holders and researchers, in particular, the large number of samples has made manual
malware detection unfeasible, leading to an influx of research that investigate Machine Learning (ML) approaches to
automate this process. However, while some of the proposed approaches achieve high performance, rapidly evolving
Android malware has made them unable to maintain their accuracy over time. This has created a need in the com-
munity to conduct further research, and build more flexible ML pipelines. Doing so, however, is currently hindered by
a lack of systematic overview of the existing literature, to learn from and improve upon the existing solutions. Existing
survey papers often focus only on parts of the ML process (e.g., data collection or model deployment), while omit-
ting other important stages, such as model evaluation and explanation. In this paper, we address this problem with
a review of 42 highly-cited papers, spanning a decade of research (from 2011 to 2021). We introduce a novel proce-
dural taxonomy of the published literature, covering how they have used ML algorithms, what features they have
engineered, which dimensionality reduction techniques they have employed, what datasets they have employed for
training, and what their evaluation and explanation strategies are. Drawing from this taxonomy, we also identify gaps
in knowledge and provide ideas for improvement and future work.

Keywords: Android, Machine learning, Malware classification, Smartphone security, Survey, Taxonomy

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Introduction
Android has become the primary target of mobile mal-
ware attacks, due, in no small part, to its high market
share (StatCounter 2021). Reports show that the number
of new malware samples discovered for Android has been
increasing steadily over the past decade. Kaspersky, for
example, reported detecting over 5.5 million malicious
packages in the year 2020, which was a 62% increase

compared to 2019 (Kaspersky 2021). A similar trend was
observed by McAfee from 2018 to 2019 when the total
number of mobile malware samples increased by over
25% (McAfee 2021).

This large number of samples has rendered manual
analysis and classification of them infeasible. And, in
turn, has made it essential for the defenders (e.g., cyberse-
curity researchers, mobile app store holders, or antivirus
companies) to try and automate the detection process.
This need, in turn, has lead to an influx of research
papers that investigate various solutions for automatic
detection of Android malware. Enck et al. (2009), for

Open Access

Cybersecurity

*Correspondence: mehrabimail@gmail.com
1 Huawei Technologies Canada Co., Ltd, Vancouver, Canada
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-022-00119-8&domain=pdf

Page 2 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

example, made one of the very first attempts at this. They
performed security requirement analysis and created a
set of rules to detect malicious intent in Android appli-
cations. Using their approach, they were able to detect
five new malicious apps on Google play store.1 Another
notable example was the work by Arp et al. (2014) where
they proposed DREBIN, a well-known Android malware
detection systems which combines program analysis with
Machine Learning (ML) to achieve over 93% accuracy.

DREBIN is far from being the only approach that uses
ML, however. Investigating the landscape of this research
field shows that ML is championed as the most promis-
ing approach to achieve accurate malware detection. In
fact, while there are a few papers advocating for signa-
ture- or pattern-matching-based detection (Tong and
Yan 2017; Grace et al. 2012; Talha et al. 2015; Wong and
Lie 2016), the majority seem to focus on ML (we counted
over 100 of them when gathering literature for this paper,
as we discuss in "Taxonomy of android malware detec-
tion approaches" section). This is unsurprising, given
the promise ML has shown in other domains, such as
dynamic intrusion detection (Buczak and Guven 2015) or
IoT threat hunting (Raju et al. 2021).

However, the high number of published papers has
also made it difficult for new researchers (or practition-
ers) to easily catch up with the state-of-the-art. This is
evidenced, at least partially, by the fact that a high num-
ber of published papers use similar feature sets, but fail
to clearly distinguish their approach from prior ones (as
we discuss in "Gaps in knowledge and future research
directions" section). The matter is further complicated by
the intricacies of applying ML to a new problem domain,
including issues such as the need for representative fea-
ture engineering, run-time constraints, usability con-
siderations, and other functional and non-functional
requirements (Gift and Deza 2021; Das and Cakmak
2018).

There have been attempts at solving this issue by con-
ducting surveys of the existing literature (Naway and Li
2018; Feizollah et al. 2015; Narudin et al. 2016; Arshad
et al. 2016; Ye et al. 2017; Souri and Hosseini 2018; Yan
and Yan 2018). For example, Naway and Li (2018) pro-
vided a comprehensive review of the use of deep learn-
ing for Android malware detection, creating a taxonomy
based on features and datasets used. Similarly, Feizol-
lah et al. (2015) provided a review of the feature selec-
tion techniques used, providing categorization based
on manual or algorithmic selection. Another notable
example is the work done by Yan and Yan (2018) where

they reviewed the landscape of dynamic mobile malware
detection techniques.

None of the current survey papers, however, cover the
techniques used in all stages of the ML pipeline–from
data collection, to feature extraction, to model use in the
end (we discuss these stages in more detail in "Machine
learning pipeline" section). Yan and Yan (2018), for exam-
ple, only focused on dynamic feature extraction, omitting
the large body of knowledge that exists on static Android
malware analysis. Likewise, Naway and Li (2018) only
considered deep learning techniques, leaving out all
papers that use simpler (e.g., linear) ML techniques
which could be more suitable for deployment on con-
strained mobile platforms.

In this paper, we address this gap by providing a com-
prehensive overview of how the literature has used ML
end-to-end (from data collection all the way to model
explanation). We provide a procedural taxonomy of the
proposed solutions, structured based on the stages of a
typical ML pipeline (Docs M 2022). Consequently, we
discuss (1) how researchers have collected data for train-
ing and testing their models, (2) how and what features
they have engineered/extracted from Android apps, (3)
how they have represented the features for modeling,
(4) what dimensionality reduction (feature selection/
elimination) techniques they have used, (5) what machine
learning algorithms they have tried, (6) what metrics they
have used for evaluation of their models (and what the
results have been), and, lastly (7) how they have deployed
or explained their model. Additionally, in each stage, we
identify gaps and provide ideas for improvement and
future work.

We should note that the aim of this paper is not to
compare (e.g., in terms of the final accuracy) the different
approaches taken by the literature. Attempting to do so
would be invalid without performing independent meas-
urements of the efficacy of each approach, all while mak-
ing sure to keep the conditions of the study consistent
for all solutions. Instead, we aim at providing a general
overview of this research field, to help newcomers catch
to speed with the status quo.

In summary, therefore, this paper makes the following
contributions to the field of ML-based Android malware
detection:

• We provide an overview of the existing literature,
based on a review of 42 highly-cited papers pub-
lished in reputable sources. The review can help new
researchers better understand the status quo of the
research field.

• We provide a procedural taxonomy of the proposed
solutions: Unlike previous survey papers, our tax-
onomy is structured based on stages of an ML pipe-

1 This is the official Android app store operated by Google, available at
https:// play. google. com.

https://play.google.com

Page 3 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

line. Therefore, it can help new practitioners to better
understand how to approach the implementation of
each stage in their ML pipelines.

• Drawing from our review, we identify and discuss
gaps in knowledge, and provide ideas for future
research and improvement.

The rest of this paper is organized as follows: "Back-
ground" section provides an overview of the Android
operating system architecture, the structure of its appli-
cation (apps), and its security model. We also introduce
the stages of a typical machine learning pipeline and what
they entail in the case of Android malware detection. In
"Methodology" section, we describe the methodology
we used to conduct this survey study. In "Taxonomy of
android malware detection approaches" section provides
our procedural taxonomy of ML-based Android mal-
ware detection, discussing what researchers have tried
in each stage of the ML pipeline. In "Gaps in knowledge
and future research directions" section we discuss gaps
we have identified in the literature and provide ideas for
follow-up research. To give more context to our find-
ings, "Reviewed papers" section provides a timeline and
brief summaries of all the papers we reviewed. in "Related
work" section discusses the related work, which covers
existing survey papers on Android malware. And, lastly,
"Conclusion" section concludes this paper.

Background
To aid readers with a better understanding of how the
proposed approaches operate, we provide in this section
brief overviews of the architecture of Android, the struc-
ture of its apps, and its security mechanisms. We also dis-
cuss the different stages of a typical ML pipeline which
informs the design of our taxonomy.

Android system architecture
Android is an open-source operating system which con-
sists of a modified Linux kernel and a dedicated software
stack designed to create a mobile computing platform
(Project AOS 2021). It enables users to install and run
first- and third-party applications that perform a vari-
ety of tasks, such as taking pictures, location finding and
navigation, and internet communications. Figure 1
depicts the architecture of Android and the components
included in each of its layers. As seen, its main compo-
nents include:

• Linux kernel: At the heart of Android is a modified
Linux kernel which is responsible for communica-
tions with hardware, and providing a platform for
device drivers (Project AOS 2021). Android’s main
modifications to the Linux kernel include a new

memory management system called Low Memory
Killer (which manages memory more aggressively to
meet the requirements of a power constraint mobile
environment) and a new Inter-Process Communica-
tion (IPC) system called Binder (Project AOS 2021).

• Hardware abstraction layer (HAL): This layer pro-
vides an standardized interface for the upper layers to
access device hardware capabilities, such as camera
or audio (Portal AD 2021c). It is responsible for mak-
ing Android agnostic to lower-level driver implemen-
tations (Project AOS 2021).

• Android runtime: This component is responsible for
interpreting the code and the running of the apps
(Project AOS 2021). Android app are often devel-
oped in either Java or Kotlin programming language,
which are then complied and stored in a specialized
format called Dalvik Executable Format (DEX), opti-
mized for minimal memory footprint (Project AOS

Fig. 1 Overview of Android system architecture (Portal AD 2021c)

Page 4 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

2021). The Android Runtime (ART) then spawns vir-
tual machines that interpret and run DEX files2. This
component also houses Core Libraries–a set of Java
libraries that provide most of the functionalities of
Java programming to Android app developers (Portal
AD 2021c).

• Native C/C++ libraries: These libraries provide
access to core system components that are written in
C or C++, such as OpenGL graphics APIs (Project
AOS 2021). Usually, Android apps access these com-
ponents through wrappers provided by the Java API
Framework (Techotopia 2021). However, apps can
also use Android Native Development Kit (NDK) to
access the libraries directly (Project AOS 2021).

• Java API framework: The framework exposes Java
APIs that make the entire feature set of Android
available to apps (Portal AD 2021c). Apps can call
these APIs to perform various operations, such as
accessing storage, drawing UI components, or com-
municating with other system services to obtain the
data they require, such as with notification and loca-
tion managers.

• System apps: In addition to letting users install their
own apps, Android ships with a set of pre-installed
ones to allow for a ready-out-of-the-box experience
(Project AOS 2021). These include, for example, ones
for SMS messaging, internet browsing, phone calls
and changing the phone’s settings.

Malware have been observed to interact with or modify
any of the above components, to achieve their objec-
tives. For example, they may use native C/C++ librar-
ies to directly access low level APIs and exploit security
vulnerabilities.

Android app structure
The way Android apps are structured/written is fun-
damentally different from traditional desktop (e.g.,
Windows) applications (Portal AD 2021d). Unlike the
latter, Android apps do not have a specific starting point.
Rather, they provide a set of independent event han-
dlers that can be called by the OS or other apps (Portal
AD 2021d). Apps are built out of 4 fundamental building
blocks described below:

• Activities represent UI screens that the user can
interact with (Inc G 2020). Each one consists of an
XML file describing the layout of the UI (e.g., what
buttons there are and where they are positioned), and

a text file housing the code to handle various related
events (e.g., what happens when user clicks on one of
the buttons). An app can (and often does) have mul-
tiple activities which work together to provide a uni-
fied user experience (Inc G 2020). For example, the
GMail app may have one activity to show the list of
emails in user’s inbox, and another activity that pre-
sents the “compose email” screen.

• Services are components that run in the background
for an extended period of time (Inc G 2020). They do
not have a user interface, but only provide series of
event handlers. An example of a service can be one
that plays music in the background, or one that con-
nects to a remote server to fetch latest emails from
the users’ accounts. Services can be (and often are)
started or stopped by other components, such as
activities.

• Broadcast receivers allow apps to receive and react
to signals from Android itself or other apps or com-
ponents (Inc G 2020). An example of a system-
wide broadcast made by Android is BOOT_COM-
PLETED, which is a signal sent when the phone
completes its booting process. An app can subscribe
to this broadcast to start some of its components
(e.g., the service that checks for new emails) when-
ever the phone boots. Broadcasts may be sent by
both external apps and components with-in the same
app.

• Content providers allow sharing data between apps
or app components (Inc G 2020). They expose an
entry point to other apps, through which they can
fetch, modify or delete the app’s shared data. For
example, the Google search app might create a con-
tent provider to allow other apps to access Google
search results. Access to content providers is through
URI addresses.

The above components (whether they are situated with-
in the same app or in different ones) communicate using
Intents. Put simply, an Intent is a messaging object that
is used to request an action from another component
(Portal AD 2021a). For example, one Activity can start
another by sending an Intent to the OS, specifying the
class of that Activity. Intents are also used by broadcast
receivers to specify which broadcasts they accept.

Apps can be written in Java, Kotlin and C/C++, which
are then transformed to an assembly-like language called
smali (Portal AD 2021d). Smali codes of each app are
stored in DEX format in its “classes.dex” file (Portal AD
2021d). This file on its own, however, is not sufficient for
running the app. Each app also ships an XML file named
“Manifest.xml”, which includes the following information
(Portal AD 2021d):

2 Prior to version 5.0, Android used a different runtime called Dalvik (Project
AOS 2021).

Page 5 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

• Permissions that it requires, such as access to GPS,
or the user’s files. The app may also define its own
permissions (to be granted to other apps or compo-
nents). Permissions are explained in more detail later
in this section.

• Runtime environment information, including the
minimum Android version (API level) that it requires
for successful execution.

• Hardware or software features that it requires. For
example, an app might require the phone to have a
camera, or a fingerprint scanner.

• Libraries that it needs to be linked against (e.g., the
Google Play Services).

• A list of components (Activities, Services, Broad-
cast receivers, or Content providers) that it includes.
For each component more information may also be
provided. For example, Broadcast receivers may also
include Intent filters specifying which broadcasts
they accept.

As part of the building process, Android builder tool
packages the app’s classes.dex file along with its Manifest
and any other necessary data and resources (e.g., XML
files defining the strings used in the app) into a com-
pressed zip file, with an APK extension. Figure 2 illus-
trates the structure of an APK file. As seen, the file may
also include cryptographic signatures to identify the cre-
ator of the app, and native libraries that could be linked
to its Java code using Java Native Interface (JNI).

Android malware are often distributed as APK files.
Hence, since APKs are zip files, they are easy to extract
and examine. Malware analysts usually focus on the Man-
ifest and classes.dex files in each APK. This is because
the list of app components and permissions in the Mani-
fest can give clues to the intentions of the app. And,
the contents of the DEX file can often be disassembled

(sometimes even de-compiled) to investigate the app’s
behavior. Newer malware samples, however, have been
observed to obfuscate the contents of the DEX file to
thwart reverse-engineering efforts (Casolare et al. 2021).

Android security mechanisms
Android provides several security mechanisms to pre-
vent apps from performing unauthorized actions to harm
the device, operating system or the user’s data.

Firstly, Android sandboxes apps when executing them.
It simply leverages the file-based access control that it has
inherited from Linux. Each app runs in its own process
and with a unique Linux user ID which limits its access
to other apps’ data, and to system resources (Portal AD
2021d).

Additionally, Android implements SELinux (Team
S 2020)—a Linux kernel extension that provides more
fine-grained access control than the file-based model
described above. SELinux enables both Mandatory
Access Control (MAC) and Role-based Access Control
(RBAC) (API A 2020). MAC allows users and objects
(e.g., files, documents, etc) to be assigned security levels.
Then, a user is only allowed to access an object if they
have the necessary security level (Sandhu and Samarati
1994). In RBAC, on the other hand, accesses are not
directly assigned to users. Instead, they are associated
with roles. To acquire a certain access, users have to be
made members of the appropriate role (Osborn et al.
2000). Android’s goal for implementing SELinux is to
preserve the security of the OS, even if a system service
is compromised.

Lastly, Android has an additional access control mech-
anism called Permissions, which is designed to prevent
apps from accessing sensitive system resources without
the user’s consent. It prevents apps from making certain
system calls, unless they are explicitly granted the per-
mission in advance (Elenkov 2014). For example, any app
that wants to access the phone’s camera has to request
the android.manifest.permission.CAMERA permission.
The user then needs to manually approve each request.

There are more than 250 permissions defined by
Android (Inc G 2020) which have different levels of sen-
sitivity: “Normal” permissions are granted automatically
to apps without needing user’s approval. “Dangerous”
permissions, like Camera, are those that require user
approval. And, “System” and ”Signature” permissions can
only be granted to apps that are developed/signed by the
OS builder.

The recently introduced Android 12 has put further
privacy restrictions on apps (Inc G 2021). For example,
users can now choose to only provide approximate loca-
tion data to apps. And, apps’ access to motion sensors are
rate-limited. Also, if an app is not used for a few months,

Fig. 2 Overview of APK file structure (Ratazzi 2016)

Page 6 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

all the permissions granted to it will be revoked. Finally,
there are also more restrictions on when apps can launch
services.

Android malware have been found to abuse all the
above security mechanisms. Permissions in particu-
lar have been a heavy focus of research for detecting
Android malware, as benign apps tend to request fewer
permissions than malicious ones. We will discuss this
matter further in "Taxonomy of android malware detec-
tion approaches" section.

Machine learning pipeline
Machine learning has seen a large surge in use over the
past decade. It has shown to be a promising tool to solve
long-standing computational challenges, such as image
processing (e.g., for medical diagnosis (Fatima and Pasha
2017)), voice recognition (Padmanabhan and Johnson
Premkumar 2015), and cybersecurity (Buczak and Guven
2015; Xin et al. 2018).

Generally, after requirement analysis, the use of
machine learning for any purpose involves devising a
multi-stage pipeline (Docs M 2022; Gift and Deza 2021).
It starts by identifying the data required for training the
model, then continues by collecting the data and prepar-
ing them for digestion by the model (Docs M 2022). Fig-
ure 3 provides an overview of the different stages of such
pipeline, which include (Das and Cakmak 2018; Docs M
2022; Gift and Deza 2021):

• Data/sample collection: This stage involves collect-
ing a representative sample of the data required for
training the model. It also includes establishing the

ground truth. For Android malware detection, spe-
cifically, this entails either finding a readily-available
dataset of malware and benign APKs, or creating one
through scraping online sources. Establishing ground
truth entails labeling the APKs in the dataset as either
malware or benign.

• Feature extraction: This stage involves extracting
from each sample some information that can aptly
represent it. This is done to avoid feeding unneces-
sary and irrelevant data to the model, which may
cause performance or efficacy issues. In case of
Android malware, doing so usually entails processing
the APKs to extract information that could point to
malicious or benign intent, such as presence of cer-
tain APIs or permissions.

• Feature representation: The extracted features are
usually not in ideal format for direct digestion by the
model. Hence, this stage involves converting them
to the appropriate format. For APKs, the features
are usually in string format, which is sub-optimal for
model training. Thus, various techniques are used to
convert them to numbers (e.g., by one-hot encoding)
or more complex structures, such as graphs.

• Dimensionality reduction (feature selection/elimi-
nation): The number of extracted features are usu-
ally too high, which can cause performance issues. To
avoid this, feature selection/elimination techniques
[e.g., information gain (Alzaylaee et al. 2020)] are
used to eliminate less important ones, or only select
a subset of features, and improve model efficiency. In
case of Android malware, this stage usually involves
deciding which parts of APKs to ignore when analyz-
ing them.

• Model creation (training): Usually planned well in-
advance, this stage involves devising the architecture
of the ML model and then training it using the fea-
tures obtained in the prior stage. Depending on the
objectives, the designers might select a simple model,
like linear regression, or a complex one, like a deep
neural network. Ensemble models could also be con-
sidered. For Android malware detection, various
types of models have been designed, as we discuss
later in this paper.

• Model evaluation: Once the model is trained, it is
often tested to ascertain a desired level of perfor-
mance. This involves using a test dataset to measure
various performance metrics (e.g., false positive rate,
precision, or recall). It may also include hyper-param-
eter tuning or model calibration, which is to make
sure the probability distribution of the model out-
come matches that of the training data. For Android
malware detection, the most viral metric to evaluate
is the model’s accuracy, in terms of its capability to

Fig. 3 Overview of stages of a machine learning pipeline.
Feature-related and model-related stages are colored in blue and
green, respectively

Page 7 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

distinguish between malware and benign. However,
other aspects may also be evaluated, such as runtime
performance or resilience to evasion attacks.

• Model use: This last stage involves deploying the
model for the intended use. It may also involve devis-
ing schemes for explaining the outcomes of it to the
end users. In case of Android malware, specifically,
this stage usually involves deciding where the model
can be deployed (i.e., on the phone or on a server),
and could also include schemes for communicating
to the end users why an APK is labeled as benign or
malware.

Note that the pipeline described above is an iterative one.
Accuracy of any trained model may drop over time due
to concept drift (e.g., changing distributions) or other
external factors, which requires collecting fresh data and/
or re-training and re-tuning the model. Higher accuracy
requirements might also emerge at any time, which cloud
lead to new iterations.

Using ML for Android malware detection requires
passing all the above stages. However, we found that no
survey paper has provided a comprehensive view of how
researchers have approached all of them. This paper
fills this gap by providing a taxonomy that covers all the
stages.

Methodology
In this section, we describe the methodology we used for
conducting the survey study. Inspired by Naway and Li
(2018), our methodology consisted of the following steps:

• Step 1—literature gathering: We used keywords
“android malware detection”, “android malware clas-
sification”, and “android malware machine learning”
to find relevant articles on Google Scholar (Google
2021), ACM Digial Library (ACM 2021) and IEEE
Xplore Digital Library (IEEE 2021). We read the
abstract of the top 50 search results and composed
a list of papers related to our research topic. We
excluded papers according to the following criteria:

– Duplicated papers that we previously found in
another library.

– Papers that used methods other than machine
learning (e.g., requirement analysis or sequence
matching) for malware detection. A notable exam-
ple of such papers is MamaDroid (Onwuzurike
et al. 2019).

– Non-peer-reviewed articles (e.g., manuscripts pub-
lished on ArXiv).

– Non-English papers.

 Our final list contained 113 papers.

