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Abstract—In order to demonstrate and test new concepts and
methods for the future grids, power engineers and researchers
need appropriate randomly generated grid network topologies
for Monte Carlo experiments. If the random networks are
truly representative and if the concepts or methods test well
in this environment they would test well on any instance
of such a network as the IEEE model systems or other
existing grid models. Our previous work [1] proposed a random
topology power grid model, called RT-nested-smallworld, based
on the findings from a comprehensive study of the topology
and electrical properties of a number of realistic grids. The
proposed model can be utilized to generate a large number of
power grid test cases with scalable network size featuring the
same small-world topology and electrical characteristics found
from realistic power grids.

On the other hand, we know that dynamics of a grid not only
depend on its electrical topology but also on the generation and
load settings; and the latter closely relates with an accurate bus
type assignment of the grid. Generally speaking, the buses in
a power grid test case can be divided into three categories: the
generation buses (G), the load buses (L), and the connection
buses (C). In [1] our proposed model simply adopts random
assignment of bus types in a resulting grid topology, according
to the three bus types’ ratios.

In this paper we examined the correlation between the
three bus types of G/L/C and some network topology metrics
such as node degree distribution and clustering coefficient. We
also investigated the impacts of different bus type assignments
on the grid vulnerability to cascading failures using IEEE
300 bus system as an example. We found that (a) the node
degree distribution and clustering characteristic are different
for different type of buses (G/L/C) in a realistic grid; (b)
the changes in bus type assignment in a grid may cause big
differences in system dynamics; and (c) the random assignment
of bus types in a random topology power grid model should
be improved by using a more accurate assignment which is
consistent with that of realistic grids.

Keywords-Electric Power grid, random topology, graph net-
work.

I. INTRODUCTION

Electric power grid is one of the largest interconnected

machines on the earth, whose dynamics include vast com-

plexities resulting from the large number of interconnected

grid components [2]. The transients occur in disparate time

frames and arise from the nonlinear and time-varying nature

of transmission flow and disturbance propagation. What is

more, as smart grid innovation advances, higher penetration

of renewable generation, electric vehicles, and demand side

participation will surely introduce even more complexity to

the grid dynamic model. It is a common practice for power

engineers and researchers to trim a substantial amount of

the complexity from the complete model and instead utilize

various sets of approximations and assumptions to develop

new concepts, methods, analysis, and control schemes. And

in order to in some sense demonstrate and prove the new

concept and method numerical simulations and experiments

on some standard power grid test case has become an

indispensable critical step.

In the past power engineers and researchers mainly de-

pended on a small number of historical test systems such as

the IEEE 30 or 300 bus systems [3]-[6]. Even if they could

utilize some real-world and/or synthesized grid data for test

[7]-[11], the verification and evaluation results, obtained

from the limited number of test cases, could not be deemed

as adequate or convincing in the sense that the same concept

or method, if extended to other instance of grid networks,

may not yield the same or comparable performance. We

believe that future power engineers and researchers need

appropriate randomly generated grid network topologies

for Monte Carlo experiments to demonstrate and test new

concepts and methods. If the random networks are truly

representative and if the concepts or methods test well in

this environment they would test well on any instance of

such a network such as the IEEE-30, 57, 118, or 300-bus

systems [3] or some other existing grid models [12]-[15].

A number of researchers also noticed similar needs to

generate scalable-size power grid test cases. Different power

grid models were proposed based on observed statistical

characteristics in the literature. For example, [12] proposed

a Tree-topology power grid model to study power grid

robustness and to detect critical points and transitions in the

flow transmission to cause cascading failure blackouts. In

[14] the authors used Ring-structured power grid topologies

to study the pattern and speed of contingency or disturbance

propagation. [15] first proposed statistically modeling the

power grid as a small-world network in their work on ran-

dom graphs. [16] gave a statistical model for power networks

in an effort to grasp what class of communication network

topologies need to match the underlying power networks,
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so that the provision of the network control problem can

be done efficiently. [17] used a small-world graph model to

study the intrinsic spreading mechanism of the chain failure

in a large-scale grid. All these models mentioned above

provide useful perspectives to power grid characteristics.

However, the topology of the generated power grids, such

as the ring- or tree-like structures and the small-world graph

networks, fails to correctly or fully reflect that of a realistic

power system, especially its distinct sparse connectivity and

scaling property versus the grid size. Besides, power grid

network is more than just a topology: in order to facilitate

numerical simulations of grid controls and operations, it also

needs to include realistic electrical parameter settings such

as line impedances, and generation and load settings.

