ON C-BOCHNER CURVATURE TENSOR OF A CONTACT METRIC MANIFOLD

JEONG-SIK KIM, MUKUT MANI TRIPATHI, AND JAEDONG CHOI

ABSTRACT. We prove that a (κ,μ) -manifold with vanishing E-Bochner curvature tensor is a Sasakian manifold. Several interesting corollaries of this result are drawn. Non-Sasakian (κ,μ) -manifolds with C-Bochner curvature tensor B satisfying $B(\xi,X) \cdot S = 0$, where S is the Ricci tensor, are classified. $N(\kappa)$ -contact metric manifolds M^{2n+1} , satisfying $B(\xi,X) \cdot R = 0$ or $B(\xi,X) \cdot B = 0$ are classified and studied.

1. Introduction

In [4], Blair, Koufogiorgos and Papantoniou introduced the class of contact metric manifolds M with contact metric structures (φ, ξ, η, g) , in which the curvature tensor R satisfies the equation

$$R(X,Y)\xi = (\kappa I + \mu h)R_0(X,Y)\xi, \quad X,Y \in TM,$$

where $(\kappa, \mu) \in \mathbb{R}^2$, 2h is the Lie derivative of φ in the direction ξ and R_0 is given by

$$R_0(X,Y)Z = g(Y,Z)X - g(X,Z)Y, \quad X,Y,Z \in TM.$$

A contact Riemannian manifold belonging to this class is called a (κ, μ) -manifold. Characteristic examples of non-Sasakian (κ, μ) -manifolds are the tangent sphere bundles of Riemannian manifolds of constant sectional curvature not equal to one.

On the other hand, S. Bochner introduced a Kähler analogue of the Weyl conformal curvature tensor by purely formal considerations, which is now well known as the Bochner curvature tensor [5]. A geometric

Received April 12, 2004. Revised March 29, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 53C50, 53B30.

Key words and phrases: contact metric manifold, (κ, μ) -manifold, $N(\kappa)$ -contact metric manifold, Sasakian manifold, C-Bochner curvature tensor, E-Bochner curvature tensor, η -Einstein manifold, Einstein manifold.

This work was supported by Korea Science & Engineering Foundation Grant (R05-2004-000-11588-0).

meaning of the Bochner curvature tensor is given by D. Blair in [1]. By using the Boothby-Wang's fibration [6], M. Matsumoto and G. Chūman constructed C-Bochner curvature tensor [10] from the Bochner curvature tensor. In [7], H. Endo defined E-Bochner curvature tensor as an extended C-Bochner curvature tensor and showed that a K-contact manifold with vanishing E-Bochner curvature tensor is a Sasakian manifold.

A K-contact manifold is always a contact metric manifold, but the converse is not true in general. Thus, it is worthwhile to study C-Bochner curvature tensor and E-Bochner curvature tensor in contact metric manifolds. Extending the result of H. Endo[7] to a (κ, μ) -manifold we prove the following

THEOREM 1.1. A (κ, μ) -manifold with vanishing E-Bochner curvature tensor is a Sasakian manifold.

Then, we draw several corollaries of this result to $N(\kappa)$ -contact metric manifolds [15], the unit tangent sphere bundles [4], $N(\kappa)$ -contact space forms [8] and (κ, μ) -space forms [9].

In [12] and [14], contact metric manifolds satisfying $R(X,\xi) \cdot S = 0$ are studied. Motivated by these studies, we classify non-Sasakian (κ,μ) -manifolds with C-Bochner curvature tensor B satisfying $B(\xi,X) \cdot S = 0$. In fact, we prove the following

THEOREM 1.2. Let M^{2n+1} be a non-Sasakian (κ, μ) -manifold. If the C-Bochner curvature tensor B satisfies $B(\xi, X) \cdot S = 0$, then we have one of the following:

- (i) M^{2n+1} is flat and 3-dimensional;
- (ii) M^{2n+1} is locally isometric to $E^{n+1}(0) \times S^n(4)$;
- (iii) M^{2n+1} is an η -Einstein manifold;
- (iv) M^{2n+1} is a 3-dimensional Einstein manifold.