• Step 2—in-depth review: We sorted the list of
papers (composed in Step 1) by citation counts,
which were obtained through Microsoft Academic
Search API (Microsoft 2021). We then conducted
a detailed review of 42 of them, while prioritiz-
ing those that included approaches not already in
our taxonomy (a.k.a., those that introduced a new
approach for at least one stage of the ML pipeline).
We stopped after 42 papers because we reached
theoretical saturation and latter reviewed papers
did not enrich the taxonomy any further. For each
paper, we were interested in obtaining the following
information from it:

– The year of publication: This was to create a
chronological history of the publications.

– The source and size of the dataset used for train-
ing or testing the model

– The features engineered to represent the samples
in the dataset as well as the rationale behind the
features, and the tools used to extract them.

– The way the features were represented (e.g.,
boolean vectors) for digestion by the model

– The approach that was taken to reduce dimen-
sionality and eliminate/select features

– The structure of the model
– The way the model was evaluated, be it based on

the confusion-matrix, such as accuracy, precision,
recall; or other aspects, such as runtime perfor-
mance for resilience to attacks. Hyper-parameter
tuning and model calibration was also investi-
gated.

– How the model was deployed (on-device or
off-device) and whether there was any attempt
towards explanation

– The novel contributions of the paper (e.g., engi-
neering a new type of feature)

• Step 3—taxonomy building: We performed a
card-sorting exercise to create an affinity diagram
of the approaches proposed by the reviewed papers.
The aim was to identify broader themes of android
malware detection techniques, and to find potential
gaps that can inform future research. The result-
ing taxonomy, presented in "Taxonomy of android
malware detection approaches" section shows,
for example, how dynamic analysis has not been
researched as well as static analysis, demonstrating
potential for future research.

Page 8 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

Taxonomy of android malware detection
approaches
This section presents our taxonomy of the reviewed
papers which is depicted in Fig. 4. As discussed before,
the taxonomy is structured based on the stages of an ML
pipeline. However, we have also identified different sub-
categories in each stage, which we will discuss in detail in
the following sections.

Data collection
For ML-based Android malware detection, this stage
typically involves collecting a set of APK files. This
stems from the fact that the objective of the eventual
model is often to simply label APKs as either malware

or benign. Also, if supervised learning is being con-
sidered, the ground truth needs to be established in
this stage as well, meaning each APK in the training
set needs to be labeled as either malware or benign.
This can be done either by manual analysis or through
automated ways, such as using commercial anti-virus
products.

Our literature review revealed that researchers have
used different approaches for sourcing malware and
benign APKs. For malware, as section 1a of Fig. 4
depicts, there are a set of publicly-available datasets
[e.g., MalGenome (Zhou and Jiang 2012)] that most
papers use (e.g., Liu and Liu 2014; Yuan et al. 2016). For
reference of future researchers, we have composed a
list of these datasets in Table 1. The table also provides

Fig. 4 The proposed procedural taxonomy of the reviewed Android malware detection literature. Feature-related and model-related stages are
colored in blue and green, respectively

Page 9 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

some other information about each dataset, including
the number of samples in it, when it was last updated,
whether it provides ground truth, and its ease of access.
We should note that we only included in our table
datasets that provide access to raw APK files. There
are datasets that only provide values of extracted fea-
tures from APKs [e.g., the one by Cai et al. (2020), Cai
and Ryder (2017), Cai and Ryder (2020), and Li et al.
(2021)]. While these sets might be useful for train-
ing certain types of models, we have excluded them as
they have limited usefulness for training a general ML
pipeline.

There are also sets that simply provide obfuscated
versions of the samples from another set. These can be
used for detecting re-packaged malware. The MasVet
dataset (Chen et al. 2015) and the dataset provided by
Maiorca et al. (2015) are examples of such.

Other than public sources, researchers (e.g., Liu and
Liu 2014; McLaughlin et al. 2017; Wang et al. 2014)
occasionally use private sets obtained from commer-
cial partners (e.g., McAfee). Lastly, some papers do not
disclose the source of their APKs (e.g., Sahs and Khan

2012; Wang et al. 2016), hindering replication of their
findings.

When it comes to sourcing benign samples, the most
popular approach seems to be scraping Google play store
or other third-party markets (e.g., AppChina) for APK
files. This approach, however, has the drawback of acci-
dentally mixing malware APKs with benign ones. This is
because there is no guarantee that all APKs on official or
third-party stores are benign. Evidently, there have been
reported cases of malicious apps being listed on such
stores (ZDNet 2021). Alternatively, AndroZoo (Allix
et al. 2016) has been used occasionally as a source of
benign APKs. And, lastly, some researchers use privately-
sourced or undisclosed benign sets as well. This division
is depicted in section 1b of Fig. 4.

For establishing ground truth, the most popular
approach in the literature seems to be submitting the
APKs to VirusTotal (2021), and using a threshold on the
number of positive detections. For example, one might
decide to label any APK that is detected by more than 3
AntiVirus (AV) products on VirusTotal as malware. Aside
from using VirusTotal, some papers assume ground truth

Table 1 Android malware datasets used by the reviewed papers

Name Last updated # APKs Ground truth Access Used by

Android Malware Genome Project
(MalGenome) (Zhou and Jiang
2012)

2012 1260 Malware Provided Discontinued Liu and Liu (2014), Arp et al. (2014),
Yuan et al. (2016), Zhang et al.
(2014), McLaughlin et al. (2017),
Demontis et al. (2019), Yerima
(2013), Kim et al. (2019), Tong and
Yan (2017), Karbab et al. (2018),
Aafer et al. (2013), Peiravian and Zhu
(2013), Saracino et al. (2018), Amos
et al. (2013), Lindorfer et al. (2015),
Suarez-Tangil et al. (2017)

DREBIN (Arp et al. 2014) 2014 5560 Malware Provided Restricted Arp et al. (2014), Demontis et al.
(2019), Feng et al. (2018), Zhang
et al. (2018), Karbab et al. (2018),
Suarez-Tangil et al. (2017)

M0Droid (Damshenas et al. 2015) 2015 200 Malware Provided Restricted Milosevic et al. (2017)

Contagio Mobile (Contagio 2021) 2018 ~500 Malware Not Provided Open Yuan et al. (2014, 2016),, Wu et al.
(2012), Demontis et al. (2019),
Saracino et al. (2018), Lindorfer et al.
(2015)

VirusShare (2021) 2019 66,727 (Not All Malware) Not Provided Restricted Wang et al. (2014), Kim et al. (2019),
Zhu et al. (2018), Xu et al. (2018),
Saracino et al. (2018)

AndroZoo (Allix et al. 2016) 2021 15,307,857 (Not All Malware) Provided Restricted Feng et al. (2018)

VirusTotal (2021) 2021 – Provided Paid Sanz et al. (2013), Lindorfer et al.
(2015)

Private sources N/A N/A N/A Closed Liu and Liu (2014), Alzaylaee
et al. (2020), Zhang et al. (2014),
McLaughlin et al. (2017), Wang et al.
(2014), Tong and Yan (2017), Feng
et al. (2018), Yerima et al. (2014,
2015),, Wu and Hung (2014), Karbab
et al. (2018), Burguera et al. (2011)

Page 10 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

based on the source of APK. For example, they label any
APK they download from Google play store as benign
because they assume the store is malware free. A few
papers (e.g., Burguera et al. 2011) used other methods,
such as using self-written malware or performing manual
analysis.

Feature extraction
In our literature review, we observed that engineering
new features is often positioned as a major contribution
of the reviewed works. This suggests the high importance
of feature engineering for successful Android malware
detection. This is unsurprising given that APKs are large
and complex files, containing lots of information (e.g.,
the graphics of the app) that are irrelevant for malware
detection. This makes APKs sub-optimal for direct diges-
tion by ML algorithms, as doing so would create needless
processing and storage overhead. We found, as demon-
strated in section 2 of Fig. 4, that the literature has tried
the two following general ways of extracting representa-
tive features from APKs.

Static analysis
Static analysis involves extracting features from APKs
without executing them, either on a real device or an
emulator. Instead, the APK is unpacked and the files
with-in it are examined for clues about the app’s inten-
tions. Examples include presence of certain suspicious
API calls in the bytecode, or usage of requesting permis-
sions in the Manifest file.

Our literature review revealed that researchers have
extracted static features from nearly every part of the
APK structure we presented in "Background" section (see
Fig. 2). This is clearly depicted in section 2a of Fig. 4 as
well. Generally, we found that while most papers have
focused on the manifest and classes.dex file (e.g., Liu and
Liu 2014; Arp et al. 2014; Yuan et al. 2016), occasionally
researchers have looked into the resources folder (like Xu
et al. 2018), as well as signatures and native libraries (e.g.,
Lindorfer et al. 2015).

For future researchers’ reference, we have composed
a list of these static features, in Table 2. For each fea-
ture, we provide which part of the APK structure it is
extracted from, what is the rationale behind extracting it
(according to the authors of the reviewed papers), and, if
clarified by the authors, the tool(s) that have been used
for extracting the features.

As the table shows, permissions and API calls have
been by far the most popular targets for feature engineer-
ing. This is unsurprising given that they are most likely to
reveal malicious intent. For instance, if a malware wants
to spy on the user’s location, it needs to request the loca-
tion permission and then call necessary APIs to obtain

the GPS data. Both of these acts can be revealed by an
examination of the malware’s Manifest and DEX files.

It is, however, interesting that other less obvious data,
such as environment info, are also found to be useful for
malware detection. For example, Saracino et al. (2018)
used data from the market listings of apps. They extract
the ratings of each app, its market name, the name of
its developer and its number of downloads. They use
this data alongside other features, such as requested
permissions.

Lastly, we should remark that while some papers
extract the same features, they might use them in dif-
ferent ways. Some papers, for example, use requested
permissions directly as boolean features (e.g., Arp et al.
2014), whereas others might try combinations of them,
such as Liu and Liu (2014) who used pairs of permissions.
Similarly, whereas some authors directly use presence
of API calls as boolean features (e.g., Yuan et al. 2016),
others try to capture the temporal relationship of API
calls as well. Hence, they use control or data flow graphs
(e.g., Gascon et al. 2013). This overall diversity of feature
representation is depicted in the DEX subsection of sec-
tion 2a of Fig. 4.

Dynamic analysis
Dynamic analysis involves running an APK, either on
a real device or on an emulator, to observe its behav-
iors at run time (Yan and Yan 2018). It is usually much
more resource intensive than static analysis, as it requires
access to an isolated and instrumented execution envi-
ronment. However, it also has the potential to reveal
data not obtainable statically, due to code obfuscation or
encryption.

Our literature review revealed that authors have
extracted a variety of dynamic features from APKs, which
range from kernel-level system calls, to network opera-
tions, and SMSs sent. Section 2b of Fig. 4 illustrates a
list of such features. Overall, however, the diversity of
dynamic features, and the tools used to extract them, is
not to the extent we observed with the static ones. We
found that most papers (e.g., Yuan et al. 2014, 2016;
Alzaylaee et al. 2020; Feng et al. 2018; Wu and Hung
2014; Lindorfer et al. 2015) that perform dynamic anal-
ysis use the DroidBox (Project D 2021a) tool, which
records the following information about an app:

• Cryptographic operations: Whether the app has
made any calls to Android’s cryptograpic APIs.

• Network operations: Any data that is sent/received
over the network

• File operations: Details of any file reads or writes
that the app has performed

Page 11 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

Ta
bl

e
2

O
ve

rv
ie

w
 o

f s
ta

tic
 fe

at
ur

es
 e

xt
ra

ct
ed

 fr
om

 A
nd

ro
id

 A
PK

s
by

 th
e

re
vi

ew
ed

 p
ap

er
s

Fe
at

ur
e

A
PK

 p
ar

t
Ra

tio
na

le
To

ol
s

U
se

d
by

Re
qu

es
te

d
pe

rm
is

si
on

s
M

an
ife

st
M

al
w

ar
e

te
nd

 to
 re

qu
es

t m
or

e
pe

rm
is

-
si

on
s,

an
d

m
or

e
da

ng
er

ou
s

on
es

.
A

PK
To

ol
 (2

02
1)

, a
ap

t (
Po

rt
al

 A
D

 2
02

1b
),

an
dr

og
ua

rd
 (P

ro
je

ct
 A

 2
02

1)
Li

u
an

d
Li

u
(2

01
4)

, A
rp

 e
t a

l.
(2

01
4)

, Y
ua

n
et

 a
l.

(2
01

4,
 2

01
6)

, A
lz

ay
la

ee
 e

t a
l.

(2
02

0)
,

Sa
hs

 a
nd

 K
ha

n
(2

01
2)

, L
i e

t a
l.

(2
01

8)
, W

an
g

et
 a

l.
(2

01
4)

, W
u

et
 a

l.
(2

01
2)

, D
em

on
tis

 e
t a

l.
(2

01
9)

, Y
er

im
a

(2
01

3)
, K

im
 e

t a
l.

(2
01

9)
, Z

hu

et
 a

l.
(2

01
8)

, Z
ha

ng
 e

t a
l.

(2
01

8)
, Y

er
im

a
et

 a
l.

(2
01

4,
 2

01
5)

, W
an

g
et

 a
l.

(2
01

6)
, A

af
er

 e
t a

l.
(2

01
3)

, P
ei

ra
vi

an
 a

nd
 Z

hu
 (2

01
3)

, S
ar

ac
in

o
et

 a
l.

(2
01

8)
, S

an
z

et
 a

l.
(2

01
3)

, Z
ar

ni
 A

un
g

(2
01

3)
, L

in
do

rf
er

 e
t a

l.
(2

01
5)

, S
ua

re
z-

Ta
ng

il
et

 a
l.

(2
01

7)

U
se

d
pe

rm
is

si
on

s
D

EX
A

ll
re

qu
es

te
d

pe
rm

is
si

on
s

m
ig

ht
 n

ot
 b

e
us

ed
. U

nu
se

d
pe

rm
is

si
on

s
in

tr
od

uc
e

no
is

e
an

d
sh

ou
ld

 b
e

el
im

in
at

ed
.

A
PK

To
ol

 (2
02

1)
, P

Sc
ou

t (
Pr

oj
ec

t P
 2

02
1b

),
ba

ks
m

al
i (

Pr
oj

ec
t B

 2
02

1)
Li

u
an

d
Li

u
(2

01
4)

, A
rp

 e
t a

l.
(2

01
4)

, D
em

on
-

tis
 e

t a
l.

(2
01

9)
, L

in
do

rf
er

 e
t a

l.
(2

01
5)

H
ar

dw
ar

e
re

qu
ire

m
en

ts
M

an
ife

st
M

al
w

ar
e

te
nd

 to
 re

qu
es

t m
or

e
se

ns
iti

ve

ha
rd

w
ar

e
(e

.g
.,

Ca
m

er
a)

aa
pt

 (P
or

ta
l A

D
 2

02
1b

)
A

rp
 e

t a
l.

(2
01

4)
, D

em
on

tis
 e

t a
l.

(2
01

9)
, S

an
z

et
 a

l.
(2

01
3)

N
am

es
 a

nd
 ty

pe
s

of
 a

pp
 c

om
po

ne
nt

s
M

an
ife

st
To

 d
et

ec
t c

od
e

re
us

e
(c

om
m

on
 s

er
vi

ce
s,

br
oa

dc
as

t r
ec

ei
ve

rs
, o

r o
th

er
 a

pp
 c

om
po

-
ne

nt
s)

 b
y

m
al

w
ar

e

–
A

rp
 e

t a
l.

(2
01

4)
, W

u
et

 a
l.

(2
01

2)
, D

em
on

tis

et
 a

l.
(2

01
9)

, K
im

 e
t a

l.
(2

01
9)

, S
ua

re
z-

Ta
ng

il
et

 a
l.

(2
01

7)

Fi
lte

re
d

in
te

nt
s

M
an

ife
st

M
al

w
ar

e
te

nd
 to

 s
ub

sc
rib

e
to

 s
en

si
tiv

e
sy

st
em

 b
ro

ad
ca

st
s,

su
ch

 a
s

BO
O

T_
CO

M
-

PL
ET

E.

–
A

rp
 e

t a
l.

(2
01

4)
, W

u
et

 a
l.

(2
01

2)
, D

em
on

tis

et
 a

l.
(2

01
9)

, Z
hu

 e
t a

l.
(2

01
8)

, Z
ha

ng
 e

t a
l.

(2
01

8)
, L

in
do

rf
er

 e
t a

l.
(2

01
5)

, S
ua

re
z-

Ta
ng

il
et

 a
l.

(2
01

7)

A
PI

 c
al

ls
D

EX
M

al
w

ar
e

m
ay

 c
al

l s
en

si
tiv

e
or

 s
us

pi
ci

ou
s

A
PI

s,
su

ch
 a

s
on

es
 to

 a
cc

es
s

SM
S.

ba
ks

m
al

i (
Pr

oj
ec

t B
 2

02
1)

, s
oo

t (
Pr

oj
ec

t
S

20
21

),
an

dr
og

ua
rd

 (P
ro

je
ct

 A
 2

02
1)

,
de

xd
um

p
(M

an
 P

ag
es

 U
 2

02
1)

A
rp

 e
t a

l.
(2

01
4)

, Y
ua

n
et

 a
l.

(2
01

6)
, S

ah
s

an
d

Kh
an

 (2
01

2)
, W

u
et

 a
l.

(2
01

2)
 Y

ua
n

et
 a

l.
(2

01
4)

, D
em

on
tis

 e
t a

l.
(2

01
9)

, Y
er

im
a

(2
01

3)
,

Ki
m

 e
t a

l.
(2

01
9)

, Z
hu

 e
t a

l.
(2

01
8)

, Z
ha

ng

et
 a

l.
(2

01
8)

, Y
er

im
a

et
 a

l.
(2

01
4,

 2
01

5)
,

Ka
rb

ab
 e

t a
l.

(2
01

8)
, A

af
er

 e
t a

l.
(2

01
3)

, P
ei

-
ra

vi
an

 a
nd

 Z
hu

 (2
01

3)
, G

as
co

n
et

 a
l.

(2
01

3)
,

Ya
ng

 e
t a

l.
(2

01
4)

, S
ua

re
z-

Ta
ng

il
et

 a
l.

(2
01

7)

N
et

w
or

k
ad

dr
es

se
s

D
EX

M
al

w
ar

e
m

ay
 c

om
m

on
ly

 c
om

m
un

ic
at

e
w

ith
 u

nt
ru

st
w

or
th

y
in

te
rn

et
 h

os
ts

.
–

A
rp

 e
t a

l.
(2

01
4)

, D
em

on
tis

 e
t a

l.
(2

01
9)

O
pc

od
es

D
EX

 ,
Sh

ar
ed

 li
br

ar
ie

s
Ce

rt
ai

n
se

qu
en

ce
s

of
 o

pc
od

es
 m

ay
 re

ve
al

m

al
ic

io
us

 in
te

nt
s

in
 a

pp
s.

ba
ks

m
al

i (
Pr

oj
ec

t B
 2

02
1)

, I
D

A
 P

ro
 (H

ex
-

ra
ys

 2
02

1)
M

cL
au

gh
lin

 e
t a

l.
(2

01
7)

, K
im

 e
t a

l.
(2

01
9)

By
te

co
de

s
D

EX
Ce

rt
ai

n
by

te
co

de
 s

eq
ue

nc
es

 m
ay

 re
ve

al

m
al

ic
io

us
 in

te
nt

s
in

 a
pp

s.
–

G
ra

ce
 e

t a
l.

(2
01

2)
, X

u
et

 a
l.

(2
01

8)
, B

ak
ou

r
an

d
Ü

nv
er

 (2
02

1)

D
ec

om
pi

le
d

Ja
va

 c
od

e
D

EX
Ce

rt
ai

n
pa

tt
er

ns
 o

f c
od

e
m

ay
 re

ve
al

 m
al

i-
ci

ou
s

in
te

nt
.

de
x2

ja
r (

Pr
oj

ec
t D

 2
02

1b
),

Pr
oc

yo
n

(P
ro

-
je

ct
 P

 2
02

1a
)

M
ilo

se
vi

c
et

 a
l.

(2
01

7)
, W

an
g

et
 a

l.
(2

01
6)

Li
nu

x
co

m
m

an
d

st
rin

gs
D

EX
 &

 R
es

ou
rc

es
M

al
w

ar
e

m
ay

 u
se

 d
an

ge
ro

us
 c

om
m

an
ds

to

 e
xp

lo
it

th
e

ph
on

e
an

d
ga

in
 p

riv
ile

ge
d

ac
ce

ss
.

–
Ye

rim
a

(2
01

3)
, Y

er
im

a
et

 a
l.

(2
01

4,
 2

01
5)

U
se

 o
f e

nc
ry

pt
io

n
ro

ut
in

es
D

EX
M

al
w

ar
e

m
ay

 u
se

 e
nc

ry
pt

io
n

to
 h

id
e

th
ei

r
in

te
nt

.
–

Ye
rim

a
(2

01
3)

, L
in

do
rf

er
 e

t a
l.

(2
01

5)
, S

ua
re

z-
Ta

ng
il

et
 a

l.
(2

01
7)

Page 12 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

Ta
bl

e
2

(c
on

tin
ue

d)

Fe
at

ur
e

A
PK

 p
ar

t
Ra

tio
na

le
To

ol
s

U
se

d
by

Pr
es

en
ce

 o
f s

ec
on

da
ry

 A
PK

 o
r s

he
ll

sc
rip

ts
A

ss
et

s
M

al
w

ar
e

m
ay

 h
id

e
A

PK
 fi

le
s

w
hi

ch
 w

ill
 b

e
in

st
al

le
d

af
te

r i
nf

ec
tio

n.
 S

he
ll

sc
rip

ts
 m

ig
ht

be

 u
se

d
fo

r e
xp

lo
ita

tio
n.

–
Ye

rim
a

(2
01

3)
, L

in
do

rf
er

 e
t a

l.
(2

01
5)

En
vi

ro
nm

en
ta

l I
nf

or
m

at
io

n
M

an
ife

st
M

al
w

ar
e

m
ay

 ta
rg

et
 a

 s
pe

ci
fic

 v
ul

ne
ra

bl
e

ex
ec

ut
io

n
en

vi
ro

nm
en

t (
e.

g.
, A

nd
ro

id

ve
rs

io
n)

.

–
Ki

m
 e

t a
l.