In our previous work [1], we finished a comprehensive

study on the topological and electrical characteristics of

electric power grids including the nodal degree distribution,

the clustering coefficient, the line impedance distribution, the

graph spectral density, and the scaling property of the alge-

braic connectivity of the network, etc. Based on the observed

characteristics, a random topology power grid models, called

RT-nested-smallworld, has been proposed to generate a large

number of power grid test cases with scalable network size

featuring the same electrical and topology with realistic

power grid features. The only shortcoming of this model lies

in its random bus type assignments purely according to the

different bus type ratios. Generally speaking, all the buses in

a grid can be grouped into three categories as follows with

minor overlaps since it is possible that a small portion of

buses may belong to more than one categories:

G the generation buses connecting generators,

L the load buses supporting custom demands, and

C the connection buses forming the transmission net-

work.

In a typical power grid, the generation bus consists of

10∼40% of all the grid buses, the load bus is 40∼60%,

and the connection bus 10∼20%.

In this paper we examined the correlation between the

three bus types of G/L/C and network topology metrics such

as the node degree distribution and the clustering coeffi-

cients. We also investigated the impacts of different bus type

assignments on the grid dynamics such as its vulnerability

to cascading failures using IEEE 300 bus system as an

example. We found that (a) the node degree distribution

and clustering characteristic differ for the three types of

buses G/L/C in a realistic grid; (b) changes in bus type

assignment in a grid may cause big differences in system

dynamics such as its vulnerability to cascading failures; and

(c) the random assignment of bus types in a random topology

power grid model should be improved and replaced with a

more accurate assignment which is consistent with what is

observed in realistic power grids.

The rest of the paper is organized as follows: Section

II presents the system model for our analysis of a power

grid network; Section III and IV examine the node degree

distribution and the clustering characteristics respectively

for different types of buses in a power grid; Section V

utilizes IEEE 300 bus system as an example to study how

the bus assignment affects the resulting grid’s electrical

characteristics in terms to cascading failure vulnerability;

and Section VI concludes the paper.

II. SYSTEM MODEL

The power network dynamics are controlled by its net-

work admittance matrix Y and by power generation distri-

bution and load settings. The generation and load settings,

given the bus type assignments in the grid, can take relatively

independent probabilistic models, and have been discussed

in the paper [16]. The network admittance matrix

Y = ATΛ−1(ll)A (1)

can be formulated with two components, i.e. the line

impedance vector zl and the line-node incidence matrix A.

For a grid network with n nodes and m transmission lines,

its line-node incidence matrix A := (Al,k)m×n, arbitrarily

oriented, is defined as: Al,i = 1; Al,j = −1, if the lth link

is from node i to node j and Al,k = 0, k �= i, j. And the

Laplacian matrix L can be obtained as L = ATA with

L(i, j) =

⎧
⎨
⎩

−1, if there exists link i− j, for j �= i
k, with k = −

∑
j �=i L(i, j), for j = i

0, otherewise,
(2)

with i, j = 1, 2, · · · , n. As indicated in [1] , the Laplacian of

a grid network fully defines its topology and all the topology

metrics can be derived from it.

[26] introduced a stochastic cascading failure model

which incorporates the statistics of the generation and loads

in a grid therefore to derive the statistics of the line flow

process. For the tractability of the problem, the DC power

flow approximation was utilized to characterize a power

grid network, which is a standard approach widely used in

optimizing flow dispatch and for assessing line overloads

[27]. Consider a power grid transmission network with n
nodes interconnected by m transmission lines, the network

flow equation can be written as follows:

P (t) = B′(t)θ(t),
F (t) = diag (yl(t))Aθ(t)

(3)

where P (t) represents the vector of injected real power,

θ(t) the phase angles, and F (t) the flows on the lines. The

matrix B′(t) is defined as B′(t) = AT diag (yl(t))A, where

yl(t) = sl(t)/xl with xl the line reactance and sl(t) the

line state; sl(t) = 0 if line l is tripped, and sl(t) = 1
otherwise; diag (yl(t)) represents a diagonal matrix with

entries of {yl(t), l = 1, 2, · · · ,m}. The vector of line

states, s(t) = [s1(t), s2(t), · · · , sm(t)]T with sl(t) ∈ {0, 1},

is defined as the network state.
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The operating condition of the grid, represented by the

real power injection P (t) = [G(t)T − L(t)T ]T , where

G(t) is the generation and L(t) is the load portion, assumes

to be a conditionally multivariate Gaussian random process,

given the network state of s(t). The probability density

function of {P (t)|s(t)} is, therefore, fully specified giving

its conditional mean and covariance, denoted as follows:

µP (t) =

[
µg(t)
−µl(t)

]
, CP (t, τ) =

[
Σgg(t, τ) Σgl(t, τ)
Σlg(t, τ) Σll(t, τ)

]
.