In a recent paper [13], $N(\kappa)$ -contact metric manifolds satisfying $R(X, Y) \cdot B = 0$ are studied. Hence, we classify $N(\kappa)$ -contact metric manifolds satisfying $B(\xi, X) \cdot R = 0$. In fact, we prove the following

THEOREM 1.3. Let M^{2n+1} (n > 1) be an $N(\kappa)$ -contact metric manifold. If the C-Bochner curvature tensor B satisfies $B(\xi, X) \cdot R = 0$, then either M^{2n+1} is a Sasakian manifold or M^{2n+1} is locally isometric to the sphere $S^{2n+1}(1)$.

In the last, motivated by studies of contact metric manifolds satisfying $R(X,\xi)\cdot R=0$ ([12, 14]), we consider $N(\kappa)$ -contact metric manifolds satisfying $B(\xi,X)\cdot B=0$. In fact, we prove the following

THEOREM 1.4. Let M^{2n+1} be an $N(\kappa)$ -contact metric manifold. Then the C-Bochner curvature tensor B satisfies $B(\xi, X) \cdot B = 0$ if and only if M^{2n+1} is a Sasakian manifold.

2. Contact metric manifolds

A (2n+1)-dimensional differentiable manifold M is called an almost contact manifold if either its structural group can be reduced to $U(n) \times 1$ or equivalently, there is an almost contact structure (φ, ξ, η) consisting of a (1,1) tensor field φ , a vector field ξ , and a 1-form η satisfying

(1)
$$\varphi^2 = -I + \eta \otimes \xi$$
, and (one of) $\eta(\xi) = 1$, $\varphi \xi = 0$, $\eta \circ \varphi = 0$.

An almost contact structure is said to be *normal* if the induced almost complex structure J on the product manifold $M \times \mathbb{R}$ defined by

(2)
$$J\left(X, \lambda \frac{d}{dt}\right) = \left(\varphi X - \lambda \xi, \eta(X) \frac{d}{dt}\right)$$

is integrable, where X is tangent to M, t the coordinate of \mathbb{R} and λ a smooth function on $M \times \mathbb{R}$. The condition for being normal is equivalent to vanishing of the torsion tensor $[\varphi, \varphi] + 2d\eta \otimes \xi$, where $[\varphi, \varphi]$ is the Nijenhuis tensor of φ . Let g be a compatible Riemannian metric with (φ, ξ, η) , that is,

(3)
$$g(X,Y) = g(\varphi X, \varphi Y) + \eta(X)\eta(Y)$$

or equivalently,

(4)
$$g(X, \varphi Y) = -g(\varphi X, Y)$$
 and $g(X, \xi) = \eta(X)$

for all $X, Y \in TM$. Then, M becomes an almost contact metric manifold equipped with an almost contact metric structure (φ, ξ, η, g) .

An almost contact metric structure becomes a contact metric structure if

(5)
$$g\left(X,\varphi Y\right)=d\eta\left(X,Y\right),\quad X,Y\in TM.$$

In a contact metric manifold, the (1,1)-tensor field h is symmetric and satisfies

(6)
$$h\xi = 0$$
, $h\varphi + \varphi h = 0$, $\nabla \xi = -\varphi - \varphi h$, $\operatorname{trace}(h) = \operatorname{trace}(\varphi h) = 0$, where ∇ is the Levi-Civita connection.

A normal contact metric manifold is a Sasakian manifold. An almost contact metric manifold is Sasakian if and only if

(7)
$$\nabla_X \varphi = R_0(\xi, X), \quad X \in TM,$$

while a contact metric manifold M is Sasakian if and only if

(8)
$$R(X,Y)\xi = R_0(X,Y)\xi, \quad X,Y \in TM.$$

A contact metric manifold is called a K-contact manifold if ξ is a Killing vector field. An almost contact metric manifold is K-contact if and only if $\nabla \xi = -\varphi$. A K-contact manifold is a contact metric manifold, while converse is true if h=0. A Sasakian manifold is always a K-contact manifold. A 3-dimensional K-contact manifold is a Sasakian manifold. Thus, a 3-dimensional contact metric manifold is Sasakian if and only if h=0.