(2
01

9)
, S

ua
re

z-
Ta

ng
il

et
 a

l.
(2

01
7)

Co
ns

ta
nt

 s
tr

in
gs

Re
so

ur
ce

s
M

al
w

ar
e

m
ay

 c
on

ta
in

 s
us

pi
ci

ou
s

st
rin

gs

(e
.g

.,
fa

ke
 a

ds
)

A
PK

To
ol

 (2
02

1)
Ki

m
 e

t a
l.

(2
01

9)
, Z

ha
ng

 e
t a

l.
(2

01
8)

, X
u

et
 a

l.
(2

01
8)

, S
ua

re
z-

Ta
ng

il
et

 a
l.

(2
01

7)

U
se

 o
f J

av
a

re
fle

ct
io

n
D

EX
M

al
w

ar
e

m
ay

 u
se

 re
fle

ct
io

n
to

 d
yn

am
i-

ca
lly

 lo
ad

 c
od

e
an

d
th

w
ar

t s
ta

tic
 a

na
ly

si
s

eff
or

ts
.

–
Li

nd
or

fe
r e

t a
l.

(2
01

5)
, S

ua
re

z-
Ta

ng
il

et
 a

l.
(2

01
7)

Si
gn

in
g

ce
rt

ifi
ca

te
 d

at
a

M
ET

A
-IN

F
Th

e
fin

ge
rp

rin
t,

se
ria

l n
um

be
r,

ow
ne

r o
r

ot
he

r d
at

a
fro

m
 th

e
ce

rt
ifi

ca
te

 m
ay

 c
or

-
re

sp
on

d
to

 k
no

w
n

m
al

w
ar

e
au

th
or

s.

–
Li

nd
or

fe
r e

t a
l.

(2
01

5)
, S

ua
re

z-
Ta

ng
il

et
 a

l.
(2

01
7)

Pr
es

en
ce

 o
f n

at
iv

e
ex

ec
ut

ab
le

s
or

 li
br

ar
ie

s
Li

b
M

al
w

ar
e

of
te

n
us

e
na

tiv
e

co
de

 to
 p

er
fo

rm

ex
pl

oi
ts

 o
r m

ak
e

re
ve

rs
e-

en
gi

ne
er

in
g

ha
rd

er
.

–
Li

nd
or

fe
r e

t a
l.

(2
01

5)
, S

ua
re

z-
Ta

ng
il

et
 a

l.
(2

01
7)

Page 13 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

• DEX class-load: Details of classes that the app has
loaded dynamically through dexload

• Information leaks: Whether the app shows signs of
information leak, which is defined as data obtained
from sensitive APIs being sent off-device (e.g. over
network)

• Sent SMS: Details of any SMSs the app sends
• Phone calls: Details of any phone calls initiated by

the app
• Services started: Names of service components

started by the app
• Broadcast receivers: Whether and what broadcasts

are dynamically registered by the app

A few papers (i.e., Vidal et al. 2018; Feng et al. 2018;
Burguera et al. 2011; Afonso et al. 2015) also use strace
(Man Pages L 2021), a built-in Linux tool, in addition or
instead of DroidBox. This allows them to capture system
calls at the kernel level, which the authors can then use to
detect presence of certain dangerous calls. Alternatively,
some authors use custom-developed tools, such as ker-
nel extensions [done by Tong and Yan (2017), Dini et al.
(2012) and Saracino et al. (2018)] or apps [done by Sara-
cino et al. (2018) Dini et al. (2012)]. For example, the tool
developed by Saracino et al. (2018) can capture SMSs
sent, calls made and whether the screen is on, which will
indicate the user’s presence. Other such custom tools
include DynaLog [used by Alzaylaee et al. (2020)] and
APIMonitor [used by Wu and Hung (2014)]

Other than DroidBox features and API calls, we
observed three noteworthy dynamic features used by the
literature. Firstly, Amos et al. (2013) leveraged usage of
resources (e.g., battery) to detect malware. The ration-
ale was that malware might use more energy, due to the
nature of work it accomplishes. Secondly, Shabtai et al.
(2014) focused on network operations to detect mali-
ciousness. They utilize deviations from an app’s “normal”
network behavior, as a sign of anomaly that can reveal
malware. Lastly, Cai et al. (2018) made novel use of the
analysis of the Inter-Component Communication (ICC)
Intents of apps, in addition to API and system calls, as a
measure for detecting malware.

Feature representation
Once features are extracted from APK files, they can
be represented in different ways, for digestion by the
ML models. Examples can be boolean vectors, similar-
ity scores, and graphs. As Table 3 shows, the surveyed
papers have used a variety of ways to represent features.

Firstly, the majority of papers have utilized a vector-
based representation. In this approach, each APK is
represented as a one-dimensional array of values, and
any temporal or spacial relationships are ignored (e.g.

only the names of the called APIs are considered, but
the order by which the calls are made is ignored). As
section 3a of Fig. 4 shows, the surveyed work has used
different ways of creating feature vectors:

• Existence-based: In this simplistic approach, the
feature vector consists of a series of True/False val-
ues which indicate whether or not the correspond-
ing feature is present in the APK file. For example,
in permission-based solutions such as Liu and Liu
(2014) and Alzaylaee et al. (2020), each element of
the feature vector is mapped to an Android permis-
sion, and a corresponding True/False value would
mean that the APK has(not) requested that permis-
sion. Similarly, in Arp et al. (2014), a vector element
indicate whether the APK contains a certain net-
work address, or a suspicious API call.

• Frequency-based: Feature vectors can also be fre-
quency-based where each entry is an integer repre-
senting the frequency by which a feature has been
observed in the APK. For example, in Burguera
et al. (2011)’s approach, each element represents
how many times the APK has called a certain API.
In Milosevic et al. (2017) also, each element repre-
sents how many times the corresponding keyword
has been detected in the decompiled Java code of
the app. Note that, in contrast to the previous type,
each element here also demonstrates the preva-
lence of each feature.

• Similarity-based: Lastly, vectors may also be cre-
ated based on similarities among APKs. In this
case, each element of the feature vector represents
a decimal number which indicates how similar
the current APK is to another one in the dataset.
Zhang et al.’s approach (Zhang et al. 2014) is an
example of this case, where each feature vector ele-
ment indicates how similar this APK’s control flow
graph is to that of the other APKs in their dataset.
Kim et al. (2019) also uses as features similarities
between APKs in terms of Opcode and API call
frequency. Lastly, Xu et al. (2018) devised a more
complex similarity-based approach. The authors
extract bytecodes from the APK. However, instead
of representing them as simple boolean vectors,
they use a semantic-aware approach called Byte-
code2vec. Bytecode2vec codes functionally-similar
Bytecodes closer to each other in the feature space.
This means that if two bytecodes are semantically
similar (e.g., they both do file operations), their cor-
responding byte2vec values are closer. This allows
the approach to be less sensitive to the exact names
of APIs used, and rather be able to detect semanti-
cally-malicious behavior.

Page 14 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

Ta
bl

e
3

Co
m

pa
ris

on
 o

f M
L

ap
pr

oa
ch

es
 p

ro
po

se
d

by
 t

he
 s

ur
ve

ye
d

pa
pe

rs
, i

n
te

rm
s

of
 fe

at
ur

e
ex

tr
ac

tio
n

an
d

re
pr

es
en

ta
tio

n;
 m

od
el

 c
re

at
io

n,
 d

ep
lo

ym
en

t
an

d
us

e;
 a

nd
 b

en
efi

ts

an
d

dr
aw

ba
ck

s

Fe
at

ur
e

M
od

el

Ex
tr

ac
tio

n
Re

pr
es

en
ta

tio
n

Se
le

ct
io

n
M

L
A

pp
ro

ac
h

Ev
al

ua
tio

n
D

ep
lo

ym
en

t
Ex

pl
an

at
io

n
Co

nt
ri

bu
tio

ns

Li
u

an
d

Li
u

(2
01

4)
St

at
ic

Bo
ol

ea
n

ve
ct

or
M

an
ua

l
D

ec
is

io
n

Tr
ee

TP
R
=

 0
.8

13
FP

R
=

 0
.0

04
6

Pr
ec

is
io

n
=

 0
.8

9
A

cc
ur

ac
y
=

 0
.9

8

O
ff-

de
vi

ce
N

on
e

U
si

ng
 “U

se
d”

 p
er

m
is

-
si

on
s,

in
st

ea
d

of

re
qu

es
te

d
on

es
 c

an

re
du

ce
 fe

at
ur

e
no

is
e.

U

si
ng

 a
 tw

o-
st

ep

de
te

ct
io

n
pr

oc
es

s
ca

n
in

cr
ea

se
 p

er
fo

rm
an

ce

A
rp

 e
t a

l.
(2

01
4)

St
at

ic
Bo

ol
ea

n
ve

ct
or

M
an

ua
l

SV
M

Re
ca

ll
=

 0
.9

4
A

cc
ur

ac
y
=

 0
.9

3
FP

R
=

 0
.0

1
Ru

n-
tim

e

H
yb

rid
 (t

ra
in

in
g

off
-d

ev
ic

e,
 fe

at
ur

e
ex

tr
ac

tio
n

an
d

de
te

ct
io

n
on

-
de

vi
ce

)

U
se

s
fe

at
ur

e
w

ei
gh

ts

to
 e

xp
la

in
 p

re
di

c-
tio

ns

Em
ph

as
is

 o
n

pr
ed

ic
-

tio
n

ex
pl

an
at

io
n

pr
ov

id
es

 c
la

rit
y

to

th
e

us
er

, i
nc

re
as

in
g

us
ab

ili
ty

. D
iv

er
si

ty
 o

f
fe

at
ur

es
 u

se
d

ca
n

al
le

-
vi

at
e

co
nc

ep
t d

rif
t

Yu
an

 e
t a

l.
(2

01
6)

St
at

ic
 &

 D
yn

am
ic

Bo
ol

ea
n

ve
ct

or
M

an
ua

l
D

ee
p

Be
lie

f N
et

w
or

k
(D

BN
)

Pr
ec

is
io

n
=

 0
.9

4
A

cc
ur

ac
y
=

 0
.9

3
FP

R
=

 0
.0

1

H
yb

rid
 (t

ra
in

in
g

is

off
-d

ev
ic

e,
 fe

at
ur

e
ex

tr
ac

tio
n

an
d

de
te

ct
io

n
is

 o
n-

de
vi

ce
)

U
se

s
fe

at
ur

e
w

ei
gh

ts

to
 e

xp
la

in
 p

re
di

c-
tio

ns

U
si

ng
 d

ee
p

le
ar

ni
ng

fo

r A
nd

ro
id

 m
al

w
ar

e
sh

ow
s

pr
om

is
e.

Re

su
lts

 s
ho

w
 th

at

th
er

e
is

 re
si

st
an

ce
 to

re

-p
ac

ka
ge

d
m

al
w

ar
e

A
lz

ay
la

ee
 e

t a
l.

(2
02

0)
St

at
ic

 &
 D

yn
am

ic
Bo

ol
ea

n
ve

ct
or

In
fo

rm
at

io
n

G
ai

n
M

ul
til

ay
er

 p
er

ce
p-

tr
on

 (M
LP

)
TP

R
=

 0
.9

8
TN

R
=

 0
.9

1
FP

R
=

 0
.0

9
FN

R
=

 0
.0

2
A

cc
ur

ac
y
=

 0
.9

5
F
=

 0
.9

6
AU

C
 =

 0
.9

9
Ru

n-
tim

e

O
ff-

de
vi

ce
N

on
e

U
si

ng
 s

ta
te

fu
l i

np
ut

ge

ne
ra

tio
n

fo
r

dy
na

m
ic

 a
na

ly
si

s
ha

s
im

pr
ov

ed
 c

od
e

co
ve

r-
ag

e,
 w

he
n

co
m

pa
re

d
to

 o
th

er
 w

or
ks

. C
le

ar

ru
n-

tim
e

pe
rf

or
m

an
ce

ev

al
ua

tio
n

is
 c

on
-

du
ct

ed
 a

nd
 re

po
rt

ed

Zh
an

g
et

 a
l.

(2
01

4)
St

at
ic

A
PI

 g
ra

ph
 s

im
ila

rit
y

sc
or

es
M

an
ua

l
N

ai
ve

 B
ay

es
FN

R
=

 0
.0

2
FP

R
=

 0
.0

5
Re

ca
ll
=

 0
.9

3
Ru

n-
tim

e

O
ff-

de
vi

ce
N

on
e

U
si

ng
 s

em
an

tic
al

ly
-

aw
ar

e
de

pe
nd

en
cy

gr

ap
hs

 le
ss

en
s

th
e

re
lia

nc
e

on
 s

yn
ta

x,

he
lp

in
g

to
 d

et
ec

t
ze

ro
-d

ay
 m

al
w

ar
e

an
d

po
te

nt
ia

lly
 a

lle
vi

at
in

g
co

nc
ep

t d
rif

t

Page 15 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

Ta
bl

e
3

(c
on

tin
ue

d) Fe
at

ur
e

M
od

el

Ex
tr

ac
tio

n
Re

pr
es

en
ta

tio
n

Se
le

ct
io

n
M

L
A

pp
ro

ac
h

Ev
al

ua
tio

n
D

ep
lo

ym
en

t
Ex

pl
an

at
io

n
Co

nt
ri

bu
tio

ns

M
cL

au
gh

lin
 e

t a
l.

(2
01

7)
St

at
ic

O
pc

od
e

se
qu

en
ce

s
N

on
e

Co
nv

ol
ut

io
na

l N
eu

-
ra

l N
et

w
or

k
(C

N
N

)
A

cc
ur

ac
y
=

 0
.8

7
Pr

ec
is

io
n
=

 0
.8

7
Re

ca
ll
=

 0
.8

5
F
=

 0
.8

6
Ru

n-
tim

e

O
ff-

de
vi

ce
N

on
e

U
si

ng
 o

pc
od

es

an
d

de
ep

 le
ar

ni
ng

el

im
in

at
es

 th
e

ne
ed

fo

r m
an

ua
l f

ea
tu

re

en
gi

ne
er

in
g,

 a
nd

 a
ls

o
co

ul
d

al
le

vi
at

e
co

n-
ce

pt
 d

rif
t.

Th
or

ou
gh

ru

n-
tim

e
pe

rf
or

m
an

ce

ev
al

ua
tio

n
is

 c
on

-
du

ct
ed

 a
nd

 re
po

rt
ed

Li
 e

t a
l.

(2
01

8)
St

at
ic

Bo
ol

ea
n

ve
ct

or
SF

S
SV

M
A

cc
ur

ac
y
=

 0
.9

5
Pr

ec
is

io
n
=

 0
.9

7
Re

ca
ll
=

 0
.9

3
FP

R
=

 2
.3

6
FM

 =
 0

.9
5

H
yb

rid
 (f

ea
tu

re

ex
tr

ac
tio

n
on

-
de

vi
ce

, t
ra

in
in

g
an

d
de

te
ct

io
n

off
-

de
vi

ce
)

N
on

e
U

si
ng

 o
nl

y “
si

gn
ifi

ca
nt

”
pe

rm
is

si
on

s
re

du
ce

s
fe

at
ur

e
no

is
e

an
d

m
od

el
 c

om
pl

ex
ity

,
po

te
nt

ia
lly

 le
ad

in
g

to

be
tt

er
 a

cc
ur

ac
y

an
d

lo
w

er
 o

ve
r-

fit
tin

g

W
an

g
et

 a
l.

(2
01

4)
St

at
ic

Bo
ol

ea
n

ve
ct

or
M

I,
SF

S,
 M

an
ua

l
SV

M
, D

ec
is

io
n

Tr
ee

,
Ra

nd
om

 F
or

es
t

A
cc

ur
ac

y
=

 0
.9

5
TP

R
=

 0
.9

4
FP

R
=

 0
.0

06
F
=

 0
.9

0
RO

C

O
ff-

de
vi

ce
D

ec
is

io
n

tr
ee

 ru
le

s
to

 e
xp

la
in

 p
re

di
c-

tio
ns

Th
e

pe
rm

is
si

on
 ra

nk
-

in
g

us
ed

 c
an

 le
ad

to

 re
du

ce
d

fe
at

ur
e

no
is

e
an

d
im

pr
ov

ed

ac
cu

ra
cy

. T
he

 m
od

el

ex
pl

an
at

io
n

ap
pr

oa
ch

is

 n
ov

el
 a

nd
 c

an

in
sp

ire
 fu

tu
re

 e
ffo

rt
s

Yu
an

 e
t a

l.
(2

01
4)

St
at

ic
 &

 D
yn

am
ic

Bo
ol

ea
n

ve
ct

or
M

an
ua

l
D

BN
A

cc
ur

ac
y
=

 0
.9

6
O

ff-
de

vi
ce

N
on

e
N

ov
el

 u
se

 o
f d

ee
p

le
ar

ni
ng

 le
ad

s
to

im

pr
ov

ed
 a

cc
ur

ac
y.

U

si
ng

 b
ot

h
st

at
ic

 a
nd

dy

na
m

ic
 fe

at
ur

es
 c

an

al
le

vi
at

e
su

sc
ep

tib
ili

ty

to
 e

va
si

on
 a

tt
ac

ks

W
u

et
 a

l.
(2

01
2)

St
at

ic
Bo

ol
ea

n
ve

ct
or

M
an

ua
l

K-
M

ea
ns

, E
M

, k
N

N
,

N
ai

ve
 B

ay
es

A
cc

ur
ac

y
=

 0
.9

3
Re

ca
ll
=

 0
.8

7
Pr

ec
is

io
n
=

 0
.9

6
F
=

 0
.9

1

O
ff-

de
vi

ce
N

on
e

Th
e

pe
rf

or
m

ed

m
al

w
ar

e
fa

m
ily

 d
et

ec
-

tio
n

ca
n

he
lp

 h
um

an

an
al

ys
ts

. C
la

ss
ifi

ca
tio

n
is

 a
ug

m
en

te
d

w
ith

cl

us
te

rin
g

fo
r m

or
e

ac
cu

ra
te

 d
et

ec
tio

n

Page 16 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

Ta
bl

e
3

(c
on

tin
ue

d) Fe
at

ur
e

M
od

el

Ex
tr

ac
tio

n
Re

pr
es

en
ta

tio
n

Se
le

ct
io

n
M

L
A

pp
ro

ac
h

Ev
al

ua
tio

n
D

ep
lo

ym
en

t
Ex

pl
an

at
io

n
Co

nt
ri

bu
tio

ns

M
ilo

se
vi

c
et

 a
l.

(2
01

7)
St

at
ic

Bo
ol

ea
n

&
In

te
ge

r
ve

ct
or

s
N

on
e

K-
M

ea
ns

, E
M

;
En

se
m

bl
e

of
 S

VM
,

N
ai

ve
 B

ay
es

, D
ec

i-
si

on
 T

re
e

Pr
ec

is
io

n
=

 0
.8

9
Re

ca
ll
=

 0
.8

9
F
=

 0
.8

9
Ru

n-
tim

e

O
ff-

de
vi

ce
N

on
e

Th
e

pe
rf

or
m

ed
 c

lu
s-

te
rin

g
ca

n
he

lp
 w

ith

ob
ta

in
in

g
gr

ou
nd

tr

ut
h

fo
r u

nl
ab

el
ed

sa

m
pl

es
, b

as
ed

 o
n

th
ei

r n
ei

gh
bo

rs
. I

t c
an

al

so
 h

el
p

w
ith

 m
al

-
w

ar
e

fa
m

ily
 d

et
ec

tio
n

an
d

m
an

ua
l a

na
ly

si
s

D
em

on
tis

 e
t a

l.
(2

01
9)

St
at

ic
Bo

ol
ea

n
ve

ct
or

M
an

ua
l

Se
cu

re
 S

VM
A

tt
ac

k-
re

si
st

an
ce

RO
C

H
yb

rid
 (t

ra
in

in
g

off
-d

ev
ic

e,
 fe

at
ur

e
ex

tr
ac

tio
n

an
d

de
te

ct
io

n
on

-
de

vi
ce

)

U
se

s
fe

at
ur

e
w

ei
gh

ts

to
 e

xp
la

in
 p

re
di

c-
tio

ns

Th
e

pr
op

os
ed

un

ifo
rm

ed
 fe

at
ur

e
w

ei
gh

ts
 le

ss
en

s
SV

M
’s

re
lia

nc
e

on
 a

ny
 s

in
gl

e
fe

at
ur

e,
 a

lle
vi

at
in

g
ce

rt
ai

n
ev

as
io

n
at

ta
ck

s.
Ex

te
ns

iv
e

at
ta

ck
 e

va
lu

at
io

ns
 is

pe

rf
or

m
ed

Ye
rim

a
(2

01
3)

St
at

ic
Bo

ol
ea

n
ve

ct
or

M
ut

ua
l i

nf
or

m
at

io
n

Ba
ye

si
an

 C
la

ss
ifi

ca
-

tio
n

A
cc

ur
ac

y
=

 0
.9

2
FP

R
=

 0
.6

3
TP

R
=

 0
.9

0
FN

R
=

 0
.9

4
AU

C
 =

 0
.9

7

O
ff-

de
vi

ce
N

on
e

Th
e

us
e

of
 B

ay
es

ia
n

m
od

el
 m

ak
es

 in
te

-
gr

at
in

g
ex

pe
rt

 k
no

w
l-

ed
ge

 e
as

ie
r.