(4)

The time dependence is due to the fact that the random

process is intrinsically non-stationary, e.g., the generation

settings in the power grid are adjusted periodically to balance

the loads during the day. The covariance reflects the uncer-

tainty in the load/generation settings coming from multiple

sources such as the forecasting deviation, the measurement

errors, and the volatility caused by demand response and

renewable generation.

We can then compute the statistics of line flow process as

µF (t) =
√
yt(Ã

T
t )

†µP (t)

CF (t, τ) =
√
yt(Ã

T
t )

†CP (t, τ)(Ãt)
†√yt,

(5)

with Ãt =
√
ytA = USV T and

√
yt = diag{

√
yl(t)}.

III. TOPOLOGICAL CHARACTERISTICS OF G/L/C BUSES

IN A POWER GRID

The statistics of power grid topology have been studied

by many researchers, such as [15], [20], [23]. The topology

metrics studied include some basic ones, such as network

size n, the total number of links m, average nodal degree

〈k〉, average shortest path length in hops 〈l〉, and more

complex ones, such as the ratio of nodes with larger nodal

degrees than k, r{k > k}, and the Pearson coefficient [21]

and the clustering coefficient [15]. [1] also examined the

scaling property of network connectivity and recognized the

special graph spectral density of power grids. As indicated in

[1], all the topology metrics mentioned above can be derived

from the grid Laplacian L. In this section we will focus on

the average node degree, the clustering coefficient, and the

node degree distribution since these metrics closely relates

with the bus type assignment in a grid.

A. Average Node Degrees for G/L/C Grid Buses

The node degree of a bus i in a grid is the total number of

links it connects and can be obtained from the corresponding

diagonal entry of the Laplacian matrix, i.e., ki = L(i, i).
Then the average nodal degree of the grid is

〈k〉 = 1

N

∑

i

L(i, i). (6)

While the average node degree of a special type of buses

can be defined as

〈k〉t =
1

Nt

∑

i

Lt(i, i), t = G, L, or C, (7)

Table I
RATIO OF BUS TYPES IN REAL-WORLD POWER NETWORKS

(n,m) rG/L/C(%)

IEEE-30 (30,41) 20/60/20

IEEE-57 (57,78) 12/62/26

IEEE-118 (118,179) 46/46/08

IEEE-300 (300, 409) 23/55/22

NYISO (2935,6567) 33/44/23

where Nt represents the total number of t-type buses in a

grid. The linear dependence between nodal degree and the

node type can be evaluated using a correlation coefficient

defined as

ρ(t, kt) =

∑N
i=1(ti − E(t))(ki − E(k))√∑N

i=1(ti − E(t))2
√∑N

i=1(ki − E(k))2
. (8)

Table I gives the network size and the percentage ratios

of three types of buses in the IEEE model and the NYISO

systems1, from which one can see that the generation buses

(G) may consist of 10-40% of total grid; the load buses (L)

40-60%; while the connection buses (C) 10-20%. Therefore,

in a typical grid network, the generation buses has the widest

ratio range; the load buses has the highest percentage; and

the connection buses the lowest with the most narrow range

of ratios.

Table II shows the average node degrees in the IEEE

model grids, the WECC2, and the NYISO systems based on

selected metrics (6) and (7) and the correlation coefficient

between node degree and bus types ρ(t, kt). From Table

II one can clearly see the sparse connectivity of power grid

networks since the average nodal degree does not scale as the

network size increases. Instead it falls into a very restricted

range. On the other hand, if examining the average node

degree of the three type of buses in a grid separately, we see

that they can be different from each other. In the IEEE 30,

and 300 bus systems, the connection buses have the highest

nodal degree. In the IEEE 57, and 118 bus systems, the

generation buses are most densely connected. However, in

the NYISO system, the load buses have the most connected.