The (κ,μ) -nullity distribution $N(\kappa,\mu)$ ([4, 12]) of a contact metric manifold M is defined by

$$N(\kappa,\mu): p \to N_p(\kappa,\mu)$$

$$= \{ U \in T_pM \mid R(X,Y)U = (\kappa I + \mu h)R_0(X,Y)U \}$$

for all $X,Y \in TM$, where $(\kappa,\mu) \in \mathbb{R}^2$. A contact metric manifold with $\xi \in N(\kappa,\mu)$ is called a (κ,μ) -manifold. For a (κ,μ) -manifold, it follows that $h^2 = (\kappa - 1) \varphi^2$. This class contains Sasakian manifolds for $\kappa = 1$ and h = 0. In fact, for a (κ,μ) -manifold, the conditions of being Sasakian manifold, K-contact manifold, $\kappa = 1$ and k = 0 are all equivalent. If $\mu = 0$, the (κ,μ) -nullity distribution $N(\kappa,\mu)$ is reduced to the κ -nullity distribution $N(\kappa)$ ([15]). If $\xi \in N(\kappa)$, then we call a contact metric manifold M an $N(\kappa)$ -contact metric manifold. For more details we refer to [3].

3. (κ, μ) -manifolds with vanishing E-Bochner curvature tensor

In [10], Matsumoto and Chūman defined the C-Bochner curvature tensor in an almost contact metric manifold as follows:
(9)

$$\begin{split} B\left(X,Y\right) = & R\left(X,Y\right) - \frac{m-4}{2n+4} R_{0}\left(Y,X\right) + \frac{1}{2n+4} \bigg\{ R_{0}\left(QY,X\right) \\ & - R_{0}\left(QX,Y\right) + R_{0}\left(Q\varphi Y,\varphi X\right) - R_{0}\left(Q\varphi X,\varphi Y\right) \\ & + 2g\left(Q\varphi X,Y\right)\varphi + 2g\left(\varphi X,Y\right)Q\varphi + \eta\left(Y\right)R_{0}\left(QX,\xi\right) \\ & + \eta\left(X\right)R_{0}\left(\xi,QY\right) \bigg\} - \frac{m+2n}{2n+4} \big\{ R_{0}\left(\varphi Y,\varphi X\right) \\ & + 2g\left(\varphi X,Y\right)\varphi \big\} + \frac{m}{2n+4} \left\{ \eta\left(Y\right)R_{0}\left(\xi,X\right) + \eta\left(X\right)R_{0}\left(Y,\xi\right) \right\} \end{split}$$

where Q is the Ricci operator, r is the scalar curvature and $m = \frac{2n+r}{2n+2}$.

For a (κ, μ) -manifold M^{2n+1} , we have

(10)
$$R(X,Y)\xi = (\kappa I + \mu h) R_0(X,Y)\xi,$$

which is equivalent to

(11)
$$R(\xi, X) = R_0(\xi, (\kappa I + \mu h) X) = -R(X, \xi).$$

In particular, we get

(12)
$$R(\xi, X) \xi = \kappa(\eta(X)\xi - X) - \mu h X = -R(X, \xi)\xi.$$

From (9), (10), and (11), it follows that

(13)
$$B(X,Y)\xi = \left(\frac{2(\kappa - 1)}{n + 2}I + \mu h\right)R_0(X,Y)\xi,$$

(14)
$$B(\xi,X) = R_0\left(\xi, \left(\frac{2(\kappa-1)}{n+2}I + \mu h\right)X\right) = -B(X,\xi).$$

Consequently, we have

(15)
$$B(\xi, X) \xi = \frac{2(\kappa - 1)}{n + 2} (\eta(X) \xi - X) - \mu h X = -B(X, \xi) \xi,$$

(16)
$$\eta \left(B\left(X,Y\right) \xi \right) =0,$$

(17)
$$\eta\left(B\left(\xi,X\right)Y\right) = \frac{2\left(\kappa-1\right)}{n+2}\left(g\left(X,Y\right) - \eta(X)\eta(Y)\right) + \mu g\left(hX,Y\right).$$

In [7], H. Endo extended the concept of C-Bochner curvature tensor to E-Bochner curvature tensor as follows:

(18)
$$B^{e}(X,Y)Z = B(X,Y)Z - \eta(X)B(\xi,Y)Z - \eta(Y)B(X,\xi)Z - \eta(Z)B(X,Y)\xi.$$

Then, he showed that a K-contact manifold with vanishing E-Bochner curvature tensor is a Sasakian manifold. Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Let M^{2n+1} be a (κ, μ) -manifold. If E-Bochner curvature tensor of M^{2n+1} vanishes, then from (15) and (18), we have

(19)
$$0 = B^{e}(X,\xi)\xi = -B(X,\xi)\xi = \frac{2(\kappa - 1)}{n+2}(\eta(X)\xi - X) - \mu hX,$$

which, in view of $h^2=\left(\kappa-1\right)\varphi^2$, implies that

(20)
$$h^2 = \frac{(n+2)\,\mu}{2}h.$$

Taking the trace of (20), we obtain

(21)
$$0 = \operatorname{trace}(h^2) = 2n(1 - \kappa).$$

From (21), we have $\kappa = 1$. Thus, M^{2n+1} becomes Sasakian.