AU
C

is

 p
ro

vi
de

d
w

hi
ch

al

lo
w

s
fo

r e
as

ie
r

m
od

el
 c

om
pa

ris
on

Ki
m

 e
t a

l.
(2

01
9)

St
at

ic
Bo

ol
ea

n
ve

ct
or

,
Si

m
ila

rit
y

sc
or

es
To

po
lo

gi
ca

l D
at

a
A

na
ly

si
s

D
ee

p
le

ar
ni

ng
A

cc
ur

ac
y
=

 0
.9

8
Re

ca
ll
=

 0
.9

9
Pr

ec
is

io
n
=

 0
.9

8
F
=

 0
.9

9
Re

si
lie

nc
e

to
 o

bf
us

-
ca

tio
n

at
ta

ck
s

O
ff-

de
vi

ce
N

on
e

Th
e

gr
ea

t v
ar

ie
ty

 o
f

st
at

ic
 fe

at
ur

es
 u

se
d

ca
n

im
pr

ov
e

de
te

c-
tio

n
ac

cu
ra

cy
. A

s
do

es

th
e

us
e

of
 d

ee
p

le
ar

n-
in

g.
 A

 th
or

ou
gh

 in
ve

s-
tig

at
io

n
of

 re
si

lie
nc

e
to

 d
iff

er
en

t t
yp

es
 o

f
at

ta
ck

s
is

 p
er

fo
rm

ed

an
d

re
po

rt
ed

Page 17 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

Ta
bl

e
3

(c
on

tin
ue

d) Fe
at

ur
e

M
od

el

Ex
tr

ac
tio

n
Re

pr
es

en
ta

tio
n

Se
le

ct
io

n
M

L
A

pp
ro

ac
h

Ev
al

ua
tio

n
D

ep
lo

ym
en

t
Ex

pl
an

at
io

n
Co

nt
ri

bu
tio

ns

Sa
hs

 a
nd

 K
ha

n
(2

01
2)

St
at

ic
Bo

ol
ea

n
ve

ct
or

s,
G

ra
ph

s
N

on
e

SV
M

TP
R

Pr
ec

is
io

n
Re

ca
ll

F-
gr

ap
h

O
ff-

de
vi

ce
N

on
e

Th
e

no
ve

l u
se

 o
f S

VM

ke
rn

el
s

to
 re

pr
es

en
t

gr
ap

hs
 a

nd
 s

tr
in

gs

ca
n

be
 in

sp
ira

tio
na

l
fo

r f
ut

ur
e

w
or

k.
 It

 c
an

al

so
 im

pr
ov

e
ac

cu
ra

cy

an
d

al
le

vi
at

e
co

nc
ep

t
dr

ift

Fe
ng

 e
t a

l.
(2

01
8)

D
yn

am
ic

Bo
ol

ea
n

ve
ct

or
C

hi
-s

qu
ar

e
En

se
m

bl
e:

 S
ta

ck
in

g
of

 S
VM

, D
ec

is
io

n
Tr

ee
, E

xt
ra

 T
re

es
,

Ra
nd

om
 F

or
es

t,
Bo

os
te

d
Tr

ee

A
cc

ur
ac

y
=

 0
.9

7
Pr

ec
is

io
n
=

 0
.9

5
TP

R
=

 0
.9

7
FP

R
=

 0
.0

16
AU

C
 =

 0
.9

7

O
ff-

de
vi

ce
N

on
e

Pr
ov

id
es

 n
ov

el
 in

si
gh

t
in

to
 th

e
us

e
of

 e
ns

em
-

bl
es

 fo
r A

nd
ro

id

m
al

w
ar

e
de

te
ct

io
n.

A

 c
om

pa
ris

on
 o

f
di

ffe
re

nt
 e

ns
em

bl
in

g
ap

pr
oa

ch
es

 is
 a

ls
o

pr
ov

id
ed

, s
ho

w
in

g
ad

va
nt

ag
e

fo
r s

ta
ck

-
in

g.
 P

ro
vi

de
s

ev
id

en
ce

fo

r t
he

 u
ns

ui
ta

bi
lit

y
of

 k
N

N
 fo

r A
nd

ro
id

m

al
w

ar
e

de
te

ct
io

n

Zh
u

et
 a

l.
(2

01
8)

St
at

ic
Bo

ol
ea

n
ve

ct
or

, P
C

A
TF

-ID
F

Ro
ta

tio
n

Fo
re

st
Se

ns
iti

vi
ty

 =
 0

.8
8

Pr
ec

is
io

n
=

 0
.8

8
A

cc
ur

ac
y
=

 0
.8

8
AU

C
 =

 0
.8

9

O
ff-

de
vi

ce
N

on
e

U
se

 o
f R

ot
at

io
n

Fo
re

st
 fo

r A
nd

ro
id

m

al
w

ar
e

de
te

ct
io

n
ca

n
im

pr
ov

e
ac

cu
ra

cy

ov
er

 in
di

vi
du

al
 m

od
-

el
s.

H
ow

ev
er

, t
he

re

m
ig

ht
 b

e
a

pe
rf

or
-

m
an

ce
 p

en
al

ty

Zh
an

g
et

 a
l.

(2
01

8)
St

at
ic

Bo
ol

ea
n

ve
ct

or
N

on
e

C
N

N
Pr

ec
is

io
n
=

 0
.9

6
Re

ca
ll
=

 0
.9

8
A

cc
ur

ac
y
=

 0
.9

7
F
=

 0
.9

7
Ru

n-
tim

e

O
ff-

de
vi

ce
N

on
e

Th
e

us
e

of
 a

 c
om

pl
ex

ne

ur
al

 n
et

w
or

k
ar

ch
i-

te
ct

ur
e

lik
e

C
N

N
 le

ad
s

to
 im

pr
ov

ed
 a

cc
ur

ac
y

an
d

he
lp

 w
ith

Ze

ro
-d

ay
 m

al
w

ar
e

de
te

ct
io

n

Page 18 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

Ta
bl

e
3

(c
on

tin
ue

d) Fe
at

ur
e

M
od

el

Ex
tr

ac
tio

n
Re

pr
es

en
ta

tio
n

Se
le

ct
io

n
M

L
A

pp
ro

ac
h

Ev
al

ua
tio

n
D

ep
lo

ym
en

t
Ex

pl
an

at
io

n
Co

nt
ri

bu
tio

ns

Ye
rim

a
et

 a
l.

(2
01

5)
St

at
ic

Bo
ol

ea
n

ve
ct

or
M

an
ua

l
Ra

nd
om

 F
or

es
t

TP
R
=

 0
.9

7
TN

R
=

 0
.9

7
FP

R
=

 0
.0

2
A

cc
ur

ac
y
=

 0
.9

7
Er

ro
r r

at
e
=

 0
.0

2
AU

C
 =

 0
.9

9

O
ff-

de
vi

ce
N

on
e

U
se

 o
f e

ns
em

bl
es

 c
an

he

lp
 w

ith
 d

et
ec

tio
n

of
 Z

er
o-

da
y

m
al

w
ar

e.

Fe
at

ur
es

 a
re

 e
xt

ra
ct

ed

fro
m

 b
ot

h
M

an
ife

st

an
d

D
EX

 ,
in

cr
ea

si
ng

th

ei
r d

iv
er

si
ty

 a
nd

po

te
nt

ia
lly

 a
lle

vi
at

in
g

co
nc

ep
t d

rif
t

Ye
rim

a
et

 a
l.

(2
01

4)
St

at
ic

Bo
ol

ea
n

ve
ct

or
M

an
ua

l
En

se
m

bl
e:

 D
ec

i-
si

on
 T

re
e,

 L
og

is
tic

Re

gr
es

si
on

 (L
R)

,
N

ai
ve

 B
ay

es
 (N

B)

TP
R
=

 0
.9

7
TN

R
=

 0
.9

7
FP

R
=

 0
.0

3
FN

R
=

 0
.0

2
A

cc
ur

ac
y
=

 0
.9

7
AU

C
 =

 0
.9

5

O
ff-

de
vi

ce
N

on
e

A
 th

or
ou

gh
 in

ve
st

ig
a-

tio
n

of
 th

e
eff

ec
tiv

e-
ne

ss
 o

f d
iff

er
en

t
en

se
m

bl
in

g
te

ch
-

ni
qu

es
 is

 p
er

fo
rm

ed
.

En
se

m
bl

in
g

ca
n

al
so

im

pr
ov

e
ze

ro
-d

ay

de
te

ct
io

n
du

e
to

m

od
el

 d
iv

er
si

ty

Xu
 e

t a
l.

(2
01

8)
St

at
ic

Bo
ol

ea
n

an
d

By
te

-
co

de
 v

ec
to

rs
N

on
e

M
LP

A
cc

ur
ac

y
=

 0
.9

7
TP

R
=

 0
.9

7
FP

R
=

 0
.0

2
Ru

n-
tim

e

O
ff-

de
vi

ce
N

on
e

Th
e

tw
o-

la
ye

re
d

de
te

ct
io

n
de

si
gn

 c
an

im

pr
ov

e
pe

rf
or

m
an

ce

w
ith

ou
t l

oo
si

ng

ac
cu

ra
cy

. U
se

 o
f d

ee
p

le
ar

ni
ng

 re
du

ce
s

th
e

ne
ed

 fo
r m

an
ua

l
fe

at
ur

e
en

gi
ne

er
in

g.

A
n

in
ve

st
ig

at
io

n
of

th

e
re

si
lie

nc
e

of
 th

e
m

od
el

 a
ga

in
st

 d
iff

er
-

en
t a

tt
ac

ks
 is

 re
po

rt
ed

W
u

an
d

H
un

g
(2

01
4)

D
yn

am
ic

Bo
ol

ea
n

ve
ct

or
,

2-
gr

am
s

M
an

ua
l

SV
M

A
cc

ur
ac

y
=

 0
.8

6
F
=

 0
.8

5
Re

ca
ll
=

 0
.8

2
Pr

ec
is

io
n
=

 0
.9

FP
R
=

 0
.1

FN
R
=

 0
.1

8

O
ff-

de
vi

ce
N

on
e

U
se

s
A

PE
, a

 c
om

pl
ex

in

pu
t g

en
er

at
io

n
sc

he
m

e
fo

r d
yn

am
ic

an

al
ys

is
, a

s
op

po
se

d
to

 s
im

pl
is

tic
 ra

nd
om

m

od
el

s
us

ed
 b

y
pr

io
r

lit
er

at
ur

e.
 T

hi
s

ca
n

im
pr

ov
e

co
de

 c
ov

er
-

ag
e

an
d

de
te

ct
io

n
ac

cu
ra

cy

Page 19 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

Ta
bl

e
3

(c
on

tin
ue

d) Fe
at

ur
e

M
od

el

Ex
tr

ac
tio

n
Re

pr
es

en
ta

tio
n

Se
le

ct
io

n
M

L
A

pp
ro

ac
h

Ev
al

ua
tio

n
D

ep
lo

ym
en

t
Ex

pl
an

at
io

n
Co

nt
ri

bu
tio

ns

W
an

g
et

 a
l.

(2
01

6)
St

at
ic

Bo
ol

ea
n

ve
ct

or
N

on
e

D
BN

Pr
ec

is
io

n
=

 0
.9

3
Re

ca
ll
=

 0
.9

4
F
=

 0
.9

3

O
ff-

de
vi

ce
N

on
e

U
se

 o
f d

ee
p

le
ar

ni
ng

ca

n
im

pr
ov

e
de

te
c-

tio
n

ac
cu

ra
cy

 a
nd

el

im
in

at
e

th
e

ne
ed

fo

r m
an

ua
l f

ea
tu

re

en
gi

ne
er

in
g

Ka
rb

ab
 e

t a
l.

(2
01

8)
St

at
ic

Ve
ct

or
 s

eq
ue

nc
e

of

A
PI

 c
al

ls
N

on
e

C
N

N
F
=

 0
.9

6
Pr

ec
is

io
n
=

 0
.9

6
Re

ca
ll
=

 0
.9

6
FP

R
=

 0
.0

31
Fa

m
ily

 d
et

ec
tio

n
Co

nc
ep

t d
rif

t
A

tt
ac

k
re

si
lie

nc
e

Ru
n-

tim
e

H
yb

rid
 (f

ea
tu

re

ex
tr

ac
tio

n
on

-
de

vi
ce

; t
ra

in
in

g
an

d
de

te
ct

io
n

off
-

de
vi

ce
)

N
on

e
Pr

ov
id

es
 a

 th
or

ou
gh

re

qu
ire

m
en

t a
na

ly
si

s
fo

r A
nd

ro
id

 m
al

w
ar

e
de

te
ct

io
n,

 w
hi

ch

cl
ea

rly
 la

ys
 o

ut
 e

xp
ec

-
ta

tio
ns

 fr
om

 s
uc

h
sy

st
em

. T
hi

s
al

lo
w

s
fo

r b
et

te
r c

om
pa

ris
on

of

 d
iff

er
en

t s
ol

u-
tio

ns
 p

ro
po

se
d

by

lit
er

at
ur

e.
 A

ls
o,

 a
ll

A
PI

ca

lls
 a

re
 c

on
si

de
re

d
fo

r a
na

ly
si

s,
no

t j
us

t
a

su
bs

et
, a

s
do

ne
 b

y
pr

io
r w

or
k

A
af

er
 e

t a
l.

(2
01

3)
St

at
ic

Bo
ol

ea
n

ve
ct

or
M

an
ua

l
D

ec
is

io
n

Tr
ee

A
cc

ur
ac

y
∼

 9
9

TP
R
∼

 9
7

TN
R
∼

 1
00

Ru
n-

tim
e

O
ff-

de
vi

ce
N

on
e

Pr
ov

id
es

 a
 n

ov
el

 w
ay

of

 e
xt

ra
ct

in
g

A
PI

 c
al

ls

fro
m

 D
EX

 fi
le

s.
H

ig
h

ru
n-

tim
e

pe
rf

or
-

m
an

ce
 w

hi
ch

 le
ad

s
to

in

cr
ea

se
d

pr
ac

tic
al

ity

Bu
rg

ue
ra

 e
t a

l.
(2

01
1)

D
yn

am
ic

In
te

ge
r v

ec
to

r
M

an
ua

l
K-

M
ea

ns
D

et
ec

tio
n

ra
te

 =

0.
85

 ∼
 1

.0
H

yb
rid

 (f
ea

tu
re

ex

tr
ac

tio
n

on
-

de
vi

ce
; t

ra
in

in
g

an
d

de
te

ct
io

n
off

-
de

vi
ce

)

N
on

e
Pr

op
os

ed
 a

n
ap

pr
oa

ch
, w

hi
ch

co

m
pa

re
s

ex
ec

ut
io

n
tr

ac
es

 o
f d

iff
er

en
t

ve
rs

io
ns

 o
f a

n
ap

p,
 to

de

te
ct

 re
-p

ac
ka

ge
d

m
al

w
ar

e
(e

.g
., T

ro
ja

ns
)

D
in

i e
t a

l.
(2

01
2)

D
yn

am
ic

In
te

ge
r v

ec
to

r
M

an
ua

l
kN

N
FP

R
=

 0
.0

01
Fa

m
ily

 d
et

ec
tio

n
Ru

n-
tim

e

O
n-

de
vi

ce
N

on
e

Th
e

ap
pr

oa
ch

 m
ak

es

no
ve

l u
se

 o
f o

n-
de

vi
ce

 d
yn

am
ic

 a
na

ly
-

si
s

fo
r a

no
m

al
y-

ba
se

d
A

nd
ro

id
 m

al
w

ar
e

de
te

ct
io

n

Page 20 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

Ta
bl

e
3

(c
on

tin
ue

d) Fe
at

ur
e

M
od

el

Ex
tr

ac
tio

n
Re

pr
es

en
ta

tio
n

Se
le

ct
io

n
M

L
A

pp
ro

ac
h

Ev
al

ua
tio

n
D

ep
lo

ym
en

t
Ex

pl
an

at
io

n
Co

nt
ri

bu
tio

ns

Pe
ira

vi
an

 a
nd

 Z
hu

(2

01
3)

St
at

ic
Bo

ol
ea

n
ve

ct
or

N
on

e
En

se
m

bl
e:

 B
ag

gi
ng

w

ith
 S

VM
 a

nd
 D

ec
i-

si
on

 T
re

e

A
cc

ur
ac

y
=

 0
.9

6
Pr

ec
is

io
n
=

 0
.9

5
Re

ca
ll
=

 0
.9

4
AU

C
 =

 0
.9

6

O
ff-

de
vi

ce
N

on
e

Pr
ov

id
es

 c
om

pa
ris

on

of
 u

se
 o

f p
er

m
is

-
si

on
s

an
d

A
PI

 c
al

ls
 fo

r
m

al
w

ar
e

de
te

ct
io

n.

En
se

m
bl

e
le

ar
ni

ng

ca
n

im
pr

ov
e

ze
ro

-d
ay

de

te
ct

io
n

G
as

co
n

et
 a

l.
(2

01
3)

St
at

ic
G

ra
ph

 (I
nt

eg
er

ve

ct
or

)
N

on
e

SV
M

FP
R
=

 0
.0

1
D

et
ec

tio
n

ra
te

 =

0.
89

RO
C

O
ff-

de
vi

ce
U

si
ng

 fe
at

ur
e

w
ei

gh
ts

 to
 e

xp
la

in

pr
ed

ic
tio

ns

Pr
op

os
es

 a
 n

ew
 w

ay

of
 la

be
lin

g
D

al
vi

k
fu

nc
tio

ns
 fo

r e
as

ie
r

ca
ll

gr
ap

h
ge

ne
ra

tio
n.

M

ak
es

 n
ov

el
 u

se
 o

f
ke

rn
el

s
fo

r e
m

be
d-

di
ng

 c
al

l g
ra

ph
s

fo
r

di
ge

st
io

n
by

 M
L

m
od

el
s

Sa
ra

ci
no

 e
t a

l.
(2

01
8)

St
at

ic
 &

 D
yn

am
ic

In
te

ge
r v

ec
to

r
M

an
ua

l
kN

N
A

cc
ur

ac
y
=

 0
.9

6
FP

R
=

 0
.0

00
01

Ru
n-

tim
e

Ba
tt

er
y

O
n-

de
vi

ce
N

on
e

U
se

s
a

co
m

bi
na

tio
n

of
 o

n-
de

vi
ce

 d
yn

am
ic

M

L-
ba

se
d

de
te

ct
io

n
an

d
si

gn
at

ur
e-

ba
se

d
te

ch
ni

qu
es

 to
 a

ch
ie

ve

hi
gh

er
 a

cc
ur

ac
y.

 A
ls

o
us

es
 m

et
ad

at
a

fro
m

m

ar
ke

t l
is

tin
gs

 a
s

fe
at

ur
es

Sa
nz

 e
t a

l.
(2

01
3)

St
at

ic
Bo

ol
ea

n
ve

ct
or

N
on

e
LR

, N
B,

 B
ay

es
N

et
,

D
ec

is
io

n
Tr

ee
, R

an
-

do
m

 T
re

e,
 R

an
do

m

Fo
re

st

TP
R
=

 0
.9

1
FP

R
=

 0
.1

9
AU

C
 =

 0
.9

2
A

cc
ur

ac
y
=

 0
.8

6
RO

C

O
ff-

de
vi

ce
N

on
e

A
 p

io
ne

er
in

g
w

or
k

in

th
e

us
e

of
 p

er
m

is
si

on
s

fo
r A

nd
ro

id
 m

al
w

ar
e

de
te

ct
io

n

Za
rn

i A
un

g
(2

01
3)

St
at

ic
Bo

ol
ea

n
ve

ct
or

In
fo

rm
at

io
n

ga
in

K-
M

ea
ns

, D
ec

is
io

n
Tr

ee
, R

an
do

m
 F

or
-

es
t,

C
A

RT

TP
R
=

 0
.9

7
FP

R
=

 0
.1

5
Pr

ec
is

io
n
=

 0
.8

4
Re

ca
ll
=

 0
.9

7
RO

C
 A

re
a
=

 0
.8

7

O
ff-

de
vi

ce
N

on
e

Pi
on

ee
rin

g
w

or
k

in

th
e

us
e

of
 c

lu
st

er
in

g
w

ith
 p

er
m

is
si

on
s

as

fe
at

ur
es

 fo
r A

nd
ro

id

m
al

w
ar

e
de

te
ct

io
n.

M

ak
es

 n
ov

el
 u

se
 o

f
ha

rd
w

ar
e

fe
at

ur
es

 to

de
te

ct
 c

er
ta

in
 ty

pe
s

of
 m

al
w

ar
e

(e
.g

.,
th

os
e

w
ho

 u
se

 C
am

er
a

or
 m

ic
ro

ph
on

e
fo

r
sp

yi
ng

)

Page 21 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

Ta
bl

e
3

(c
on

tin
ue

d) Fe
at

ur
e

M
od

el

Ex
tr

ac
tio

n
Re

pr
es

en
ta

tio
n

Se
le

ct
io

n
M

L
A

pp
ro

ac
h

Ev
al

ua
tio

n
D

ep
lo

ym
en

t
Ex

pl
an

at
io

n
Co

nt
ri

bu
tio

ns

Ya
ng

 e
t a

l.
(2

01
4)

St
at

ic
Bo

ol
ea

n
ve

ct
or

M
an

ua
l

N
B,

 S
VM

, D
ec

is
io

n
Tr

ee
, R

an
do

m
 F

or
es

t
A

cc
ur

ac
y
=

 0
.9

5
FP

R
=

 0
.4

Fa
m

ily
 d

et
ec

tio
n

Ru
n-

tim
e

O
ff-

de
vi

ce
N

on
e

N
ov

el
 u

se
 o

f
be

ha
vi

or
al

 g
ra

ph
 fo

r
de

te
ct

in
g

“m
al

ic
io

us

be
ha

vi
or

” i
n

A
nd

ro
id

ap

ps
, a

s
op

po
se

d
to

 s
im

pl
y

la
be

l
th

em
 a

s
m

al
w

ar
e

or

be
ni

gn
. C

lu
st

er
in

g
is

pe

rf
or

m
ed

 to
 d

et
ec

t
m

al
w

ar
e

fa
m

ili
es

A
m

os
 e

t a
l.

(2
01

3)
D

yn
am

ic
Bo

ol
ea

n
ve

ct
or

N
on

e
Ra

nd
om

 F
or

es
t,

N
B,

M

LP
, B

ay
es

N
et

, L
R,

D

ec
is

io
n

Tr
ee

A
cc

ur
ac

y
=

 0
.9

1
TP

R
=

 0
.9

7
FP

R
=

 0
.3

1
Ru

n-
tim

e
pe

rf
or

-
m

an
ce

H
yb

rid
 (f

ea
tu

re

ex
tr

ac
tio

n
on

-
de

vi
ce

; t
ra

in
in

g
an

d
de

te
ct

io
n

off
-

de
vi

ce
)

N
on

e
Pr

op
os

es
 a

 d
is

tr
ib

ut
ed

sy

st
em

 fo
r l

ar
ge

-
sc

al
e

de
te

ct
io

n
of

A

nd
ro

id
 m

al
w

ar
e.