The last column of the table, ρ(t, kt), shows that there exist

non-trivial correlation between the node degrees and the

bus types in a typical power grid. A positive correlation

coefficient, i.e., ρ(t, kt) > 0 implies that the connection bus

tends to have higher average nodal degree; while a negative

1For the reader’s reference, the IEEE 30, 57, and 118 bus systems
represent different parts of the American Electric Power System in the
Midwestern US; the IEEE 300 bus system is synthesized from the New
England power system. The WECC is the electrical power grid of the
western United States and NYISO represents New York state bulk electricity
grid.

2The average node degrees for each type of buses in the WECC system
are not available here due to the lack of the bus type data.
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Table II
CORRELATION BETWEEN NODE DEGREE AND BUS TYPES IN

REAL-WORLD POWER NETWORKS

〈k〉 〈k〉G 〈k〉L 〈k〉C ρ(t, kt)

IEEE-30 2.73 2.00 2.61 3.83 0.4147

IEEE-57 2.74 3.86 2.54 2.67 -0.2343

IEEE-118 3.03 3.56 2.44 3.40 -0.2087

IEEE-300 2.73 1.96 2.88 3.15 0.2621

NYISO 4.47 4.57 5.01 3.33 -0.1030

WECC 2.67 - - - -

correlation coefficient ρ(t, kt) < 0 that the generation or the

load bus tends to be more densely connected.

B. Clustering Coefficient for G/L/C Grid Buses

The clustering coefficient is an important characterizing

measure to distinguish the small world topology of a power

grid network. It assesses the degree to which the nodes

in a topology tend to cluster together. A small world

network usually has a clustering coefficient significantly

higher than that of a random graph network, given the same

or comparable network size and total number of edges.

The random graph network mentioned here refers to the

network model defined by Erdös-Rényi (1959) , with n
labeled nodes connected by m edges which are chosen with

uniform randomness from the n(n− 1)/2 possible edges

[19].

The clustering coefficient of a grid is defined by Watts

and Strogatz as the average of the clustering coefficient for

each node [15]:

C =
1

N

N∑

i=1

Ci. (9)

with Ci being the node clustering coefficient as Ci =
λG(i)/τG(i), where λG(i) is the number of edges between

the neighbors of node i and τG(i) the total number of edges

that could possibly exist among the neighbors of node i. For

undirected graphs, obviously τG(i) =
1
2ki(ki − 1) given ki

as the node degree. As pointed out in [18], the clustering

coefficient for a random graph network theoretically equals

the probability of randomly selecting links from all possible

links. That is, C(R) = m
n(n−1)/2 = 〈k〉

n−1 .

Hence we can extend above definition to each type of

G/L/C buses to obtain the averaged clustering coefficient

of the corresponding category. That is, given a bus type, the

corresponding Ct is:

Ct =
1

Nt

Nt∑

i=1

Cti , t = G, L, or C. (10)

Table III shows the clustering coefficients of the IEEE

power systems, the NYISO, the WECC systems3, and the

3The clustering coefficients for each type of buses in the WECC system
are not available here due to the lack of the bus type data.

Table III
BUS TYPES AND CLUSTERING COEFFICIENTS OF REAL-WORLD POWER

NETWORKS AND RANDOM GRAPH NETWORKS

C(R) Call CG CL CC ρ(t, Ct)

IEEE-30 0.0943 0.2348 0.1944 0.2537 0.2183 0.0210

IEEE-57 0.0489 0.1222 0.1524 0.1352 0.0778 -0.1064

IEEE-118 0.0260 0.1651 0.1607 0.1969 0.0167 -0.0538

IEEE-300 0.0091 0.0856 0.1227 0.0895 0.0364 -0.1428

NYISO-2935 0.0015 0.2134 0.2693 0.2489 0.0688 -0.2382

WECC-4941 0.0005 0.0801 - - - -

random graph Networks with same network size and same

total number of links. The former is denoted as Call and

CG/L/C , and the latter as C(R). The relatively larger clus-

tering coefficient of power networks than that of a random

graph network, i.e., Call ≫ C(R) was used in [15] as an

indicator that power grids tend to assume a small-world

topology.