COROLLARY 3.1. An $N(\kappa)$ -contact metric manifold with vanishing E-Bochner curvature tensor is a Sasakian manifold.

The unit tangent sphere bundle T_1M equipped with the standard contact metric structure is a (κ, μ) -manifold if and only if the base manifold M is of constant curvature c with $\kappa = c(2-c)$ and $\mu = -2c$ ([4]). In case of $c \neq 1$, the unit tangent sphere bundle is non-Sasakian [16]. We denote by $T_1M(c)$ the unit tangent sphere bundle of a space of constant curvature c with standard contact metric structure. Then, applying Theorem 1.1 to $T_1M(c)$, we have

COROLLARY 3.2. If $T_1M(c)$ is of vanishing E-Bochner curvature tensor, then c=1.

In an almost contact metric manifold, if X is a unit vector which is orthogonal to ξ , we say that X and φX span a φ -section. If the sectional curvature c(X) of all φ -sections is independent of X, we say that M is of pointwise constant φ -sectional curvature. If an $N(\kappa)$ -contact metric manifold M is of pointwise constant φ -sectional curvature c, then we say it an $N(\kappa)$ -contact space form M(c). The curvature tensor of M(c) is given by [8].

$$4R(X,Y)Z = (c+3) \{g(Y,Z) X - g(X,Z) Y\}$$

$$+ (c-1) \{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X$$

$$+ \eta(Y)g(X,Z) \xi - \eta(X)g(Y,Z) \xi$$

$$+ g(\varphi Y, Z)\varphi X - g(\varphi X, Z)\varphi Y - 2(\varphi X, Y)\varphi Z\}$$

$$+ 4(\kappa - 1) \{\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y$$

$$+ \eta(X)g(Y,Z) \xi - \eta(Y)g(X,Z) \xi\}$$

$$+ 4\{g(hY,Z) X - g(hX,Z) Y$$

$$+ g(Y,Z) hX - g(X,Z) hY$$

$$+ \eta(X)\eta(Z)hY - \eta(Y)\eta(Z)hX$$

$$+ \eta(Y)g(hX,Z) \xi - \eta(X)g(hY,Z) \xi\}$$

$$+ 2\{g(hY,Z) hX - g(hX,Z) hY$$

$$+ g(\varphi hX,Z) \varphi hY - g(\varphi hY,Z) \varphi hX\}$$

for all $X, Y, Z \in TM$, where c is a constant on M if dim (M) > 3.

Now, applying Theorem 1.1 to an $N(\kappa)$ -contact space form, we are able to state the following

COROLLARY 3.3. An $N(\kappa)$ -contact space form with vanishing E-Bochner curvature tensor is a Sasakian space form.

Let M be a (2n+1)-dimensional (κ,μ) -manifold (n>1). If M has constant φ -sectional curvature c then it is called a (κ,μ) -space form and is denoted by M(c). The curvature tensor of M(c) is given by [9]

$$R(X,Y)Z = \frac{c+3}{4} \{g(Y,Z) X - g(X,Z) Y\}$$

$$+ \frac{c-1}{4} \{2(X,\varphi Y) \varphi Z + g(X,\varphi Z) \varphi Y - g(Y,\varphi Z) \varphi X\}$$

$$+ \frac{c+3-4\kappa}{4} \{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X$$

$$+ g(X,Z) \eta(Y)\xi - g(Y,Z) \eta(X)\xi\}$$

$$+ \frac{1}{2} \{g(hY,Z) hX - g(hX,Z) hY$$

$$+ g(\varphi hX,Z) \varphi hY - g(\varphi hY,Z) \varphi hX\}$$

$$+ g(\varphi Y,\varphi Z) hX - g(\varphi X,\varphi Z) hY$$

$$+ g(hX,Z) \varphi^{2}Y - g(hY,Z) \varphi^{2}X$$

$$+ \mu \{\eta(Y)\eta(Z)hX - \eta(X)\eta(Z)hY$$

$$+ g(hY,Z) \eta(X)\xi - g(hX,Z) \eta(Y)\xi\}$$

for all $X, Y, Z \in TM$, where $c + 2\kappa = -1 = \kappa - \mu$ if $\kappa < 1$.