D

yn
am

ic
 a

na
ly

si
s

al
le

vi
at

es
 e

va
si

on
 b

y
co

de
 o

bf
us

ca
tio

n
or

dy

na
m

ic
 lo

ad
in

g

Li
nd

or
fe

r e
t a

l.
(2

01
5)

St
at

ic
 &

 D
yn

am
ic

Bo
ol

ea
n

ve
ct

or
Fi

sh
er

 s
co

re
LR

, S
VM

A
cc

ur
ac

y
=

 0
.9

9
Re

ca
ll
=

 0
.9

8
Pr

ec
is

io
n
=

 0
.9

9
Co

m
m

er
ci

al
 c

om
-

pa
ris

on
Co

nc
ep

t d
rif

t

O
ff-

de
vi

ce
U

si
ng

 F
-s

co
re

 to
 fi

nd

m
os

t d
is

cr
im

in
at

e
fe

at
ur

es

Pr
ov

id
es

 m
al

ic
e

sc
or

e
fo

r a
pp

s
to

 b
et

te
r

co
m

m
un

ic
at

e
ris

k,
 a

s
op

po
se

d
to

 b
in

ar
y

m
al

w
ar

e/
be

ni
gn

la

be
lin

g.
 H

yb
rid

 a
na

ly
-

si
s

al
lo

w
s

fo
r m

or
e

ac
cu

ra
te

 d
et

ec
tio

n

Sh
ab

ta
i e

t a
l.

(2
01

4)
D

yn
am

ic
In

te
ge

r a
nd

 b
oo

le
an

ve

ct
or

s
M

an
ua

l
LR

, D
ec

is
io

n
Tr

ee
,

SV
M

, G
au

ss
ia

n
Re

gr
es

si
on

, I
so

to
ni

c
Re

gr
es

si
on

TP
R
=

 0
.8

FP
R
=

 0
A

cc
ur

ac
y
=

 0
.8

7
Ru

n-
tim

e

H
yb

rid
 (f

ea
tu

re

ex
tr

ac
tio

n
on

-
de

vi
ce

; t
ra

in
in

g
an

d
de

te
ct

io
n

off
-

de
vi

ce
)

N
on

e
M

ak
es

 n
ov

el
 u

se

of
 n

et
w

or
k

tr
affi

c
pa

tt
er

ns
 o

f a
pp

s
fo

r
m

al
w

ar
e

de
te

ct
io

n.

Re
po

rt
s

on
 a

 th
or

-
ou

gh
 in

ve
st

ig
at

io
n

of

th
e

C
PU

/R
A

M
/S

to
r-

ag
e

ov
er

he
ad

 o
f t

he

pr
op

os
ed

 s
ol

ut
io

n
fo

r
on

-d
ev

ic
e

de
pl

oy
-

m
en

t

Page 22 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

Ta
bl

e
3

(c
on

tin
ue

d) Fe
at

ur
e

M
od

el

Ex
tr

ac
tio

n
Re

pr
es

en
ta

tio
n

Se
le

ct
io

n
M

L
A

pp
ro

ac
h

Ev
al

ua
tio

n
D

ep
lo

ym
en

t
Ex

pl
an

at
io

n
Co

nt
ri

bu
tio

ns

Su
ar

ez
-T

an
gi

l e
t a

l.
(2

01
7)

St
at

ic
Bo

ol
ea

n
ve

ct
or

s
M

ea
n

de
cr

ea
se

im

pu
rit

y
Ex

tr
a

Tr
ee

s
A

cc
ur

ac
y
=

 9
9.

64
%

Fa
m

ily
 c

la
ss

ifi
ca

tio
n

O
ff

de
vi

ce
N

on
e

N
ov

el
 u

se
 o

f a
 h

ig
h

va
rie

ty
 o

f f
ea

tu
re

s
to

co

m
ba

t o
bf

us
ca

tio
n.

N

ov
el

 u
se

 o
f f

ea
tu

re

ra
nk

in
g

fo
r d

im
en

-
si

on
al

ity
 re

du
ct

io
n

Ba
ko

ur
 a

nd
 Ü

nv
er

(2

02
1)

St
at

ic
G

ra
ys

ca
le

 Im
ag

e
M

an
ua

l
Ra

nd
om

 F
or

es
t,

D
ec

is
io

n
tr

ee
s,

kN
N

,
En

se
m

bl
es

A
cc

ur
ac

y
=

 0
.9

8
O

ff-
de

vi
ce

N
on

e
Pi

on
ee

rin
g

w
or

k
in

th

e
us

e
of

 im
ag

e
re

pr
es

en
ta

tio
n

fo
r

A
nd

ro
id

 m
al

w
ar

e
de

te
ct

io
n.

 A
 g

re
at

va

rie
ty

 o
f i

m
ag

e
fe

at
ur

e
ex

tr
ac

tio
n

te
ch

ni
qu

es
 a

re
 u

se
d

Ca
so

la
re

 e
t a

l.
(2

02
1)

St
at

ic
Co

lo
r I

m
ag

e
M

an
ua

l
Ra

nd
om

 F
or

es
t,

SV
M

, M
LP

, C
N

N
A

cc
ur

ac
y
=

 0
.8

6
Pr

ec
is

io
n
=

 0
.8

6
Re

ca
ll
=

 0
.8

6

O
ff-

de
vi

ce
N

on
e

Co
m

bi
ne

s
dy

na
m

ic

an
al

ys
is

 w
ith

 c
ol

or

im
ag

e
re

pr
es

en
ta

tio
n

fo
r A

nd
ro

id
 m

al
w

ar
e

de
te

ct
io

n

Ca
i e

t a
l.

(2
01

8)
D

yn
am

ic
In

te
ge

r v
ec

to
r

M
an

ua
l

Ra
nd

om
 F

or
es

t
Pr

ec
is

io
n
=

 0
.9

7
Re

ca
ll
=

 0
.9

9
F1

 =
 0

.9
8

Ro
C

 C
ur

ve
AU

C
 =

 0
.9

8
Fa

m
ily

 c
la

ss
ifi

ca
tio

n
Co

nc
ep

t d
rif

t

O
ff-

de
vi

ce
N

on
e

M
ak

es
 n

ov
el

 u
se

of

 IC
C

 In
te

nt
s

fo
r

dy
na

m
ic

 d
et

ec
tio

n
of

 A
nd

ro
id

 m
al

w
ar

e.

Ca
n

ha
nd

le
 re

fle
ct

io
n

w
he

n
de

te
ct

in
g

A
PI

an

d
sy

st
em

 c
al

ls
.

Ev
al

ua
te

d
co

nc
ep

t
dr

ift

Ta
he

ri
et

 a
l.

(2
02

0)
St

at
ic

Bo
ol

ea
n

ve
ct

or
M

an
ua

l
FN

N
, A

N
N

, W
A

N
N

,
KM

N
N

A
cc

ur
ac

y
=

 0
.9

9
FP

R
=

 0
.0

05
AU

C
 =

 .9
9

O
ff-

de
vi

ce
N

on
e

M
ak

es
 n

ov
el

 u
se

 o
t

th
e

ha
m

m
in

g
di

s-
ta

nc
e

of
 s

ta
tic

 b
in

ar
y

fe
at

ur
es

 fo
r d

et
ec

tin
g

m
al

w
ar

e.
 E

xt
en

si
ve

co

m
pa

ris
on

 o
f t

he
 u

se

of
 d

iff
er

en
t f

ea
tu

re
s

an
d

M
L

al
go

rit
hm

s

Page 23 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

A few papers, however, do take the temporal relation-
ship of features into account. In such cases, the features
are represented as a sequence of values with an specific
order, not simply a vector. As section 3b of Fig. 4 depicts,
we identified two examples of feature sequences that the
surveyed papers have employed:

• Opcode sequence: McLaughlin et al. (2017) used as
features the sequence of opcodes in the “Classes.dex”
file of each APK. For digestion by the ML algorithm,
each opcode is eventually one-hot encoded into a
boolean vector. However, the order of the calls is pre-
served.

• API call sequences: Karbab et al. (2018) used the
sequence of API calls as their feature set. Each API
call is then mapped into a vector using an approach
called word2vec.

Lastly, some papers use more complex structures to rep-
resent their features. As section 3c of Fig. 4 shows, these
include:

• Image: Bakour and Ünver (2021) created grayscale
images of Android APKs and then used image clas-
sification techniques to detect Android malware.
Casolare et al. (2021) took a similar approach, but
constructed color images from System-call traces,
instead.

• Strings: Sahs and Khan (2012) used Strings extracted
from APK files directly as features. In order to allow
ML algorithms to digest this data, however, they
designed a special Kernel for SVM which maps
strings to a vector space. Vidal et al. (2018) also used
Strings of system calls as features. They, however,
used a sequence matching algorithm, instead of ML.

• Graph: Gascon et al. (2013) extract the call graph
from the DEX file of each APK and use it directly as
a feature for malware detection. To prepare the graph
for digestion by the ML algorithm of their choice,
they use a Neighborhood hash graph approach which
converts the graph into an integer vector. This is done
in a way that the semantic relationships with-in the
graph is preserved. Sahs and Khan (2012) also uses a
similar approach to utilize control flow graphs as ML
features.

We should also mention that some approaches use tech-
niques that convert the initial feature sets into inter-
mediate ones with specific characteristics, before final
digestion. Zhu et al. (2018), for example, use Principal
Component Analysis (PCA) which converts input fea-
tures into a series of orthogonal ones that could reduce
dimensionality and improve performance. Another

example is Xu et al. (2018), where the authors feed the
initial feature set into a series of Long-Short-Term-Mem-
ory (LSTM) layers in their neural network, before they
are digested by the compute nodes.

Feature selection
Once features are represented in an appropriate format,
they can be used to train an ML model. However, some-
times the number of features extracted are too high and
could slow down the training and/or the detection pro-
cess. In such cases, approaches are employed to eliminate
less important features that do not contribute signifi-
cantly to the model. This process if often called feature
selection.

Our literature review showed that researchers have
used two general approaches for feature selection. The
first approach is to do it manually, using either domain
knowledge or information from a preceding study,
as shown in section 4a of Fig. 4. Manual selection is
employed by many of the reviewed papers (more than
40%), as demonstrated in Table 3. For example, Liu and
Liu (2014), Arp et al. (2014), and Yuan et al. (2016) use
domain knowledge to include only permissions or APIs
that are known to be associated with malicious behavior.
Alternatively, Li et al. (2018) conducted some preliminary
studies to compare the distribution of features among
malware and benign apps. This allowed them to rank per-
missions based on the strength of their association with
the malware set. And reduce the number of permissions
that need to be processed.

The second approach is to use an algorithmic solution,
as illustrated in section 4b of Fig. 4. These are techniques
that have been used by ML researchers in a variety of
research fields. We found the most prevalent solution in
the surveyed papers to be “Information Gain” (used by
Alzaylaee et al. (2020), Li et al. (2018) and Zarni Aung
(2013)). Other techniques employed include “Mutual
Information” [used by Wang et al. (2014)], Sequential
Selection [used by Wang et al. (2014)], Chi-square [used
by Wang et al. (2014) and Feng et al. (2018)], PCA [used
by Wang et al. (2014)] and Fischer score [used by Lindor-
fer et al. (2015)]. Also, some papers (e.g., Li et al. 2018;
Zhu et al. 2018) use a combination of these techniques.

Model creation (training)
This stage of the ML pipeline involves choosing the algo-
rithm and architecture of the ML model, and then use
the selected feature set to train it.

Often, the objective of the model is to label APKs as
either malware or benign. Hence, a supervised classifica-
tion algorithm is used. Some papers, however, aim not
only to detect malware, but also to identify the family
that the malware belongs to (e.g., whether it is a variant

Page 24 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

of a known banking trojan). In this case, an unsupervised
clustering algorithm may be employed. This distinction
is illustrated in section 5 of Fig. 4. Note that in cluster-
ing schemes, the ground truth is not used directly in the
training of the model. Rather, it is used by the human
analysts to label clusters based on the APKs in them.

In case of supervised learning, we observed the sur-
veyed work to use a variety of approaches. As shown in
Table 3 and Fig. 4, they comprise three categories:

• Traditional ML: These include the ML algorithms
that have shallow architectures (i.e., they do not
process data in numerous layers, like deep learning
does). We observed that the surveyed works have
tried a range of these approaches, including logistic
regression [used by Amos et al. (2013) and Lindor-
fer et al. (2015)], tree-based (e.g., Liu and Liu 2014;
Shabtai et al. 2014), Naive Bayes (e.g., Zhang et al.
2014; Wu et al. 2012) and SVM (e.g., Arp et al. 2014;
Sahs and Khan 2012). Additionally, Demontis et al.
(2019) proposed a customized ML approach which is
a secured version of SVM.

• Ensembles: Ensemble models leverage a combina-
tion of base ML models to make predictions. The
base models are often traditional ones, such as deci-
sion tree or linear regression, that are trained on
parts or all of the training data. Our literature review
showed that the researchers have tried different ways
of creating ensembles. For example, Feng et al. (2018)
used an stacking of SVM, decision tree and random
forest. Alternatively, Peiravian and Zhu (2013) used a
bagging approach with SVM and decision tree.

• Deep learning: As deep learning models have shown
strong results in other areas of computing, we found
researchers to have applied them to Android mal-
ware detection as well. Evidently, different architec-
tures of deep learning have been tried. Yuan et al.
(2014, 2016) for example, tried Deep Belief Networks
(DBN). MultiLayer Perceptron (MLP) was employed
by Alzaylaee et al. (2020) and Xu et al. (2018). And,
McLaughlin et al. (2017) and Zhang et al. (2018) used
Convolutional Neural Networks (CNN).

With regards to clustering, we found it to be not as prom-
inently-used as classification. Notable examples include
Wu et al. (2012) and Milosevic et al. (2017) who tried
both K-Means and EM for malware family detection.
Generally, however, it seems that whereas multi-class
classification could be a better solution for family detec-
tion, it is rarely employed due to the difficulty of obtain-
ing ground truth for it. Evidently, doing so requires deep
manual analysis on a large corpus of malware samples to
detect their families, which seems unfeasible for most

researchers. Lastly, we should note that we also observed
some researchers use clustering algorithms in situ of
classification ones. Burguera et al. (2011), for example,
used K-Means with K = 2 (for two classes: malware and
benign) to label APKs based on their neighbors in the
clusters they end up in.

Model evaluation
Once models are trained, they are usually evaluated to
determine if they meet certain expectations. This evalu-
ation can be both in terms of malware detection accu-
racy, or run-time performance and usability. As section 6
of Fig. 4 shows, our literature review revealed that the
surveyed papers have performed two distinct types of
evaluation.

The first (and by far the most popular) type consists
of classification metrics, which determine how well the
model can distinguish between malware and benign. As
shown in section 6a of Fig. 4, the metrics reported in this
regard include:

• True positive rate (TPR): This is also known as recall
or sensitivity. It is defined as the ratio of the number
of true positives (i.e.,apps that are labeled as malware
by the model, and are also actually malware) by the
total number of positives (i.e., apps that are actu-
ally malware, no matter how they are labeled by the
model). A high TPR is desirable for a malware detec-
tor because it shows that the solution can correctly
detect a greater proportion of malware samples with-
out missing many. Most papers report TPR, such as
Liu and Liu (2014) and Arp et al. (2014).

• True negative rate (TNR): Also known as specific-
ity, it is defined as the ratio of the number of true
negatives (i.e., apps that are labeled as benign by the
model, and are also actually benign) by the number
of negatives (i.e., apps that are actually benign, no
matter how they are labeled by the model). A high
TNR is desirable. It signifies that if the model labels
an app as benign, it is very likely actually benign. This
can increase users’ confidence in the system. TNR
is not reported very often, as other metrics cover it.
Alzaylaee et al. (2020) is an example of a paper that
does report it.

• False positive rate (FPR): It is defined as the ratio
of the number of false positives (i.e., apps that are
labeled as malware by the model but are actually
benign) by the number of negatives. A low FPR is
desirable as it signifies that the model rarely mistakes
a benign app for a malware. This results in increased
usability of the model, as the user does not have to
deal with a lot of false warnings. Usually, either TPR

Page 25 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

or FPR is reported. Arp et al. (2014), for example,
reports FPR.

• False negative rate (FNR): It is defined as the ratio of
number of false negatives (i.e., apps that are labeled
as benign by the model, but actually are malware) by
the number of negatives. A low FNR is desirable as
it signifies that if the model clears an app as benign,
it is very likely benign. Usually, either TNR or FNR
is reported. Alzaylaee et al. (2020) m for example,
reports FNR.

• Accuracy: It is defined as the ratio of the sum of true
positives and true negatives by the total number of
samples. As it can be seen in Table 3, accuracy is
the most popular metric for reporting, as it encap-
sulates both true positives and negatives. A higher
accuracy is desirable as it means the model classi-
fies most examples correctly (either as malware or
benign). However, accuracy can also be misleading
when there is class imbalance in the data. For exam-
ple, if the number of benign samples in the dataset
is much higher than the number of malware ones,
a high accuracy might mask the fact that the model
cannot detect many of the malware, simply because
the number of true negatives diminishes the effect of
true positives.

• Precision: It is defined as the ratio of the number
of true positives by the sum of the number of both
false and true positives. As the name implies, it basi-
cally demonstrates how often the labeling provided
by the model is correct. A high precision is desir-
able as it signifies the model does not produce many
false results. Examples of papers that report precision
include Wang et al. (2016) and Karbab et al. (2018).

• F-score: Also known as F1, is provided by a few
papers (e.g., Sahs and Khan 2012; McLaughlin et al.
2017). A higher F1 score is desirable as it signifies a
better balance between precision and recall.

• Receiver operating characteristic (ROC) curve:
Some papers (e.g., Wang et al. 2014; Demontis et al.
2019) provide ROC curves, which plots TPR against
FPR. It can help users of the system better determine
their required threshold. To put simply, ML models
usually produce a probability for the maliciousness
of each APK, and then label an APK as malware if
this probability is above the said threshold. Changing
the threshold can allow users to signify whether they
have higher tolerances for false positives or negatives.
For example, if a user requires very low FPR, they can
increase the said threshold until only apps with very
high malicious probability are classified as malware.
This, however, will also mean that fewer apps with
mid-range probability values will be classified as mal-
ware, potentially reducing TPR.

• Area under the curve (AUC): A few papers (e.g., Feng
et al. 2018; Zhu et al. 2018) provide AUC, which rep-
resents the area under the ROC curve. Users can use
AUC to compare different models without commit-
ting to a specific threshold value.

We should note that a few papers (e.g., Feng et al. 2018;
Karbab et al. 2018) also report on classification metrics
per malware family. This can help users understand what
types of malware the approach could potentially miss,
and subsequently devise solutions to mitigate them.

The second type of evaluation conducted by the sur-
veyed papers includes feasibility and usability evalu-
ations. These provides a comprehensive view of the
practicality of the proposed approaches. As shown in
section 6b of Fig. 4, these evaluations include:

• Run-time performance: How quickly can the model
digest the training set or label new apps is an impor-
tant metric, especially when it comes to practical
deployment of the model. Yet, we observed that not
many of the surveyed papers actually report this data,
which hinders judgment of the practicality of their
solution. And, even those papers who do provide
this information, do it in different and often incom-
patible ways. Arp et al. (2014), for example, reports
on how long it takes their model to digest 1 APK (in
this case it is about 1 minutes), whereas McLaugh-
lin et al. (2017) and Zhang et al. (2014) report only
the total time that it takes to train the model using all
the samples. Feng et al. (2018) report the amount of
time their approach takes in each individual step of
the training process, from dynamic analysis to feature
extraction, feature vector generation, and detection.

• Resilience to attacks: A few papers evaluate and
report the resiliency of their approach to various
attacks, to demonstrate the real-world applicability of
it. Demontis et al. (2019), for example, demonstrated
how their approach can resists black- and white-
box evasion attacks. Alternatively, Kim et al. (2019)
showed how their scheme can resists obfuscation
attacks, which is often cited as a weakness of static
analysis schemes. Lastly, Karbab et al. (2018) inves-
tigated how susceptible their approach is to targeted
attacks specifically designed to defeat it, by changing
the order of API calls.

• Concept drift (sustainability): As Android APIs and
malware behavior evolve over time, detection solu-
tions might lose their ability to successfully identify
zero-days or new variants. This is often refereed to
as concept drift. We observed that very few of the
surveyed papers actually investigate how susceptible
their approaches are to concept drift. Karbab et al.

Page 26 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

(2018) is an exception where the authors investigated
how API changes over time might affect the accu-
racy of their approach. Lindorfer et al. (2015), also,
investigated how well can a model trained on older
malware (e.g., 2 years in the past) detect newer ones
(from the present year). Lastly, Cai et al. (2018) also
investigated how their approach would compare to
other existing ones, for detecting malware over an 8
years period.

• Commercial comparisons: To demonstrate their
superiority, some papers (e.g., Lindorfer et al. 2015)
report how their approach compares to commer-
cially-available AntiVirus (AV) solutions. This com-
parison, however, might not provide much insight as
not a lot is known about the inner workings of the
commercial AVs.

• Resource overhead: As we will discuss in the next
section, not all Android malware detection solutions
can be deployed on device (i.e., on the phone itself).
However, for those that can, it is important to meas-
ure how they may impact the performance of the
phone, and how much resources they may use. These
resource can include CPU, RAM or storage capacity
that is consumed to extract features, classify sam-
ples, store the trained model, or other operations.
These metrics are vital to ascertaining the feasibility
of any approach. Yet, we observed only a few of the
reviewed papers to report them. Dini et al. (2012)
were one of such who reported the CPU and RAM
overhead of their approach, which were found to be
at 7% and 3%, respectively. Shabtai et al. (2014) simi-
larly reported the CPU and RAM overhead of their
approach at 1.4% and 13%, respectively. Lastly, when
it comes to phones, battery consumption is also
essential to consider, as quick battery depletion can
easily render a solution infeasible. Surprisingly, we
found that only one of the surveyed papers (Saracino
et al. 2018) performed this evaluation.

The insights obtained from evaluating the models’ resil-
iency to attacks, in particular, has lead to more research
on how to make the ML pipelines more robust. Often
refereed to as “Adversarial Robustness,” this entails devis-
ing approaches that prevents an adversary from feeding
the model bogus inputs during training to cause it to
mis-classify certain samples (Carlini et al. 2019). This can
affect design decisions in any stage of the pipeline, from
model training to model explanation.

To this end, Melis et al. (2022) explored whether gradi-
ent-based attribution methods, which are used to explain
classifiers’ decisions by identifying most relevant features,
can be used to identify and select more robust learning
algorithms for a pipeline. They found that there is indeed

a strong connection between uniformity of explanations
(entailing that the algorithm has put excess emphasis on
a few features) and adversarial robustness. Hence, diver-
sifying feature weights in ML pipelines might be a prom-
ising avenue for achieving better robustness.