On the other hand, if examining the clustering coefficients

of the three types of grid buses separately, we see that they

can be very different from each other. The last column of the

table, ρ(t, Ct), shows that there exist non-trivial correlation

between the bus types and the clustering coefficient in a

typical power grid. A positive correlation coefficient, i.e.,

ρ(t, Ct) > 0 implies that the connection bus tends to

have higher average clustering coefficient; while a negative

correlation coefficient ρ(t, Ct) < 0 that the generation or

the load bus tends to be more densely clustered. It is worth

noting that except the IEEE 30 bus system, all the other

IEEE model systems and the NYISO system have CG ≫ CC

and CL ≫ CC , indicating that the generation and load buses

in a typical power grid, tend to cluster together with the rest

of the network much more tightly than the connection buses.

C. Nodal Degree Distribution for G/L/C Grid Buses

In [1] we examined the empirical distribution of nodal

degrees k = diag(L) in the available real-world power grids.

The histogram probability mass function (PMF) of node

degree is obtained as

p(k) =

∑N
i=1 1ki=k

N
(11)

Fig. 1 shows the histogram PMF in log-scale for the nodal

degrees of the NYISO system. The PMF curve approximates

a straight line in the semi-logarithm plot (i.e., shown as

log (p(k)) vs. k), implying an exponential tail analogous

to the Geometric distribution. However, it is also noticed

that there exist a range of small degrees, that is, when

k ≤ 3 , that the empirical PMF curve clearly deviates from

that of a Geometric distribution. Although many researchers

chose to use an exponential (or Geometric) distribution for

power grid node degrees [22], we have provided evidence

that the nodal degrees in a power grid can be better fitted
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Figure 1. Empirical PDF of Nodal Degrees in Real-world Power Grids
(NYISO)

by using a mixture distribution which comes from the sum

of a truncated Geometric random variable and an irregular

Discrete random variable. We also proposed a method to

estimate the distribution parameters by analyzing the poles

and zeros of the average probability generation function

(PGF).

The PGF of a random variable X is defined as GX(z) =∑
k Pr(x=k)z

k. Given a sample data set of X with the size

of N , its PGF can also be estimated from the mean of zX

because E(zX) = 1
N

∑
k n(x=k)z

k ≈ ∑
k Pr(x=k)z

k. where

n(x=k) denotes the total number of the data items equaling to

k. Due to limN→∞
n(x=k)

N = Pr(x=k), we can have E(zX) ≈
GX(z) with a large enough data size.

If a random variable can be expressed as a sum of two

independent random variables, its probability mass function

(PMF) is then the convolution of the PMFs of the compo-

nents variables, and its probability generation function (PGF)

is the product of that of the component variables.

The examination of PGFs concluded that the node degree

distribution in power grids can be very well approximated

by a sum of two independent random variables, that is,

K = G +D, (12)

where G is a truncated Geometric with the threshold of kmax

Pr(G=k) = (1−p)kp
∑kmax

i=0 (1−p)ip

= (1−p)kp
1−(1−p)kmax+1 , k = 0, 1, 2, · · · , kmax

(13)

with the PGF as

GG(z) =
∑kmax

k=0 (1−p)kpzk

1−(1−p)kmax+1

=
p(1−((1−p)z)kmax+1)

(1−(1−p)kmax+1)(1−(1−p)z)

(14)

And D is an irregular Discrete {p1, p2, · · · , pkt
},

Pr(D=k) = pk, k = 1, 2, · · · , kt (15)

with the PGF as

GD(z) = p1z + p2z
2 + p3z

3 + · · ·+ pkt
zkt (16)

Table IV
ESTIMATE COEFFICIENTS OF THE TRUNCATED GEOMETRIC AND THE

IRREGULAR DISCRETE FOR THE NODE DEGREES IN THE NYISO
SYSTEM

node groups max(k) p kmax kt {p1, p2, · · · , pkt
}

All 37 0.2269 34 3 0.4875, 0.2700, 0.2425

Gen 37 0.1863 36 1 1.000

Load 29 0.2423 26 3 0.0455, 0.4675, 0.4870

Conn 21 0.4006 18 3 0.0393, 0.4442, 0.5165

Therefore the PMF of K is

Pr(K=k) = Pr(G=k) ⊗ Pr(D=k) (17)

And the PGF of K can be written as

GK(z) =
p
(
1− ((1− p)z)

kmax+1
)∑kt

i=1 piz
i

(1− (1− p)kmax+1) (1− (1− p)z)
(18)

The equation (18) indicates that the PGF GK(z) has kmax

zeros evenly distributed around a circle of radius of 1
1−p

which are introduced by the truncation of the Geometric

G (because the zero at 1
1−p has been neutralized by the

denominator (1− (1− p)z) and has kt zeros introduced by

the irregular Discrete D with {p1, p2, · · · , pkt
}.