Now, applying Theorem 1.1 to a (κ, μ) -contact space form, we are able to state the following

COROLLARY 3.4. $A(\kappa, \mu)$ -contact space form with vanishing E-Bochner curvature tensor is a Sasakian space form.

Remark 3.5. Theorem 1.1, Corollary 3.1, Corollary 3.2, Corollary 3.3 and Corollary 3.4 are valid for vanishing of C-Bochner curvature tensor also.

4. (κ, μ) -manifolds satisfying $B(\xi, X) \cdot S = 0$

Before proving Theorem 1.2, we give some results and a brief introduction to η -Einstein (κ, μ) -manifold.

LEMMA 4.1. [4] In a non-Sasakian (κ, μ) -manifold M^{2n+1} , the Ricci operator Q is given by

(24)
$$Q = (2(n-1) - n\mu)I + (2(n-1) + \mu)h + (2(1-n) + n(2\kappa + \mu))\eta \otimes \xi.$$

Consequently, the Ricci tensor S is given by

(25)
$$S(X,Y) = (2(n-1) - n\mu) g(X,Y) + (2(n-1) + \mu) g(hX,Y) + (2(1-n) + n(2\kappa + \mu)) \eta(X) \eta(Y).$$

We also recall the following theorem due to D. Blair.

THEOREM 4.2. [2, 3] A contact metric manifold M^{2n+1} satisfying $R(X,Y)\xi=0$ is locally isometric to $E^{n+1}(0)\times S^n(4)$ for n>1 and flat for n=1.

THEOREM 4.3. [15] If an N(k)-contact metric manifold of dimension ≥ 5 is Einstein, then it is necessarily Sasakian.

We also need the following definition.

DEFINITION 4.4. [11] A contact metric manifold M is said to be η Einstein if the Ricci operator Q satisfies

$$Q = aI + b\eta \otimes \xi,$$

where a and b are smooth functions on the manifold. In particular, if b = 0, then M is an Einstein manifold.

Now, we prove Theorem 1.2.

Proof of Theorem 1.2. Let M^{2n+1} be a non-Sasakian (κ, μ) -manifold. If $\kappa = 0 = \mu$, then from (10), we have $R(X,Y)\xi = 0$, which in view of Theorem 4.2 implies that M^{2n+1} satisfies one of the statements (i) and (ii). Now, we assume that κ and μ are not simultaneously zero. From (25), we have

(26)
$$S(hX,Y) = (2(n-1) - n\mu) g(hX,Y) - (\kappa - 1) (2(n-1) + \mu) g(X,Y) + (\kappa - 1) (2(n-1) + \mu) \eta(X) \eta(Y),$$

where we have used $\eta \circ h = 0$, $h^2 = (\kappa - 1) \varphi^2$ and (3). The condition $B(\xi, X) \cdot S = 0$ gives

(27)
$$S(B(\xi, X)Y, \xi) + S(Y, B(\xi, X)\xi) = 0.$$

In view of $Q\xi = 2n\kappa\xi$, we get

(28)
$$S(X,\xi) = 2n\kappa\eta(X),$$

which implies that

(29)
$$S(B(\xi, X)Y, \xi) = 2n\kappa\eta (B(\xi, X)Y),$$

Using (17) in the above equation, we get

(30)
$$S\left(B\left(\xi,X\right)Y,\xi\right) = 2n\kappa\mu g\left(hX,Y\right) + \frac{4n\kappa\left(\kappa-1\right)}{n+2}\left(g\left(X,Y\right) - \eta(X)\eta(Y)\right).$$

In view of (15) and (28), we have

(31)
$$S\left(B\left(\xi,X\right)\xi,Y\right) = \frac{4n\kappa\left(\kappa-1\right)}{n+2}\eta\left(X\right)\eta\left(Y\right) - \frac{2\left(\kappa-1\right)}{n+2}S\left(X,Y\right) - \mu S\left(hX,Y\right).$$

From (27), (30), and (31), we have

(32)
$$\frac{2(\kappa-1)}{n+2}S(X,Y) = \frac{4n\kappa(\kappa-1)}{n+2}g(X,Y) + 2n\mu g(hX,Y) - \mu S(hX,Y).$$