Rathore et al. (2021) explored robustness of eight dif-
ferent Android malware detection models (based on both
traditional machine learning and deep learning) against
adversarial attacks. They created the adversarial exam-
ples using reinforcement learning. Using their technique,
they were able to cause the models to mis-classify up to
86.09% of the samples. Subsequently, they propose an
approach based on “Q-tables” to improve the robustness
of ML pipelines.

Other similar break-and-fix studies of various Android
malware detection models, such as the ones based on
Heterogeneous-Graph-based models (Hou et al. 2019)
or Image-based classification (Darwaish et al. 2021) has
been performed as well. Such insights can inform the
design in the model training stage of the pipelines, to
make them more robust to adversarial attacks.

Model use
This stage covers how the model is deployed to be used
by the end-users, and whether there is any attempt to
explain either the model or the outcomes of it, to provide
clarity to users.

As section 7a of Fig. 4 shows, when it comes to model
deployment, the surveyed papers have employed one of
the following three methods:

• On-device: In this case, the whole ML pipeline is
implemented on the phone. The apps are extracted
from the device, features are extracted on-device, and
the model is trained and used on the phone. Natu-
rally, due to severe computational and resource limi-
tations, very few papers actually attempt this method.
We found only Dini et al. (2012) and Saracino et al.
(2018) to do so. The advantage of this method, how-
ever, is in its self-efficacy and lack of reliance on an
external server that might not always be accessible.

• Off-device: As it can be seen in Table 3 the major-
ity of the reviewed papers use this model. Here, the
entire pipeline is implemented off the phone, usually
on a powerful server computer. While this method
has the advantage of being less resource-restricted,
it is not suitable for end users and is mostly geared
towards app market holders.

• Hybrid: As a compromise between the two methods
above, some papers try to implement parts of the
pipeline on-device (usually those that can be done
more efficiently on the phone), and offload more
computationally intensive tasks (e.g., training) to a

Page 27 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

remote server. We, however, observed discrepancy
between the surveyed work as to how they approach
this split. Arp et al. (2014), for example, perform fea-
ture extraction and training off-device, while detec-
tion and explanation is implemented on-device. In
contrast, Li et al. (2018) and Tong and Yan (2017)
implement feature extraction on-device, but the rest
of the pipeline is offloaded to a server.

In case of explanation, despite its importance for pro-
viding clarity to users and establishing trust, we found
most of the surveyed works to ignore it. The very few
attempted it, used one of the two following approaches:

• Prediction explanation (interpretability): In this
case, to explain why an app is labeled as malware/
benign by the model, a list of features that contrib-
uted the most to the decision is provided. This can
help the end user understand the risks associated
with installing an app. We found Arp et al. (2014),
Gascon et al. (2013), Demontis et al. (2019), and
Wang et al. (2014) to be the only ones attempting this
approach.

• Model explanation (explainability): In this case, the
aim is to help users understand what the model is
looking for, when labeling an app as malware/benign.
In contrast to the previous approach, here the model
as a whole is considered, rather than a specific pre-
diction. We found surveyed papers that attempt this
approach to use different techniques. Yuan et al.
(2016), for example, use a list of features that have the
highest importance values (i.e., are most discrimina-
tive between malware and benign). Lindorfer et al.
(2015) used a similar approach but used F-score,
instead of feature importances. Yang et al. (2014),
on the other hand, used the association rule mining
technique to present a set of rules based on which
apps are labeled as malware/benign by the model.

Gaps in knowledge and future research directions
In this section, we discuss the gaps that we identified in
the reviewed literature.

Data collection
While finding benign APKs appears to be straight-
forward, we found two common issues with sourcing
malware APKs, as done by the literature: freshness and
accessibility (see "Data collection" section). In terms of
the former, our review revealed that most of the popular
public datasets are out of date (e.g., MalGenome which
was introduced in 2012), which has led many of the pro-
posed approaches to be trained on old data. This issue

limits the models’ practicality and makes them highly
susceptible to concept drift, as we discussed in the previ-
ous section.

Accessibility-wise, we found that access to datasets
often requires sending a request to their maintainers,
which limits the datasets’ reach. While it is understand-
able that access to malware should be restricted to pre-
vent misuse, the way this policy is implemented seems
to be problematic. Our investigation of the dataset web-
sites showed that often the person maintaining a data-
set is a student who at some point graduates, leaving the
dataset without apt maintenance and updating [Mal-
Genome (Zhou and Jiang 2012) is an example of such].
This not only prevents new researchers from accessing
the samples, but also makes it challenging to verify the
performance of prior models that have used them for
training. We should also note that while the prevalence of
Advanced Persistent Threats (APTs) is on the rise, there
seems to be no datasets that provide a set of Android
APT, hindering future research on this import topic.

Clearly, therefore, there is need for better datasets that
are more complete, fresh and accessible. This is an impor-
tant gap that we believe future research should address.
As of now, AndroZoo (Allix et al. 2016) seems to be the
closest to this ideal. However, it does not provide APTs
and still suffers from accessibility issues.

Lastly, we believe another area of improvement to be
the way ground truth is obtained/established. Currently,
most papers rely on VirusTotal (2021) to label training
samples as either malware or benign (as discussed in
"Data collection" section). This approach, however, has
several drawbacks. Firstly, it might lead to incorrect labels
due to incorrect thresholds or putting equal weights on
all commercial AV products when they are obviously
of different quality. Secondly this approach leads to the
trained models mimicking commercial AVs, instead of
striving for zero-day detection. In a sense, the model will
be trained to be just an aggregator for VirusTotal.

Obviously, manual analysis is the better option for
ground truth labeling. However, doing so is often infeasi-
ble, due to limited resources. As such, it seems a suitable
avenue for future researchers to be providing a carefully
labeled (at least verified by manual analysis) set of mal-
ware and benign APK (e.g., an updated version of Mal-
Genome) to promote more accurate ML training.

Feature extraction
Regarding this stage, our review showed an imbal-
ance in the literature. This is when static features have
seen much more attention than dynamic ones (see
"Feature extraction" section). This seems to be mostly
due to the fact that performing static analysis is usu-
ally less computationally expensive. And it also does

Page 28 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

not require specialized hardware (e.g., real phones to
execute the APKs on). The advantage of dynamic anal-
ysis, however, is that its more effective against code
obfuscation or encryption, as discussed in the previous
section. Reports show that the number of obfuscated
malware are on the rise (see McAfee 2021), which
thwarts static analysis efforts. As such, we believe that
future research is needed to explore further the use of
dynamic analysis for Android malware detection.

Other than engineering new dynamic features, how-
ever, future research can improve other aspects of the
analysis, as well. For instance, it is obvious that suc-
cessful dynamic analysis requires proper input genera-
tion to maximize code coverage. Yet, of the dynamic
papers we reviewed, only two (Alzaylaee et al. 2020;
Wu and Hung 2014) specifically addressed how they
generate inputs. Others seem to relied on the default
configurations of the tools they used, which might not
be optimal. This is an important research oversight
that we believe future work should address.

Lastly, we should note that while some of the
reviewed papers (Yuan et al. 2014, 2016; Alzaylaee
et al. 2020; Saracino et al. 2018; Lindorfer et al. 2015)
utilize both static and dynamic analysis, none uses
them in tandem. This means that, for example, they do
not leverage the data from static analysis to perform
better dynamic analysis (e.g., increase code coverage).
This is a major oversight by this literature, as this com-
bination has been shown to be highly effective in other
domains, such as vulnerability detection (Holland
et al. 2016), or web input sanitization (Balzarotti et al.
2008). Thus, we believe statically-informed dynamic
analysis for Android malware detection to be a prom-
ising avenue of future research.

Feature representation
Our review showed that most of the surveyed work
put more effort and emphasis on feature engineering.
They then opt to use simple representation techniques
such as existence-based boolean vectors (see "Fea-
ture selection" section). We believe this to be a missed
opportunity, as better representation could improve
the performance of the models without an increase
in processing capacity or engineering complexity (for
evidence, see Table 3 where approaches with similar
feature sets but more complex representations yield
better results). Based on this observation, we believe
a needed avenue of future work to be providing insight
into how best features can be represented for Android
malware detection, or what novel representation
techniques can be used (e.g., representing APKs as
pictures).

Feature selection
We observed that often researchers rely on domain
knowledge to eliminate less important features for
Android malware detection (see "Feature selection"
section). However, we found that the rationale behind
these selections are often not discussed with enough
detail or justified concretely. For example, while most
authors decide to eliminate certain APIs or permissions
from analysis [e.g., Arp et al. (2014) eliminates non-
“suspicious” API calls, and Yuan et al. (2016) only selects
certain permissions], they do not provide evidence (e.g.,
results of a prior study) that support their eliminations.
This makes it difficult to judge their solutions’ resilience
to concept drift, as the eliminated features might come
into usefulness for detection of zero-day malware (evi-
dently, there is already disagreement between the dis-
cussed papers as to what counts as “sensitive” permission
or API). We believe this to be an important aspect that
needs to be paid attention to by future researchers.

Also, when it comes to algorithmic approaches, there
is no work (to the best of our knowledge) that investigate
and/or compare the fitness of different feature selection
algorithms, or provide any insight into the requirements
of feature selection for Android malware detection. This
seems to lead authors of the surveyed work to simply
select the approach that is most familiar to them. Hence,
we believe a necessary direction for future research is to
perform empirical studies and provide insight into this
problem. Our work in this paper, specially Table 3, could
be starting point for such research.

Model creation (training)
Overall, we found great diversity in the ML algorithms
employed by the surveyed works (see "Model crea-
tion (training)" section and Table 3). Some papers (e.g.,
Yerima et al. 2014; Feng et al. 2018) even provided com-
parisons on the fitness of different ML approaches for
Android malware detection. However, we identified a gap
in literature to be the use of transfer learning for mobile
malware detection. This approach, which uses models
trained on differently-distributed data for purposes other
than initially-intended, has been frequently deployed and
shown promise in a variety of research fields (Pan and
Yang 2009). Transfer learning could be specially well-
suited for Android malware as it could alleviate the dif-
ficulty of obtaining a corpus of malicious APKs.

Another promising area of future research could be
time-series learning to analyze historical trends and
detect zero-days or new variants of Android malware.
While some our surveyed papers leveraged similar
approaches, such as Burguera et al. (2011) who employed
comparison of different versions of the the same app

Page 29 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

for detecting re-packaged malware, a more systematic
approach to time-series analysis might lead to better alle-
viation of concept drift.

Model evaluation
We found the surveyed works to have performed/
reported a plethora of evaluations–from classifica-
tion metrics, such accuracy and recall, to more complex
investigations, such as usability evaluation and malware
family detection (see "Model evaluation" section). How-
ever, we found that none have conducted all. Worse, we
observed that important aspects such as concept drift,
resource consumption, and resilience to attacks are often
omitted by researchers (see Table 3 for evidence). This is
an important research oversight that hinders apt judg-
ment of feasibility and deployability of the schemes. Con-
cept drift (i.e., sustainability of the models over time as
malware techniques evolve), in particular, is important
aspect. It can help to understand how future schemes
can be designed to be longer-lasting. An example of how
this evaluation can be done is to train models on older
sets and evaluating them using newer ones, as done by
Lindorfer et al. (2015). There are other papers, such as
(Cai 2018, 2020), and Cai et al. (2020), that investigate
the sustainability of Android malware detection through
analyzing malware evolution over time. However, these
investigations are still not a replacement for an empirical
investigation of concept drift in the proposed approaches.
Such insight can only be provided by side-by-side com-
parisons of the approaches using the same dataset, and
while keeping the conditions of the study consistent for
all. Such a study is still missing from the literature, to the
best of our knowledge.

Similarly, investigating resilience of the proposed
schemes to different types of attacks is often overlooked,
even though it can help inform the design of more flex-
ible malware detection systems. An example of such pro-
gress is how Demontis et al. (2019) improved the security
of DREBIN [proposed by Arp et al. (2014)] by conduct-
ing such security evaluations. Conducting further simi-
lar enhancements can be a promising avenue for future
research.

Also, for approaches that aim for on-device or hybrid
deployment, it seems crucial for researchers to report on
resource consumption to demonstrate the feasibility of
their approach, as done by Dini et al. (2012) and Shabtai
et al. (2014). This will help with better deployability and
practicality assessment of the proposed approaches, by
other researchers and practitioners.

Lastly, we should note that although hyper-parameter
tuning and model calibration are important parts of any
ML pipeline, we found the literature to rarely discuss
them. Of the papers we reviewed, only Xu et al. (2018)

and Karbab et al. (2018) provided information on the for-
mer, whereas none discussed the latter. This is an impor-
tant research oversight, as while this information might
not seem fundamental to ascertaining the novelty of the
proposed solutions, it hinders others’ ability to verify/
replicate the reported results. It also limits practical
deployment of the solution.

Model use
As mentioned before, model use consists of model
deployment and model explanation. With regards to the
former, we found that the literature usually forgoes this
important aspect (see "Model use" section). Often, the
focus of the researchers is on providing the best accuracy
possible without paying clear consideration to the limi-
tations of the deployment platform. This is not ideal as
without a clear path to deployment, any improvement in
accuracy is mere untapped potential. This leads us to rec-
ommend that future researchers clearly explain how they
envision deploying their system (i.e., fully on-device, fully
off-device or a hybrid model). They could also provide
evidence (e.g., run-time performance data) that clearly
demonstrates the feasibility of their deployment plan.

Also, we found the literature to be severely lacking in
terms of model explanation, as discussed in the previ-
ous section. Most of the reviewed papers did not attempt
any form of it (either to explain their model or its pre-
dictions), while those who did rarely discussed the actual
user experience (e.g., how well the explanations will be
perceived and understood by users). Conducting this
investigation is important because proper explanation
prevents user misunderstandings and potential distrust
in the system (Bhatt et al. 2020).

Reviewed papers
In this section, we provide a timeline and brief summa-
ries of the reviewed papers.

Timeline of the publications
Table 4 provide a timeline of the reviewed papers. As it
can be seen, they span nearly a decade, from 2011 (which
is only 3 years after Android’s first release) up to 2020. As
the table shows, Android malware detection has been a
popular topic of research continually.

Summary of the papers
To provide clarity on the approach proposed by each
of the reviewed papers, we provide in this section brief
summaries of them, in chronological order. A compari-
son of the papers, on the approaches they use in various
stages of their ML pipelines, was presented in Table 3 and
was discussed further in "Gaps in knowledge and future
research directions".

Page 30 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

Burguera et al. (2011) proposed Crowdroid, a pio-
neering approach, which compares the execution traces
of different versions of the same app, to detect repack-
aged malware.

Sahs and Khan (2012) use as features list of requested
permissions from the Manifest file, and also a control
flow graph from the DEX file.

Wu et al. (2012) proposed DroidMat, which uses as
features requested Permissions, component names,
Intents and API calls. It then performs clustering on
the samples, using the K-means algorithm. The num-
ber of clusters (i.e., K) is determined by Singular Value
Decomposition (SVD).

Dini et al. (2012) proposed MADAM. It extracts
dynamic features from two levels, system calls in the ker-
nel-level, and SMSes sent and the user presence status in
the user level. They used the kNN algorithm (with k=1)
to distinguish between malware and benign.

Aafer et al. (2013) proposed DroidAPIMiner. It uses
API call information for Android malware detection. The
scheme performs static analysis to extract as features the
Android package name of each API call in the disassem-
bled DEX file, and the Permissions requested in the Man-
ifest file of each app. The authors perform manual feature
selection where they remove from the model all API calls
that were exclusively called by third-party packages.

Yerima (2013) proposed an Android malware detection
approach using Bayesian classification. It performs broad
static analysis on the app samples to extract features,
including API calls, Linux system command strings,
requested permissions, encryption routines and presence
of secondary APK files. Mutual information is used to
eliminate non-important features.

Peiravian and Zhu (2013) proposed an scheme that
uses permissions and API calls for Android malware
detection. The scheme statically extracts the requested
permissions from the Manifest and the API calls from
the DEX file of each APK. The features are represented as
boolean vectors. The authors tried SVM, Decision Trees
and Bagging ensembles as their ML approaches.

Gascon et al. (2013) proposed one of the very first
approaches to use API call graphs for Android malware
detection. They proposed a novel approach for extract-
ing the call graphs for DEX. They also made novel use of
neighborhood hash graph kernel approach to embed the
graphs into integer vectors. An SVM model was trained
on these vectors.

Sanz et al. (2013) proposed PUMA, an approach that
utilizes permission usage for Android malware detection.
To use as features, it statically extracts requested per-
missions and hardware declarations from Manifest files.
Features are represented as boolean vectors and are used
to train a variety of models, from Logistic Regression, to
BayesNet and Random Forest.

Zarni Aung (2013) proposed another similar approach
for permission-based Android malware detection. Infor-
mation gain was used to select only permissions that
are most useful for distinguishing between malware
and benign. A variety of models was trained on the fea-
ture set, including KMeans, Decision Tree, and Random
Forest.

Amos et al. (2013) proposed an approach for applying
machine learning classifiers to dynamic Android mal-
ware detection at scale. It dynamically gathers the fol-
lowing information about each sample: battery usage,
binder interactions, memory and network usage, and

Table 4 Timeline of the reviewed papers

2011 Burguera et al. (2011)

2012 Sahs and Khan (2012)
Wu et al. (2012)
Dini et al. (2012)

2013 Aafer et al. (2013)
Yerima (2013)
Peiravian and Zhu (2013)
Gascon et al. (2013)
Sanz et al. (2013)
Zarni Aung (2013)
Amos et al. (2013)

2014 Arp et al. (2014)
Liu and Liu (2014)
Wang et al. (2014)
Wu and Hung (2014)
Yerima et al. (2014)
Yuan et al. (2014)
Zhang et al. (2014)
Yang et al. (2014)
Shabtai et al. (2014)

2015 Yerima et al. (2015)
Lindorfer et al. (2015)

2016 Yuan et al. (2016)
Wang et al. (2016)

2017 McLaughlin et al. (2017)
Milosevic et al. (2017)
Tong and Yan (2017)
Suarez-Tangil et al. (2017)

2018 Feng et al. (2018)
Karbab et al. (2018)
Li et al. (2018)
Xu et al. (2018)
Zhang et al. (2018)
Zhu et al. (2018)
Saracino et al. (2018)

2019 Demontis et al. (2019)
Kim et al. (2019)
Cai et al. (2018)

2020 Alzaylaee et al. (2020)
Taheri et al. (2020)

2021 Bakour and Ünver (2021)
Casolare et al. (2021)

Page 31 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

permission usage. These information are then embedded
into boolean vectors and used to train a variety of models
(including Random Forest, Naive Bayes, MLP, BayesNet,
Logistic Regression and Decision Tree). No specific fea-
ture selection was reported.

Arp et al. (2014) proposed DREBIN, a lightweight
and explainable Android malware detection method.
DREBIN performs static analysis on apps to extract
several features including hardware components and
permissions declared in the Manifest file of the app, and
restricted and suspicious API calls in the disassembled
DEX file of it. These feature are then used to train a liner
SVM classifier to discern malicious and benign apps.

Liu and Liu (2014) proposed a two-layer Permission-
based detection scheme for Android malware. In the first
layer, they use the Permissions declared in the Manifest
file of each app as features and perform light weight clas-
sification on samples. If an app cannot be successfully
classified in the first layer, it will be passed to the second
layer where the authors perform static analysis to find
Permissions that have actually been used by the app (not
just simply declared in the manifest file). The second layer
is more computationally expensive but also more accu-
rate. For both layers, they use Decision Tree classifiers
and use a training dataset of around 28000 benign apps
they downloaded from AppChina and around 1500 mal-
ware samples they obtained from the Malware Genome
Project (MalGenome) (Zhou and Jiang 2012).

Wang et al. (2014) proposed a similar permission-based
approach to Li et al. (Wang et al. 2014). They first assess
and rank each Android permission (or pairs of Permis-
sions) based on the “risk” it introduces to Android. They
then use the “riskiest” Permissions as features to train dif-
ferent classifiers (SVM, Decision Tree and Random For-
est) for malware detection. The risk for each permission
is determined by how strongly each is associated with
(i.e., how frequently it is used by) each class (malware of
benign). The authors tried different methods for rank-
ing Permissions, including Mutual Information, Pearson
Correlation Coefficient, and T-test.

Wu and Hung (2014) proposed DroidDolphin, one
of the first schemes to combine machine learning with
dynamic analysis for Android malware detection. The
dynamic features extracted include: API calls, network
and file operations, started services, loaded classes,
information leaks, and actions taken (e.g., SMS sent). An
n-gram representation of these features are used to train
an SVM model for malware-benign classification.

Yerima et al. (2015) proposed an approach that com-
bines the efficiency of Ensemble learning (specifically,
Random Forest) with static analysis. The features used
include API calls, Linux command strings, and Permis-
sions. Mutual Information is used for feature selection.

Yuan et al. (2016) proposed DroidDetector, an scheme
that uses deep learning, in tandem with both static and
dynamic analysis, to detect Android malware. Static
analysis is performed to extract permissions and sensi-
tive APIs calls. Dynamic analysis is used to detect exe-
cuted app actions, such as sending SMS. Features were
extracted from a corpus of 20,000 benign and 1760 mal-
ware apps obtained from Google play, MalGenome and
Contagio Mobile Dump (Contagio 2021). The authors
used a Deep Belief Network (DBN) model.

Zhang et al. (2014) proposed DroidSIFT, a scheme that
uses weighted contextual API dependency graphs to cre-
ate a semantically detect Android malware. The authors
trained a Naive Bayes model on 13,500 benign apps from
McAfee and Google play store, and 2200 malware apps
from MalGenome and McAfee. The features in the model
are the similarity scores between the dependency graph
of the apps in the graph. A manual approach, based on
expert-knowledge, was used to eliminate features and
improve performance.

Yang et al. (2014) proposed DroidMiner. It statically
extracts, from the DEX file of each APK, two types of
graphs: one component dependency graph and separate
API call graphs for each component. They are then com-
bined to form one that represents the overall behavior of
the app. The authors used different paths of this graph
as “modalities” to represent specific malicious or benign
behaviors. They analyzed a large corpus of apps and gath-
ered a set of modalities. A machine learning approach
was then developed based on these modalities. The fea-
ture vectors were boolean vectors that indicate whether
each of the known modalities are included in the given
app. Different ML approaches were tried, including Naive
Bayes, SVM, Decision Tree and Random Forest.