Fig. 2 below show the contour plots of PGF of node

degrees for different types of buses in the NYISO system.

From the contour plots one can easily locate the zeros in

PGF, and further determine the coefficients of corresponding

distribution functions. The estimated coefficients for all the

buses and each type of buses in the NYISO systems are

listed in the Table IV. Fig. 3 compares the probability mass

function (PMF) with estimate coefficients and the empirical

PMF of the NYISO system and shows that the former

matches the latter with quite good approximation; and the

G/L/C types of buses can be characterized with different

PMFs for their node degrees respectively.

Some interesting discoveries include: (a) Clearly each

plot in Fig. 2 contains evenly distributed zeros around a

circle, which indicate a truncated Geometric component; (b)

Besides the zeros around the circle, most contour plots also

have a small number of off-circle zeros, which come from

an embedding irregular Discrete component; (c) The contour

plot for each group of nodes has zeros with similar pattern

but different positions. This implies that each group of node

degrees has similar distribution functions but with different

coefficients. Therefore it is necessary and reasonable to

characterize the node degrees distribution according to the

bus types. Otherwise if the node degrees aggregate into

one single group, just as in Fig. 2(a), some important

characteristics of a specific type of node degrees would be

concealed (e.g., comparing (a) and (b)-(d) in Fig. 2).

From the topology analysis for G/L/C grid buses based

on the average node degree, the clustering coefficient, and
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Figure 2. The Contour Plot of E(zX) of Node Degrees for Different
Groups of Buses in the NYISO system: (a) All buses; (b) Gen buses; (c)
Load buses; (d) Connection buses; the zeros are marked by red ‘+’s.

the node degree distribution, we can see that these metrics

closely depend on and change with the bus type assignment

in a grid. For different type of G/L/C buses there will

be different topology characteristics. In other words, the

bus type assignment in a typical power grid is not simply

uniform. Therefor the random topology power grid model

should avoid to use random bus type assignment in its

topology. Otherwise the generated test cases may contains

unrealistic settings that affect the grid dynamics and lead to

misleading results.

IV. IMPACTS OF BUS TYPE ASSIGNMENTS ON GRID

VULNERABILITY

In this section we will use the stochastic cascading failure

model introduced in [26] to examine how the bus type

assignments may affect the grid’s vulnerability to cascading

failures.

With the derived flow statistics from (5), one can then

approximate the dynamics of the line state therefore the grid

state accordingly using a Markovian transition model. A line

is considered as overloaded if the power flow through it

exceeds the line limit determined by its thermal capacity

or static/dynamic stability conditions, i.e., which is called

the line’s overload threshold, where Fmax
l . Therefore the

normalized overload distance for a line flow can be written

as al =
(
Fmax
l − µFl(t)

)
/σFl(t)

with σFl
=

√
CFll

(t, 0).
And its overload probability can be approximated as ρl(t) ≈
Q(al).

The persistent overload condition may cause a line to trip

shortly, consequently, a transition in the state s(t). Fig.4

illustrates a line flow process for which two kinds of sojourn

intervals can be defined: the overload intervals (when the
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Figure 3. Comparing the Empirical and Fitting PMF of Node Degrees in
NYISO: (a) Gen buses; (b) Load buses; (c) Connection buses

flow magnitude stays above its threshold: |Fl(t)| ≥ Fmax
l ),

and the normal-load intervals (when |Fl(t)| ≤ Fmax
l ),

which are associated with an overload and normal-load

line-tripping rate respectively, denoted as λ∗
l and λ0

l . Ob-

viously λ∗
l ≪ λ0

l . Assuming that Fl(t) is Gaussian and

differentiable, one can compute the average level crossing

rate (i.e. the expected number of crossings of the threshold

Fmax
l in either direction) [28] as γl = W

π e−a2
l /2, where

W=

√
−R′′

Fl
(0)/RFl

(0) is the equivalent bandwidth.
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Figure 4. The flow process and the line state transition

The probabilistic distribution of crossing intervals and line

states can then be derived by using the Rice’s results on

Gaussian random process [29] and compute the expected

safety time for each line to stay connected given current

network topology and operating state. More details of the

derivation can be found in [26]. Given the overload prob-

ability ρl of the l-th line, the level crossing density γl at

Fmax
l , and the line tripping rates λ∗

l for an overload line and

λ0
l caused by random contingencies, the expected number

of crossings after which the lth line finally gets tripped is

κ̄l = [(1 + βl)− (βl − αl)ρl] /(1−αlβl), and the expected

life-time of the line is:

Tl = (κ̄l − 1)/γl + E{∆tl}, (19)

where E{∆tl} is the mean duration of the last in-

terval E{∆tl} =
[
∆T ∗

l +∆T 0
l

]
/(1 − αlβl), with

αl = E
{
p
{
sl
(
tdl (i)

)
= 1

}}
, βl = E {p {sl (tul (i)) = 1}},

∆T ∗
l = (1 − αl) [βl + (1− βl)ρl] /λ

∗
l and ∆T 0

l = (1 −
βl) [1− (1− αl)ρl] /λ

0
l . Therefore, given the statistical set-

tings of a grid, one can then estimate of the expected life-

time of all the lines and evaluate the grid vulnerability to

the arrival of possible cascading failures.

Here we will use the IEEE 300 bus system as an example

to investigated the impacts of different bus type assignments

on the grid vulnerability to cascading failures. Keeping

unchanged the ratios of G/L/C grids buses and the corre-

sponding statistics of the generation and load settings, we

apply different random bus type assignments to the original

grid topology. Then we examine and compare the expected

life-time Tl of each line in the new grid system and the

original IEEE 300 bus system. The simulation parameters

are given as follows. The initial operating equilibrium and

conditions are taken and derived from the power flow

solution of the system data from [3]. Taking the mean of

P (0) as µP (0) = [G(0)T ,−L(0)T ]T , we set the standard

deviation of the loads as σL = 0.07|L(0)|, but ignore the

variance in G. For simplicity, we assume that the loads and

generation are statistically independent of one other. The

line overload thresholds are set as Fmax = 1.20|F (0)|.
Here we take F (0) as the original flow distribution under

normal operating conditions and assume that the line capac-

ity allows a 20% load increase. The overload and normal-

load line tripping rates are set as λ∗ = 1.92 · 10−2Hz and

λ0 = 7.70 · 10−11Hz respectively. Analysis on the load

record from realistic power grids [30] has shown that the

load process can be approximated as a low-pass Gaussian

process with an equivalent bandwidth of W ≈ 10−5Hz.

Since the flow process in a grid can be seen as a linear

projection from the load process, we can apply the equivalent

bandwidth W to the flow processes in the grid. Fig. 5

shows the comparison results of the first 60 most critical

lines with shortest expected life-time. The blue solid line

plots the results of the original grid of IEEE 300 bus

system. The green and purple dashed lines represent the

Tl results obtained from two test cases of IEEE 300 bus

system with random bus type assignments. The red solid

line with “x” marks is the Tl averaged from the results of

10 random assignment cases. From the figure we can see that

given the same topology and generation and load statistical

settings, the test cases with random bus type assignments

tend to have larger expected life time than that of the

realistic grid settings. In some cases the increase of the

expected life-time can be up to 150% of the realistic Tl.
In other words, if we utilize random bus type assignment

in our random topology power grid model, i.e. RT-nested-

smallworld, although the topology of the generated test cases

is consistent and comparable to that of a real-world grid,

the inappropriate bus type assignment may still possibly

cause deviation in the grid settings therefore give misleading

results in the following evaluation and analysis.

V. CONCLUSION

In this paper we examined the correlation between the

three bus types of G/L/C and some network topology metrics

such as the average node degree, the clustering coefficient

and the node degree distribution. We also investigated the

impacts of different bus type assignments on the grid vul-

nerability to cascading failures using IEEE 300 bus system

as an example. It is found that the node degree distribution

and clustering characteristic are different for different type

of buses (G/L/C) in a realistic grid; the changes in bus type

assignment in a grid may cause big differences in system

dynamics such as the grid vulnerability to cascading failures.

In other words, if we utilize random bus type assignment

in our random topology power grid model, i.e. RT-nested-
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Figure 5. Safety Time of Grid Lines of IEEE 300 Bus System: Original
vs Random Bus Type Assignments

smallworld, although the topology of the generated test cases

is consistent and comparable to that of a real-world grid,

the inappropriate bus type assignment may still possibly

cause deviation in the grid settings therefore give misleading

results in the following evaluation and analysis.Therefore the

random assignment of bus types in a random topology power

grid model should be improved by using a more accurate

assignment which is consistent with that of realistic grids.
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