Finally, from (25), (26), and (32), we have

(33)
$$S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

where

$$a = \frac{\frac{(\kappa-1)(4n\kappa + (n+2)(2(n-1) + \mu)\mu)}{n+2} - \frac{\mu(2+n\mu)(2(n-1) - n\mu)}{2\,(n-1) + \mu}}{\frac{2\,(\kappa-1)}{n+2} - \frac{\mu(2+n\mu)}{2\,(n-1) + \mu}} \ ,$$

and

(34)
$$b = -\frac{\frac{\mu((\kappa - 1)(2(n - 1) + \mu)^2 + (2 + n\mu)(n(2\kappa + \mu) - 2(n - 1)))}{2(n - 1) + \mu}}{\frac{2(\kappa - 1)}{n + 2} - \frac{\mu(2 + n\mu)}{2(n - 1) + \mu}}$$

Thus, if $\mu \neq 0$, then M^{2n+1} is an η -Einstein manifold, which is the statement (iii). If $\mu = 0$ and $\kappa \neq 0$, then in view of (34), we get b = 0 in (33); thus M^{2n+1} becomes an Einstein manifold. Moreover, if n > 1, in view of Theorem 4.3, we conclude that M^{2n+1} is Sasakian, which is a contradiction. Therefore we have the statement (iv). This completes the proof.

In view of Theorem 1.2, we are able to state the following two corolaries.

COROLLARY 4.5. Let M^{2n+1} be a non-Sasakian $N(\kappa)$ -contact metric manifold of dimension ≥ 5 . If the C-Bochner curvature tensor B satisfies $B(\xi,X)\cdot S=0$, then M^{2n+1} is locally isometric to $E^{n+1}(0)\times S^n(4)$.

COROLLARY 4.6. Let M^{2n+1} be a non-Sasakian $N(\kappa)$ -contact metric manifold with n > 1 and $\kappa \neq 0$. Then, the C-Bochner curvature tensor B never satisfies $B(\xi, X) \cdot S = 0$.

5. $N(\kappa)$ -contact metric manifolds satisfying $B(\xi, X) \cdot R = 0$

In an $N(\kappa)$ -contact metric manifold M^{2n+1} , we have

(35)
$$R(X,Y)\xi = \kappa R_0(X,Y)\xi,$$

(36)
$$R(\xi, X) = \kappa R_0(\xi, X) = -R(X, \xi).$$

Consequently,

(37)
$$B(X,Y)\xi = \frac{2(\kappa - 1)}{n+2}R_0(X,Y)\xi,$$

(38)
$$B(\xi, X) = \frac{2(\kappa - 1)}{n + 2} R_0(\xi, X) = -B(X, \xi).$$

Proof of Theorem 1.3. The condition $B(\xi, X) \cdot R = 0$ gives $0 = [B(\xi, X), R(Y, Z)] \xi - R(B(\xi, X)Y, Z) \xi - R(Y, B(\xi, X)Z) \xi,$ which in view of (38) provides

$$0 = \frac{2(\kappa - 1)}{n + 2} \{ g(X, R(Y, Z)\xi) \xi - \eta(R(Y, Z)\xi) X - g(X, Y) R(\xi, Z) \xi + \eta(Y) R(X, Z) \xi - g(X, Z) R(Y, \xi) \xi + \eta(Z) R(Y, X) \xi - \eta(X) R(Y, Z) \xi + R(Y, Z) X \}$$

Using (36), we get

$$\frac{2(\kappa-1)}{n+2}\left(R\left(Y,Z\right)-\kappa R_0(Y,Z)\right)=0.$$

Therefore, either $\kappa = 1$ or

(39)
$$R(Y,Z)X = \kappa \left(g(X,Z)Y - g(X,Y)Z\right).$$

It is well known that, except for the flat 3-dimensional case, a contact metric manifold of constant curvature is Sasakian and of constant curvature +1. Therefore, in view of (39), M is locally isometric to the sphere $S^{2n+1}(1)$. Thus, the proof is complete.

Remark 5.1. If the $N(\kappa)$ -contact metric manifold is assumed to be complete and simply connected, then in the Theorem 1.3, local isometry is replaced by global isometry.

6. $N(\kappa)$ -contact metric manifolds satisfying $B(\xi, X) \cdot B = 0$

This section is devoted to the proof of Theorem 1.4.