Shabtai et al. (2014) proposed an scheme that utilizes
deviations in application network behavior to detect mal-
ware. It performs dynamic analysis on apps and extract
the following information at specific intervals: sent/
received data in bytes and percentage, phone’s network
state (Cellular or WiFi), time since last sent/received data,
send/receive mode (if the last transmit event happened a
certain time ago). They manually engineer features from
these data (e.g., maximum, minimum and average) to
train a variety of models, including Logistic Regression,
Decision Tree, SVM, and Gaussian Regression.

Lindorfer et al. (2015) proposed MARVIN, a hybrid
scheme that combines static and dynamic analysis with
ML. MARVIN extracts a large variety of features. Stati-
cally, it extracts Java package name, permissions, filtered
intents, and publisher id associated with the advertise-
ment libraries. From the DEX file, it also extracts used
permissions, use of Java reflection, cryptographic APIs,
and dynamic code loading. From the certificate used to

Page 32 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

sign the file, it extracts the fingerprint, serial number and
whether it is self-signed. From other parts of the APK, it
extracts the presence of native libraries, native execut-
able or other suspicions files or scripts. Dynamically,
it records file and network operations, phone calling
events, data leaks, dynamic code loading and register-
ing broadcast receivers. These features are represented as
boolean vectors. Fisher score is used to select the most
useful set of features, for training SVM and Logistic
Regression models.

Yuan et al. (2014) proposed Droid-Sec, one of the first
schemes that combines Deep learning with hybrid anal-
ysis (i.e., combination of static and dynamic analysis)
for Android malware detection. The features extracted
through static analysis include requested permissions
and sensitive API calls, while the dynamic analysis fea-
tures include those logged by DroidBox (Project D 2021a)
including Network and File operations. A Deep Belief
Network (DBN) was trained on the features extracted
from 250 malicious apps obtained from Contagio (Conta-
gio 2021) and 250 benign samples from Google play.

Wang et al. (2016) proposed DroidDeepLearner, an
scheme that combines deep learning (specifically, Deep
Belief Networks) with static analysis for Android mal-
ware detection. Permissions (extracted from Manifest
files) and API calls (from decompiled DEX files) are used
as features.

McLaughlin et al. (2017) proposed a system that uses
a deep convolutional neural network (CNN) for malware
detection. It uses raw opcodes of apps as input features.
The authors treat the sequence of opcodes of each app as
a string that requires analysis (similar to natural language
processing). This elimination of the need for manual fea-
ture engineering is one of the main contribution of this
work.

Milosevic et al. (2017) proposed several machine learn-
ing-aided Android malware classification schemes. They
perform static analysis to extract features, including per-
missions. Bag-of-words representations of DEX files were
also used as features (created by decompiling the DEX
files, concatenating all Java code and then counting the
frequency of each Java keyword).Various classification
models were trained, using SVM, Naive Bayes, Decision
Trees, JRIP and AdaBoost. Eventually, an ensemble of
these classifiers were used for final detection.

Tong and Yan (2017) proposed an approach that per-
forms dynamic analysis to extract sequences of sys-
tem calls. It then uses pattern recognition for malware
detection.

Suarez-Tangil et al. (2017) proposed DroidSieve, an
Android malware classifier based on static and obfusca-
tion-invarient features. They extracted, from each APK,
two types of features. The first was static features which

include the existence of API calls related to evasion (e.g.,
reflection and cryptographic ones), permissions and fil-
tered interns, names of app components, and list of API
calls and strings. The second type was the resource-cen-
tric features, which included data from the signing cer-
tificate of the app, package name, embedded APIs and
packages, file mis-matches and assets, and lastly the pres-
ence of any native code. For feature selection, they rank
the features using the Extra Tree algorithm and accord-
ing to the mean decrease impurity measure and select the
top 30 to 40% of them. Using the Extra Trees approach
for learning, they evaluated the classification accuracy of
their model using a corpus of more than 120k apps.

Feng et al. (2018) proposed EnDroid, a system that
combines dynamic analysis with ensemble learning. It
uses features from DroidBox (Project D 2021a), which
include cryptographic, network and file operations. The
authors employ the Chi-square feature selection algo-
rithm to remove noisy and uninformative features. For
classifier, they use an stacking ensemble of SVM, Deci-
sion Trees, Extra Trees, Random Forest and Boosted
Trees.

Karbab et al. (2018) proposed MalDozer, a frame-
work for utilizing Deep Learning (specifically, CNN)
with sequences of API calls as features. The sequences
are converted to vectors, using word2vec (Mikolov et al.
2013) before digestion by the CNN.

Li et al. (2018) proposed SigPID, a system that per-
forms permission usage analysis to identify “significant”
ones that are useful for distinguishing between malware
and benign APKs. They used a Multi-Level Data Pruning
(MLDP) approach to rank permissions by how often they
are requested by malicious or benign apps. They then
selected ones that were most associated with one class.
They also used Sequential Forward Selection (SFS) to
further reduce the number of features. An SVM classifier
was trained based on 310,926 benign apps Google play
and 5494 malware samples from an unidentified source.

Xu et al. (2018) proposed DeepRefiner, a two-layered
Android malware detection using Deep learning and
static analysis. In the first layer, the contents of all XML
files in each app were concatenated and used as input
features for an Multilayer Perceptron (MLP) Neural Net-
work. For samples that could not be conclusively labeled
by the first layer, a second layer was introduced which
extracted Bytecode semantics from DEX files and fed
them to Long Short Term Memory (LSTM) layers in a
Neural Network. The authors used a dataset consisting
of 38,704 samples from VirusShare and MassVet (Chen
et al. 2015) and 47,525 benign apps from Google play, to
train and test their model.

Zhang et al. (2018) proposed DeepClassifyDroid, a
scheme that leverages a CNN trained on static features,

Page 33 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

including permissions, Intent filters, API calls, and con-
stant strings.

Zhu et al. (2018) proposed DroidDet, a system that
uses an Ensemble Rotation Forest classifier with static
features, including permissions, Intent filters, sensitive
API and URLs, and permission rates (defined as the
number of permissions requested divided by the size of
each Smali file). TF-IDF and cosine similarity were used
for feature selection.

Saracino et al. (2018) proposed an extended version
of MADAM [originally, by Dini et al. (2012)] with an
expanded feature set. They added features based on
the metadata from apps’ market info, including rating,
market name, developer, and number of downloads.
They also expanded the dynamic analysis to include
SMSes sent to numbers not in the contact list and also
more indicators of user presence. The kNN algorithm
was unchanged, as was the feature selection approach.

Demontis et al. (2019) proposed a modification to
DREBIN (Arp et al. 2014), making it resilient to eva-
sion attacks. They systematically analyzed the possibil-
ity of different types of such attacks (categorized by the
attacker’s goal, knowledge and capabilities). Then, they
propose Sec-SVM, a modified version of the SVM algo-
rithm which bounds the weight that can be assigned to
each feature to specific boundaries. The rationale was
that the bounding would make it difficult for DREBIN
to put too much emphasis on any one feature that could
lead to evasion.

Kim et al. (2019) proposed a multi-modal deep learn-
ing method for Android malware detection. It extracts
a variety of features through static analysis, includ-
ing strings, Opcode frequencies, API call frequencies,
requested permissions and environmental features in
the Manifest file. Topological Data Analysis (TDA) was
used for feature selection.

Cai et al. (2018) proposed DroidCat, a new app clas-
sification technique which enhances the state-of-the-
art in dynamic feature extraction for Android malware
detection. Unlike prior approaches, DroidCat features
does not solely focus on API or system calls. Rather,
inter-component communication Intents and app
resources are also included. Additionally, the approach
can also handle reflection when detecting system-calls.

Alzaylaee et al. (2020) proposed DL-Droid, an scheme
that uses deep learning in tandem with dynamic analy-
sis. Particularly, state-ful input generation was used
to increase the code coverage of the dynamic analysis.
The extracted features included API calls, intents and
DroidBox features. Information Gain was used to select
12 features for the final model, which was trained on a
dataset of 19,620 benign apps provided by Intel security

and 11,505 malware samples obtained through various
sources.

Taheri et al. (2020) proposed an approach for using
Hamming distance of static binary features for detect-
ing Android malware. The authors compared three dif-
ferent APK features, namely Permissions, API calls,
and Intents, and four different algorithms, namely
First Nearest Neighbors (FNN), All Nearest Neighbors
(ANN), Weighted All Nearest Neighbors (WANN), and
K-Medoid based Nearest Neighbors (KMNN) in terms
of distinguishing between malware and benign. Using all
the samples in DREBIN, MalGenome and Contagio data-
sets, they evaluated the accuracy, FPR and AUC of differ-
ent combinations of features and algorithms.

Bakour and Ünver (2021) proposed VisDroid, a generic
image-based classifier for Android malware family detec-
tion. The authors created grayscale images from over
24,000 Android samples. They then extracted two types
of image-based features (e.g., Scale-Invariant Feature
Transform and Color Histogram) and used them to train
six different classifiers, including random forest and bag-
ging ensembles.

Taking a similar approach, Casolare et al. (2021) pro-
posed an approach that creates color images from sys-
tem-call traces of APKs (obtained through dynamic
analysis), and then uses image classification techniques
to distinguish between malware and benign. The features
they extracted from the images included gradient infor-
mation, frequency of patters, and color information, such
as autocolor correlogram. The authors trained a variety of
models on the extracted features, including random for-
est, SVM, MLP and CNN.

Related work
There has been numerous survey papers published on
Android malware. However, we observed that none cov-
ers all stages of an ML pipeline. Zhou and Jiang (2012),
for example, provided one of the first investigations of
the different types of Android malware. They manually
analyzed a large corpus of malware samples and catego-
rized them based on how they infect devices (i.e., instal-
lation methods), how they get activated (e.g., through an
SMS from the attacker), and what their malicious pay-
loads are. They also introduced the MalGenome dataset
which is used by a number of our surveyed papers. They,
however, did not specifically discuss the use of ML for
malware detection.

Naway and Li (2018) provided a review of the use of
deep learning in Android malware detection. They intro-
duce a detailed categorization of approaches proposed by
the literature, in terms of types of features used, datasets
used, machine learning approaches, performance results,
and place of analysis (i.e., on-device or off-device).

Page 34 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

Despite their comprehensive taxonomy, however, their
work is limited to deep learning only. It also does not
follow the structure of a typical machine learning pipe-
line, and does not provide information on all its stages.
For example, the authors do not discuss feature selection
in-depth.

Narudin et al. (2016) investigated the evolution of
Android malware and Android analysis techniques. They
provided an overview of the static and dynamic analy-
sis techniques used by the literature. For static analysis,
they identified the focus to be on Permissions, Intents,
Hardware components, and DEX files. They categorized
dynamic analysis techniques into three groups: In-the-
box, Out-of-the-box, and Virtualization. However, the
authors only focused on the analysis techniques. As such,
they did not discuss the approaches used in different
ML pipeline stages, such as feature selection or model
evaluation.

Arshad et al. (2016) surveyed Android malware detec-
tion and protection. They provided a comprehensive
taxonomy of malware types, evasion techniques, and
detection approaches. The malware types they identified
included: Trojans, Backdoors, Worms, Ransomwares,
and Riskwares. The evasion techniques included Repack-
aging, Drive-by-download, Dynamic payloads, and
Stealth. They categorized the detection techniques into
static and dynamic. The static ones included signature-
based, permission-based and Dalvik-byte-code-based.
The dynamic ones included anomaly detection, taint
analysis, and emulation-based. The authors, however,
did not specifically discuss the use of ML for malware
detection.

Ye et al. (2017) reported on their survey on malware
detection using data mining techniques. They provided
categorizations for different types of malware, con-
cealment techniques, detection approaches, static and
dynamic analysis methods, and classification approaches.
The detection techniques identified, for example,
included signature-based, pattern-based and cloud-
based. Through this categorization, the authors provided
an overview of the state of malware and malware analy-
sis from an industrial point-of-view. They, however, only
focused on feature extraction and model creation. They
did not discuss other stages of the ML pipeline, such as
data collection, feature representation, and model evalu-
ation and use. Souri and Hosseini (2018) reported a simi-
lar survey with the similar benefits and shortcomings.

Feizollah et al. (2015) reviewed feature selection in
mobile malware detection. They categorized feature used
by the literature into four categories: static, dynamic,
hybrid, and metadata. The metadata features they iden-
tified, for example, included requested permissions
on apps’ store listings, app descriptions and developer

information. They identified that their surveyed papers
had used two general approaches for feature selection:
based on rationalizing (i.e., domain knowledge), and
based on ranking algorithms. This aligns well with the
results of our survey paper, as well. However, the authors
did not discuss other stages of the pipeline. For example,
they did not discuss model evaluation, deployment or
explanation.

Faruki et al. (2014) reported a survey of malware pen-
etration and defenses on Android. Similar to Arshad et al.
(2016), they provided a taxonomy of different malware
types, and their penetration and survival techniques.
They also provided a categorization of different mal-
ware analysis and detection approaches employed by
their reviewed literature, categorizing them into static
and dynamic ones. The static approaches, for example,
included signature-based, component-based, permission-
based and bytecode-based. The authors also provided a
list of tools used to extract features. They, however, did
not discuss other stages of ML pipeline, such as feature
representation or model use.

Lastly, Yan and Yan (2018) provided a survey spe-
cifically on dynamic mobile malware detection. They
introduced a taxonomy of the threats, types of fea-
tures extracted, and criteria for evaluating detection
approaches. They, however, did not specifically discuss
the use of ML or any static analysis techniques.

Unlike the works described above, our survey provides
insight into all stages of the ML pipeline for Android mal-
ware detection. As discussed before, this can alleviate the
high barrier to entry to this research field, and make it
more accessible to new researchers or practitioners.

Conclusion
As Android has become a primary target for malware
attacks, researchers have investigated the use of ML for
automated malware detection on the platform. Using
ML, however, usually requires building a complex multi-
staged pipeline. Yet, there had been a lack of comprehen-
sive review of how researchers have approached each
stage of this pipeline. This has made it difficult for new
researchers to get a grip on the state-of-the-art in this
field.

In this paper, we filled this gap by providing a novel
procedural taxonomy of ML-based Android malware
detection. We discussed how researchers have sourced
malicious and benign APKs and what static and dynamic
features they have extracted from them. We also explored
how the literature have represented this features and
eliminated the less informative ones. We categorized
what ML algorithms have been used, and how the models
have been evaluated and explained.

Page 35 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

This review also reveled several shortcomings with the
current state-of-the-art, which allowed us to provide sug-
gestions for future work. For example, we observed that
dynamic analysis has not seen enough attention from
researchers and is rather understudied. We also saw that
feature representation is often not paid careful considera-
tion and feature selection is seldom done properly. Lastly,
we noticed that promising approaches like transfer learn-
ing has not been explored for use in Android malware
detection.

Acknowledgements
We would like to thank the authors of the reviewed papers for their insightful
contributions to this research domain.

Authors contributions
Mr. MMK: Reviewed the selected papers for the survey study. Drafted the initial
design ofthe taxonomy. Drafted the text of the manuscript. Dr. IA: Contributed
to the design of the taxonomy and drafting of the manuscript.Mr. ADR, Mr.
YZ, and Mr. RSG, Mr. HS: Contributed to the design of the taxonomy.Provided
feedback on the framing of the manuscript. Provided revisions to the manu-
script. All authors read and approved the final manuscript.

Funding
The funding for this research has been provided by Huawei Technologies
Canada. The funding body have not influenced the design of the study or
collection, analysis and interpretation of data.

Availability of data and materials
All reviewed papers are either in the public domain or available on the cor-
responding publishers’ websites.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Huawei Technologies Canada Co., Ltd, Vancouver, Canada. 2 Huawei Technolo-
gies Canada Co., Ltd, Ottawa, Canada. 3 Simon Fraser University, Burnaby,
Vancouver, Canada. 4 Huawei Technologies Canada Co., Ltd, Toronto, Canada.

Received: 24 November 2021 Accepted: 2 March 2022

References
Aafer Y, Du W, Yin H (2013) DroidAPIMiner: mining API-level features for robust

malware detection in android. In: International conference on security
and privacy in communication systems. Springer, pp 86–103

ACM (2021) ACM Digital Library. https:// dl. acm. org/
Afonso VM, de Amorim MF, Grégio ARA, Junquera GB, de Geus PL (2015) Iden-

tifying android malware using dynamically obtained features. J Comput
Virol Hacking Tech 11(1):9–17

Allix K, Bissyandé TF, Klein J, Le Traon Y (2016) AndroZoo: collecting millions of
android apps for the research community. In: Proceedings of the 13th
international conference on mining software repositories. MSR ’16.
ACM, New York, NY, USA, pp 468–471. https:// doi. org/ 10. 1145/ 29017
39. 29035 08

Alzaylaee MK, Yerima SY, Sezer S (2020) DL-Droid: deep learning based android
malware detection using real devices. Comput Secur 89:101663.
https:// doi. org/ 10. 1016/j. cose. 2019. 101663

Amos B, Turner H, White J (2013) Applying machine learning classifiers to
dynamic android malware detection at scale. In: 2013 9th international
wireless communications and mobile computing conference (IWCMC).
IEEE, pp 1666–1671

API A (2020) SELinux on android. https:// source. andro id. com/ secur ity/ selin ux.
Accessed 11 June 2020

APKTool (2021) APKTool. https:// ibotp eaches. github. io/ Apkto ol/
Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Siemens C (2014)

Drebin: effective and explainable detection of android malware in your
pocket. NDSS 14:23–26

Arshad S, Shah MA, Khan A, Ahmed M (2016) Android malware detection &
protection: a survey. Int J Adv Comput Sci Appl 7(2):463–475

Bakour K, Ünver HM (2021) VisDroid: android malware classification based
on local and global image features, bag of visual words and machine
learning techniques. Neural Comput Appl 33(8):3133–3153

Balzarotti D, Cova M, Felmetsger V, Jovanovic N, Kirda E, Kruegel C, Vigna G
(2008) Saner: composing static and dynamic analysis to validate sani-
tization in web applications. In: 2008 IEEE symposium on security and
privacy (SP 2008). IEEE, pp 387–401

Bhatt U, Xiang A, Sharma S, Weller A, Taly A, Jia Y, Ghosh J, Puri R, Moura JM,
Eckersley P (2020) Explainable machine learning in deployment. In:
Proceedings of the 2020 conference on fairness, accountability, and
transparency, pp 648–657

Buczak AL, Guven E (2015) A survey of data mining and machine learning
methods for cyber security intrusion detection. IEEE Commun Surv
Tutor 18(2):1153–1176

Burguera I, Zurutuza U, Nadjm-Tehrani S (2011) Crowdroid: behavior-based
malware detection system for android. In: Proceedings of the 1st ACM
workshop on security and privacy in smartphones and mobile devices,
pp 15–26

Cai H (2018) A preliminary study on the sustainability of android malware
detection. arXiv preprint arXiv: 1807. 08221

Cai H (2020) Assessing and improving malware detection sustainability
through app evolution studies. ACM Trans Softw Eng Methodol
(TOSEM) 29(2):1–28

Cai H, Ryder BG (2020) A longitudinal study of application structure and
behaviors in android. IEEE Trans Softw Eng 47(12):2934–2955

Cai H, Meng N, Ryder B, Yao D (2018) DroidCat: effective android malware
detection and categorization via app-level profiling. IEEE Trans Inf
Forensics Secur 14(6):1455–1470

Cai H, Fu X, Hamou-Lhadj A (2020) A study of run-time behavioral evolution of
benign versus malicious apps in android. Inf Softw Technol 122:106291

Cai H, Ryder BG (2017) Artifacts for dynamic analysis of android apps. In: 2017
IEEE international conference on software maintenance and evolution
(ICSME). IEEE, p 659

Carlini N, Athalye A, Papernot N, Brendel W, Rauber J, Tsipras D, Goodfellow I,
Madry A, Kurakin A (2019) On evaluating adversarial robustness. arXiv
preprint arXiv: 1902. 06705

Casolare R, De Dominicis C, Iadarola G, Martinelli F, Mercaldo F, Santone A
(2021) Dynamic mobile malware detection through system call-based
image representation. J Wirel Mob Netw Ubiquitous Comput Depend-
able Appl 12(1):44–63

Chen K, Wang P, Lee Y, Wang X, Zhang N, Huang H, Zou W, Liu P (2015) Finding
unknown malice in 10 seconds: mass vetting for new threats at the
google-play scale. In: 24th {USENIX} security symposium ({ USENIX }
security 15), pp 659–674

Contagio (2021) Mobile malware mini dump. http:// conta giomi nidump. blogs
pot. com/. Accessed 01 June 2021

Damshenas M, Dehghantanha A, Choo K-KR, Mahmud R (2015) M0Droid: an
android behavioral-based malware detection model. J Inf Privacy Secur
11(3):141–157. https:// doi. org/ 10. 1080/ 15536 548. 2015. 10735 10

Darwaish A, Naït-Abdesselam F, Titouna C, Sattar S (2021) Robustness of
image-based android malware detection under adversarial attacks. In:
ICC 2021-IEEE international conference on communications. IEEE, pp
1–6

Das S, Cakmak UM (2018) Hands-on automated machine learning: a begin-
ner’s guide to building automated machine learning systems using
AutoML and Python. Packt Publishing Ltd, Birmingham

Demontis A, Melis M, Biggio B, Maiorca D, Arp D, Rieck K, Corona I, Giacinto G,
Roli F (2019) Yes, machine learning can be more secure! a case study
on android malware detection. IEEE Trans Dependable Secure Comput
16(4):711–724. https:// doi. org/ 10. 1109/ TDSC. 2017. 27002 70

Dini G, Martinelli F, Saracino A, Sgandurra D (2012) MADAM: a multi-level
anomaly detector for android malware. In: International conference

https://dl.acm.org/
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1016/j.cose.2019.101663
https://source.android.com/security/selinux
https://ibotpeaches.github.io/Apktool/
http://arxiv.org/abs/1807.08221
http://arxiv.org/abs/1902.06705
http://contagiominidump.blogspot.com/
http://contagiominidump.blogspot.com/
https://doi.org/10.1080/15536548.2015.1073510
https://doi.org/10.1109/TDSC.2017.2700270

Page 36 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

on mathematical methods, models, and architectures for computer
network security. Springer, pp 240–253

Docs M (2022) What are Azue machine learning pipelines? https:// docs.
micro soft. com/ en- us/ azure/ machi ne- learn ing/ conce pt- ml- pipel ines.
Accessed 01 March 2022

Elenkov N (2014) Android security internals: an in-depth guide to android
security architecture. No Starch Press, San Francisco, CA

Enck W, Ongtang M, McDaniel P (2009) On lightweight mobile phone
application certification. In: Proceedings of the 16th ACM conference
on computer and communications security. CCS ’09. Association for
Computing Machinery, New York, NY, USA, pp 235–245. https:// doi. org/
10. 1145/ 16536 62. 16536 91

Faruki P, Bharmal A, Laxmi V, Ganmoor V, Gaur MS, Conti M, Rajarajan M (2014)
Android security: a survey of issues, malware penetration, and defenses.
IEEE Commun Surv Tutor 17(2):998–1022

Fatima M, Pasha M et al (2017) Survey of machine learning algorithms for
disease diagnostic. J Intell Learn Syst Appl 9(01):1

Feizollah A, Anuar NB, Salleh R, Wahab AWA (2015) A review on feature selec-
tion in mobile malware detection. Digit Investig 13:22–37. https:// doi.
org/ 10. 1016/j. diin. 2015. 02. 001

Feng P, Ma J, Sun C, Xu X, Ma Y (2018) A novel dynamic android malware
detection system with ensemble learning. IEEE Access 6:30996–31011.
https:// doi. org/ 10. 1109/ ACCESS. 2018. 28443 49

Gascon H, Yamaguchi F, Arp D, Rieck K (2013) Structural detection of android
malware using embedded call graphs. In: Proceedings of the 2013 ACM
workshop on artificial intelligence and security. AISec ’13. Association
for Computing Machinery, New York, NY, USA, pp 45–54. https:// doi.
org/ 10. 1145/ 25173 12. 25173 15

Gift N, Deza A (2021) Practical MLOps. O’Reilly Media Inc, Sebastopol, CA
Google (2021) Google Scholar. https:// schol ar. google. com
Grace M, Zhou Y, Zhang Q, Zou S, Jiang X (2012) Riskranker: scalable and accu-

rate zero-day android malware detection. In: Proceedings of the 10th
international conference on mobile systems, applications, and services.
MobiSys ’12. Association for Computing Machinery, New York, NY, USA,
pp 281–294. https:// doi. org/ 10. 1145/ 23076 36. 23076 63

Hex-rays (2021) IDA Pro. https:// hex- rays. com/ ida- pro/
Holland B, Santhanam GR, Awadhutkar P, Kothari S (2016) Statically-informed

dynamic analysis tools to detect algorithmic complexity vulnerabilities.
In: 2016 IEEE 16th international working conference on source code
analysis and manipulation (SCAM). IEEE, pp 79–84

Hou S, Fan Y, Zhang Y, Ye Y, Lei J, Wan W, Wang J, Xiong Q, Shao F (2019) αcyber:
enhancing robustness of android malware detection system against
adversarial attacks on heterogeneous graph based model. In: Proceed-
ings of the 28th ACM international conference on information and
knowledge management, pp 609–618

IEEE (2021) IEEE Xplore. https:// ieeex plore. ieee. org/ Xplore/ home. jsp
Inc G (2020) Android developer guides. https:// devel oper. andro id. com/ guide/.

Accessed 17 April 2020
Inc G (2021) Behaviour changes in android 12. https:// devel oper. andro id. com/

about/ versi ons/ 12/ behav ior- chang es- 12. Accessed 07 July 2021
Karbab EB, Debbabi M, Derhab A, Mouheb D (2018) MalDozer: automatic

framework for android malware detection using deep learning. Digit
Investig 24:48–59. https:// doi. org/ 10. 1016/j. diin. 2018. 01. 007

Kaspersky (2021) Mobile malware evolution 2020. https:// secur elist. com/
mobile- malwa re- evolu tion- 2020/ 101029/. Accessed 01 June 2021

Kim T, Kang B, Rho M, Sezer S, Im EG (2019) A multimodal deep learning
method for android malware detection using various features. IEEE
Trans Inf Forensics Secur 14(3):773–788. https:// doi. org/ 10. 1109/ TIFS.
2018. 28663 19

Li J, Sun L, Yan Q, Li Z, Srisa-an W, Ye H (2018) Significant permission identifica-
tion for machine-learning-based android malware detection. IEEE Trans
Ind Inf 14(7):3216–3225. https:// doi. org/ 10. 1109/ TII. 2017. 27892 19

Li W, Fu X, Cai H (2021) AndroCT: ten years of app call traces in android. In:
2021 IEEE/ACM 18th international conference on mining software
repositories (MSR). IEEE, pp 570–574

Lindorfer M, Neugschwandtner M, Platzer C (2015) MARVIN: efficient and
comprehensive mobile app classification through static and dynamic
analysis. In: 2015 IEEE 39th annual computer software and applications
conference, vol.2. IEEE, pp 422–433

Liu X, Liu J (2014) A two-layered permission-based android malware detec-
tion scheme. In: 2014 2nd IEEE international conference on mobile

cloud computing, services, and engineering, pp 142–148. https:// doi.
org/ 10. 1109/ Mobil eCloud. 2014. 22

Maiorca D, Ariu D, Corona I, Aresu M, Giacinto G (2015) Stealth attacks: an
extended insight into the obfuscation effects on android malware.
Comput Secur 51:16–31

Man Pages U (2021) Dexdump. http:// manpa ges. ubuntu. com/ manpa ges/
bionic/ man1/ dexdu mp.1. html

Man Pages L (2021) Strace.
McAfee (2021) Mobile threat report. https:// www. mcafee. com/ conte

nt/ dam/ consu mer/ en- us/ docs/ 2020- Mobile- Threat- Report. pdf.
Accessed 01 June 2021

McLaughlin N, Martinez del Rincon J, Kang B, Yerima S, Miller P, Sezer S,
Safaei Y, Trickel E, Zhao Z, Doupé A et al (2017) Deep android mal-
ware detection. In: Proceedings of the seventh ACM on conference
on data and application security and privacy, pp 301–308

Melis M, Scalas M, Demontis A, Maiorca D, Biggio B, Giacinto G, Roli F
(2022) Do gradient-based explanations tell anything about adver-
sarial robustness to android malware? Int J Mach Learn Cybernet
13(1):217–232

Microsoft (2021) Microsoft academic knowledge. https:// www. micro soft.
com/ en- us/ resea rch/ proje ct/ acade mic- knowl edge/

Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013) Distributed repre-
sentations of words and phrases and their compositionality. arXiv
preprint arXiv: 1310. 4546

Milosevic N, Dehghantanha A, Choo K-KR (2017) Machine learning aided
android malware classification. Comput Electr Eng 61:266–274.
https:// doi. org/ 10. 1016/j. compe leceng. 2017. 02. 013

Narudin FA, Feizollah A, Anuar NB, Gani A (2016) Evaluation of machine
learning classifiers for mobile malware detection. Soft Comput
20(1):343–357

Naway A, Li Y (2018) A review on the use of deep learning in android mal-
ware detection. arXiv preprint arXiv: 1812. 10360

Onwuzurike L, Mariconti E, Andriotis P, Cristofaro ED, Ross G, Stringhini G
(2019) MaMaDroid: detecting android malware by building Markov
chains of behavioral models (extended version). ACM Trans Privacy
Secur (TOPS) 22(2):1–34

Osborn S, Sandhu R, Munawer Q (2000) Configuring role-based access con-
trol to enforce mandatory and discretionary access control policies.
ACM Trans Inf Syst Secur (TISSEC) 3(2):85–106

Padmanabhan J, Johnson Premkumar MJ (2015) Machine learning in auto-
matic speech recognition: a survey. IETE Tech Rev 32(4):240–251

Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data
Eng 22(10):1345–1359

Peiravian N, Zhu X (2013) Machine learning for android malware detec-
tion using permission and API calls. In: 2013 IEEE 25th international
conference on tools with artificial intelligence, pp 300–305. https://
doi. org/ 10. 1109/ ICTAI. 2013. 53

Portal AD (2021a) Intents and intent filters. https:// devel oper. andro id. com/
guide/ compo nents/ inten ts- filte rs. Accessed 22 June 2021

Portal AD (2021b) Android asset packaging tool. https:// devel oper. andro id.
com/ studio/ comma nd- line/ aapt2

Portal AD (2021c) Platform architecture. https:// devel oper. andro id. com/
guide/ platf orm. Accessed 22 June 2021

Portal AD (2021d) Application fundamentals. https:// devel oper. andro id.
com/ guide/ compo nents/ funda menta ls. Accessed 22 June 2021

Project A (2021) Androguard. https:// github. com/ andro guard/ andro guard
Project AOS (2021) Android architecture. https:// source. andro id. com/ devic

es/ archi tectu re. Accessed 22 June 2021
Project B (2021) Baksmali.
Project D (2021a) DroidBox. https:// github. com/ pjlan tz/ droid box. Accessed

02 June 2021
Project D (2021b) Dex2jar. https:// github. com/ pxb19 88/ dex2j ar
Project P (2021a) Procyon. https:// github. com/ stste iger/ procy on
Project P (2021b) PScout. https:// github. com/ zd2100/ PScout
Project S (2021) Soot framework. https:// github. com/ soot- oss/ soot
Raju AD, AbualHoal I, Salvador Giagone R, Zhou Y, Huang S (2021) A survey

on cross-architectural IoT malware threat hunting. IEEE Access
9:91686–91709

Ratazzi EP (2016) Understanding and improving security of the android
operating system. Technical report, Syracuse University Syracuse United
States

https://docs.microsoft.com/en-us/azure/machine-learning/concept-ml-pipelines
https://docs.microsoft.com/en-us/azure/machine-learning/concept-ml-pipelines
https://doi.org/10.1145/1653662.1653691
https://doi.org/10.1145/1653662.1653691
https://doi.org/10.1016/j.diin.2015.02.001
https://doi.org/10.1016/j.diin.2015.02.001
https://doi.org/10.1109/ACCESS.2018.2844349
https://doi.org/10.1145/2517312.2517315
https://doi.org/10.1145/2517312.2517315
https://scholar.google.com
https://doi.org/10.1145/2307636.2307663
https://hex-rays.com/ida-pro/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://developer.android.com/guide/
https://developer.android.com/about/versions/12/behavior-changes-12
https://developer.android.com/about/versions/12/behavior-changes-12
https://doi.org/10.1016/j.diin.2018.01.007
https://securelist.com/mobile-malware-evolution-2020/101029/
https://securelist.com/mobile-malware-evolution-2020/101029/
https://doi.org/10.1109/TIFS.2018.2866319
https://doi.org/10.1109/TIFS.2018.2866319
https://doi.org/10.1109/TII.2017.2789219
https://doi.org/10.1109/MobileCloud.2014.22
https://doi.org/10.1109/MobileCloud.2014.22
http://manpages.ubuntu.com/manpages/bionic/man1/dexdump.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/dexdump.1.html
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://www.microsoft.com/en-us/research/project/academic-knowledge/
https://www.microsoft.com/en-us/research/project/academic-knowledge/
http://arxiv.org/abs/1310.4546
https://doi.org/10.1016/j.compeleceng.2017.02.013
http://arxiv.org/abs/1812.10360
https://doi.org/10.1109/ICTAI.2013.53
https://doi.org/10.1109/ICTAI.2013.53
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/studio/command-line/aapt2
https://developer.android.com/studio/command-line/aapt2
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://github.com/androguard/androguard
https://source.android.com/devices/architecture
https://source.android.com/devices/architecture
https://github.com/pjlantz/droidbox
https://github.com/pxb1988/dex2jar
https://github.com/ststeiger/procyon
https://github.com/zd2100/PScout
https://github.com/soot-oss/soot

Page 37 of 37Mehrabi Koushki et al. Cybersecurity (2022) 5:16

Rathore H, Sahay SK, Nikam P, Sewak M (2021) Robust android malware detec-
tion system against adversarial attacks using q-learning. Inf Syst Front
23(4):867–882

Sahs J, Khan L (2012) A machine learning approach to android malware detec-
tion. In: 2012 European intelligence and security informatics confer-
ence, pp 141–147. https:// doi. org/ 10. 1109/ EISIC. 2012. 34

Sandhu RS, Samarati P (1994) Access control: principle and practice. IEEE Com-
mun Mag 32(9):40–48

Sanz B, Santos I, Laorden C, Ugarte-Pedrero X, Bringas PG, Álvarez G (2013)
PUMA: permission usage to detect malware in android. In: International
joint conference CISIS’12-ICEUTE 12-SOCO 12 special sessions. Springer,
pp 289–298

Saracino A, Sgandurra D, Dini G, Martinelli F (2018) MADAM: effective and
efficient behavior-based android malware detection and prevention.
IEEE Trans Dependable Secure Comput 15(1):83–97. https:// doi. org/ 10.
1109/ TDSC. 2016. 25366 05

Shabtai A, Tenenboim-Chekina L, Mimran D, Rokach L, Shapira B, Elovici Y
(2014) Mobile malware detection through analysis of deviations in
application network behavior. Comput Secur 43:1–18

Souri A, Hosseini R (2018) A state-of-the-art survey of malware detection
approaches using data mining techniques. Hum-Centric Comput Inf
Sci 8(1):1–22

StatCounter (2021) Mobile operating system market share worldwide. https://
gs. statc ounter. com/ os- market- share/ mobile/ world wide. Accessed 01
June 2021

Suarez-Tangil G, Dash SK, Ahmadi M, Kinder J, Giacinto G, Cavallaro L (2017)
DroidSieve: fast and accurate classification of obfuscated android
malware. In: Proceedings of the seventh ACM on conference on data
and application security and privacy, pp 309–320

Taheri R, Ghahramani M, Javidan R, Shojafar M, Pooranian Z, Conti M (2020)
Similarity-based android malware detection using hamming distance
of static binary features. Future Gener Comput Syst 105:230–247

Talha KA, Alper DI, Aydin C (2015) APK auditor: permission-based android
malware detection system. Digit Investig 13:1–14. https:// doi. org/ 10.
1016/j. diin. 2015. 01. 001

Team S (2020) SELinux project. https:// github. com/ SELin uxPro ject. Accessed
20 April 2020

Techotopia (2021) An overview of android architecture. https:// www. techo
topia. com/ index. php/ An_ Overv iew_ of_ the_ Andro id_ Archi tectu re.
Accessed 22 June 2021

Tong F, Yan Z (2017) A hybrid approach of mobile malware detection in
android. J Parallel Distrib Comput 103:22–31. https:// doi. org/ 10. 1016/j.
jpdc. 2016. 10. 012 (Special issue on scalable cyber-physical systems)

Vidal JM, Monge MAS, Villalba LJG (2018) A novel pattern recognition system
for detecting android malware by analyzing suspicious boot sequences.
Knowl-Based Syst 150:198–217

VirusShare (2021) VirusShare database. https:// virus share. com/
VirusTotal (2021) VirusTotal website. https:// www. virus total. com/
Wang W, Wang X, Feng D, Liu J, Han Z, Zhang X (2014) Exploring permission-

induced risk in android applications for malicious application detection.
IEEE Trans Inf Forensics Secur 9(11):1869–1882. https:// doi. org/ 10. 1109/
TIFS. 2014. 23539 96

Wang Z, Cai J, Cheng S, Li W (2016) DroidDeepLearner: identifying android
malware using deep learning. In: 2016 IEEE 37th Sarnoff symposium, pp
160–165. https:// doi. org/ 10. 1109/ SARNOF. 2016. 78467 47

Wong MY, Lie D (2016) Intellidroid: a targeted input generator for the dynamic
analysis of android malware. NDSS 16:21–24

Wu D-J, Mao C-H, Wei T-E, Lee H-M, Wu K-P (2012) DroidMat: android malware
detection through manifest and API calls tracing. In: 2012 seventh Asia
joint conference on information security, pp 62–69 . https:// doi. org/ 10.
1109/ AsiaJ CIS. 2012. 18

Wu W-C, Hung S-H (2014) DroidDolphin: a dynamic android malware detec-
tion framework using big data and machine learning. In: Proceedings of
the 2014 conference on research in adaptive and convergent systems,
pp 247–252

Xin Y, Kong L, Liu Z, Chen Y, Li Y, Zhu H, Gao M, Hou H, Wang C (2018) Machine
learning and deep learning methods for cybersecurity. IEEE Access
6:35365–35381

Xu K, Li Y, Deng RH, Chen K (2018) DeepRefiner: multi-layer android malware
detection system applying deep neural networks. In: 2018 IEEE

European symposium on security and privacy (EuroS P), pp 473–487 .
https:// doi. org/ 10. 1109/ EuroSP. 2018. 00040

Yan P, Yan Z (2018) A survey on dynamic mobile malware detection. Softw
Qual J 26(3):891–919

Yang C, Xu Z, Gu G, Yegneswaran V, Porras P (2014) DroidMiner: automated
mining and characterization of fine-grained malicious behaviors in
android applications. In: European symposium on research in computer
security. Springer, pp 163–182

Ye Y, Li T, Adjeroh D, Iyengar SS (2017) A survey on malware detection using
data mining techniques. ACM Comput Surv 50(3):1–40. https:// doi. org/
10. 1145/ 30735 59

Yerima SY, Sezer S, McWilliams G, Muttik I (2013) A new android malware
detection approach using Bayesian classification. In: 2013 IEEE 27th
international conference on advanced information networking and
applications (AINA), pp 121–128. https:// doi. org/ 10. 1109/ AINA. 2013. 88

Yerima SY, Sezer S, Muttik I (2014) Android malware detection using parallel
machine learning classifiers. In: 2014 eighth international conference
on next generation mobile apps, services and technologies, pp 37–42.
https:// doi. org/ 10. 1109/ NGMAST. 2014. 23

Yerima SY, Sezer S, Muttik I (2015) High accuracy android malware detection
using ensemble learning. IET Inf Secur 9(6):313–320. https:// doi. org/ 10.
1049/ iet- ifs. 2014. 0099

Yuan Z, Lu Y, Xue Y (2016) Droiddetector: android malware characterization
and detection using deep learning. Tsinghua Sci Technol 21(1):114–123.
https:// doi. org/ 10. 1109/ TST. 2016. 73992 88

Yuan Z, Lu Y, Wang Z, Xue Y (2014) Droid-Sec: deep learning in android
malware detection. In: Proceedings of the 2014 ACM conference on
SIGCOMM, pp 371–372

Zarni Aung WZ (2013) Permission-based android malware detection. Int J Sci
Technol Res 2(3):228–234

ZDNet (2021) Malicious apps on google play dropped banking trojans on user
devices. https:// www. zdnet. com/ artic le/ malic ious- apps- on- google-
play- dropp ed- banki ng- troja ns- on- user- devic es/. Accessed 13 July 2021

Zhang M, Duan Y, Yin H, Zhao Z (2014) Semantics-aware android malware
classification using weighted contextual API dependency graphs. In:
Proceedings of the 2014 ACM SIGSAC conference on computer and
communications security, pp 1105–1116

Zhang Y, Yang Y, Wang X (2018) A novel android malware detection approach
based on convolutional neural network. In: Proceedings of the 2nd
international conference on cryptography, security and privacy, pp
144–149

Zhou Y, Jiang X (2012) Dissecting android malware: characterization and
evolution. In: 2012 IEEE symposium on security and privacy, pp 95–109.
https:// doi. org/ 10. 1109/ SP. 2012. 16

Zhu H-J, You Z-H, Zhu Z-X, Shi W-L, Chen X, Cheng L (2018) DroidDet: effective
and robust detection of android malware using static analysis along
with rotation forest model. Neurocomputing 272:638–646. https:// doi.
org/ 10. 1016/j. neucom. 2017. 07. 030

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/EISIC.2012.34
https://doi.org/10.1109/TDSC.2016.2536605
https://doi.org/10.1109/TDSC.2016.2536605
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://doi.org/10.1016/j.diin.2015.01.001
https://doi.org/10.1016/j.diin.2015.01.001
https://github.com/SELinuxProject
https://www.techotopia.com/index.php/An_Overview_of_the_Android_Architecture
https://www.techotopia.com/index.php/An_Overview_of_the_Android_Architecture
https://doi.org/10.1016/j.jpdc.2016.10.012
https://doi.org/10.1016/j.jpdc.2016.10.012
https://virusshare.com/
https://www.virustotal.com/
https://doi.org/10.1109/TIFS.2014.2353996
https://doi.org/10.1109/TIFS.2014.2353996
https://doi.org/10.1109/SARNOF.2016.7846747
https://doi.org/10.1109/AsiaJCIS.2012.18
https://doi.org/10.1109/AsiaJCIS.2012.18
https://doi.org/10.1109/EuroSP.2018.00040
https://doi.org/10.1145/3073559
https://doi.org/10.1145/3073559
https://doi.org/10.1109/AINA.2013.88
https://doi.org/10.1109/NGMAST.2014.23
https://doi.org/10.1049/iet-ifs.2014.0099
https://doi.org/10.1049/iet-ifs.2014.0099
https://doi.org/10.1109/TST.2016.7399288
https://www.zdnet.com/article/malicious-apps-on-google-play-dropped-banking-trojans-on-user-devices/
https://www.zdnet.com/article/malicious-apps-on-google-play-dropped-banking-trojans-on-user-devices/
https://doi.org/10.1109/SP.2012.16
https://doi.org/10.1016/j.neucom.2017.07.030
https://doi.org/10.1016/j.neucom.2017.07.030

	On building machine learning pipelines for Android malware detection: a procedural survey of practices, challenges and opportunities
	Abstract
	Introduction
	Background
	Android system architecture
	Android app structure
	Android security mechanisms
	Machine learning pipeline

	Methodology
	Taxonomy of android malware detection approaches
	Data collection
	Feature extraction
	Static analysis
	Dynamic analysis

	Feature representation
	Feature selection
	Model creation (training)
	Model evaluation
	Model use

	Gaps in knowledge and future research directions
	Data collection
	Feature extraction
	Feature representation
	Feature selection
	Model creation (training)
	Model evaluation
	Model use

	Reviewed papers
	Timeline of the publications
	Summary of the papers

	Related work
	Conclusion
	Acknowledgements
	References