Proof of Theorem 1.4. The condition $B(\xi, X) \cdot B = 0$ gives

$$0 = [B(\xi, X), B(Y, Z)] \xi - B(B(\xi, X) Y, Z) \xi - B(Y, B(\xi, X) Z) \xi,$$

which in view of (38) provides

$$0 = \frac{2(\kappa - 1)}{n + 2} \{ g(X, B(Y, Z)\xi) \xi - \eta(B(Y, Z)\xi) X - g(X, Y) B(\xi, Z) \xi + \eta(Y) B(X, Z)\xi - g(X, Z) B(Y, \xi)\xi + \eta(Z) B(Y, X) \xi - \eta(X) B(Y, Z)\xi + B(Y, Z)X \}.$$

Using (37), we get

$$\frac{2(\kappa-1)}{n+2}\left(R\left(Y,Z\right) - \frac{2(\kappa-1)}{(n+2)}R_0(Y,Z)\right) = 0.$$

Therefore, either $\kappa = 1$ or

$$B(Y,Z) X = \frac{2(\kappa - 1)}{(n+2)} (g(X,Z) Y - g(X,Y) Z).$$

Contracting Y in the above equation, we conclude that

$$0 = \frac{2(\kappa - 1)}{(n+2)} \left(2ng(X, Z) \right),$$

which gives $\kappa=1$. Thus in the both cases M^{2n+1} is a Sasakian manifold. Conversely, if M^{2n+1} is a Sasakian manifold, then in view of (38) we have $B(\xi,X)\cdot B=0$.

References

- [1] D. E. Blair, On the geometric meaning of the Bochner tensor, Geom. Dedicata 4 (1975), 33–38.
- [2] ______, Two remarks on contact metric structures, Tôhoku Math. J. 29 (1977), 319-324.
- [3] ______, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203. Birkhauser Boston, Inc., Boston, MA, 2002.
- [4] D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91 (1995), no. 1-3, 189-214.

- [5] S. Bochner, Curvature and Betti numbers, Ann. of Math. 50 (1949), no. 2, 77–93.
- [6] W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. 68 (1958), 721-734.
- [7] H. Endo, On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor, Colloq. Math. 62 (1991), no. 2, 293–297.
- [8] ______, On the curvature tensor fields of a type of contact metric manifolds and of its certain submanifolds, Publ. Math. Debrecen 48 (1996), no. 3-4, 253-269.
- T. Koufogiorgos, Contact Riemannian manifolds with constant φ-sectional curvature, Tokyo J. Math. 20 (1997), no. 1, 13–22.
- [10] M. Matsumoto and G. Chūman, On the C-Bochner curvature tensor, TRU Math. 5 (1969), 21–30.
- [11] M. Okumura, Some remarks on space with a certain contact structure, Tôhoku Math. J. 14 (1962), 135–145.
- [12] B. J. Papantoniou, Contact Riemannian manifolds satisfying $R(\xi, X) \cdot R = 0$ and $\xi \in (k, \mu)$ -nullity distribution, Yokohama Math. J. **40** (1993), no. 2, 149–161.
- [13] G. Pathak, U. C. De, and Y.-H. Kim, Contact manifolds with C-Bochner curvature tensor, Bull. Calcutta Math. Soc. 96 (2004), no. 1, 45–50.
- [14] D. Perrone, Contact Riemannian manifolds satisfying $R(X, \xi) \cdot R = 0$, Yokohama Math. J. **39** (1992), no. 2, 141–149.
- [15] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tôhoku Math. J. 40 (1988), 441–448.
- [16] Y. Tashiro, On contact structures of tangent sphere bundles, Tôhoku Math. J. 21 (1969), 117–143.

JEONG-SIK KIM, DEPARTMENT OF MATHEMATICS AND MATHEMATICAL INFORMATION YOSU NATIONAL UNIVERSITY, YOSU 550-749, KOREA *E-mail*: jskim315@hotmail.com

MUKUT MANI TRIPATHI, DEPARTMENT OF MATHEMATICS AND ASTRONOMY, LUCKNOW UNIVERSITY, INDIA

E-mail: mmt66@satyam.net.in

Jaedong Choi, Department of Mathematics, Korea Air Force Academy, Cheongwon 363-849, Korea

E-mail: jdong@afa.ac.kr