ON C-KILLING FORMS IN A COMPACT SASAKIAN SPACE

Yôsuke Ogawa

(Received July 10, 1967)

Introduction. On a normal contact metric space (=Sasakian space), we studied in a former paper [4] C-harmonic forms which are in certain sense an extension of harmonic forms. There we defined two operators Γ and D which correspond to the exterior differential operator d and the co-differential operator δ in a Riemann space. In this paper we get in the first place an integral formula for Γ and D.

On the other hand it is well known that for any harmonic form in a compact Riemann space, the Lie derivative with respect to a Killing form always vanishes. In order to obtain its analogy for C-harmonic forms in a compact Sasakian space, we introduce the notion of C-Killing forms. Then we shall show as an application of the integral formula for Γ and D that for any C-harmonic form in a compact Sasakian space its Lie derivative with respect to a C-Killing form must be zero. Lastly we treat with the case of a compact regular Sasakian space.

We suppose that manifolds are connected and the differentiable structures are of class C^{∞}.

I should like to express my hearty thanks to Professor S.Tachibana for his kind suggestions and many valuable criticisms.

1. Preliminaries. An n-dimensional Riemannian space M^{n} is called a Sasakian space if it admits a unit Killing vector field $\eta^{\lambda 1)}$ satisfying

$$
\begin{equation*}
\nabla_{\lambda} \nabla_{\mu} \eta_{\nu}=\eta_{\mu} g_{\lambda \nu}-\eta g_{\lambda \mu} \tag{1.1}
\end{equation*}
$$

where $g_{\lambda \mu}$ is the metric tensor of M^{n}. It is well known that M^{n} is orientable and n is odd. We put $\varphi_{\lambda \mu}=\nabla_{\lambda} \eta_{\mu}, \varphi_{\lambda}{ }^{\mu}=\varphi_{\lambda_{\rho}} g^{\rho \mu}$. Then there exist some wellknown identities, as follows (see Tachibana [2])

$$
\begin{equation*}
\nabla_{\lambda} \varphi_{\mu \nu}=\eta_{\mu} g_{\lambda_{\nu}}-\eta_{\nu} g_{\lambda_{\mu}}, \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
R_{\lambda \mu \nu \omega} \eta^{\omega}=\eta_{\lambda} g_{\mu \nu}-\eta_{\mu} g_{\lambda \nu}, \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\nabla^{\lambda} \varphi_{\lambda \mu}=-(n-1) \eta_{\mu}, \quad \eta^{\lambda} R_{\lambda \mu}=(n-1) \eta_{\mu}, \tag{1.4}
\end{equation*}
$$

1) The Greek indices $\lambda, \mu, \nu, \ldots$ run from 1 to n.

$$
\begin{equation*}
R_{\mu \rho} \varphi_{\lambda}^{\rho}=-R_{\lambda \rho} \varphi_{\mu}^{\rho}, \quad R_{\mu}^{\rho}{ }^{\rho} \varphi_{\rho}^{\lambda}=R_{\rho}^{\lambda} \varphi_{\mu}^{\rho} . \tag{1.5}
\end{equation*}
$$

We denote by $e(\eta)$ and L (resp. $i(\eta)$ and Λ) the exterior product (resp. inner product) of 1 -form η and 2 -form $d \eta$, then we have [4]

$$
\begin{align*}
& L=e(\eta) d+d e(\eta), \tag{1.6}\\
& \Lambda=i(\eta) \delta+\delta i(\eta) . \tag{1.7}
\end{align*}
$$

We take an arbitrary 1 -form ξ. Then the inner product $\Lambda_{\xi}=i(d \xi)$ for any p-form $u=\left(u_{\lambda_{1}} \ldots \lambda_{p}\right)$ can be written by

$$
\left(\Lambda_{\xi} u\right)_{\lambda_{3} \cdots \lambda_{p}}=\nabla^{\rho} \xi^{\sigma} u_{\rho \sigma \lambda_{s} \ldots \lambda_{p}} \quad(p \geqq 2)
$$

and $\Lambda_{\xi} u=0$ if p is 0 or 1 . We can easily obtain

$$
\begin{equation*}
\Lambda_{\xi}=\delta i(\xi)+i(\xi) \delta \tag{1.8}
\end{equation*}
$$

The operators $\Phi, \nabla_{\eta}, \Gamma$ and D for any p-form $u=\left(u_{\lambda_{1} \ldots \lambda_{p}}\right)$ are defined by

$$
\begin{array}{ll}
(\Phi u)_{\lambda_{1} \ldots \lambda_{p}}=\sum_{i=1}^{p} \varphi_{\lambda_{t}}^{\sigma} u_{\lambda_{1} \ldots \ldots \sigma}^{i} \ldots \lambda_{p}, & (p \geqq 1) \\
\left(\nabla_{\eta} u\right)_{\lambda_{1} \ldots \lambda_{p}}=\eta^{\sigma} \nabla_{\sigma} u_{\lambda_{1} \ldots \lambda_{p}}, & (p \geqq 0) \\
(\Gamma u)_{\lambda_{0} \ldots \lambda_{p}}=\sum_{\alpha=0}^{p}(-1)^{\alpha} \varphi_{\lambda_{\alpha}}{ }_{\alpha}^{\sigma} \nabla_{\sigma} u_{\lambda_{0} \ldots \hat{\alpha} \ldots \lambda_{p},}, & (p \geqq 0) \\
(D u)_{\lambda_{2} \ldots \lambda_{p}}=\phi^{\sigma \rho} \nabla_{\sigma} u_{\rho \lambda_{2} \ldots \lambda_{p}}, & (p \geqq 1) \tag{1.12}
\end{array}
$$

where $u_{\lambda_{1} \ldots \hat{\sigma} \ldots \lambda_{p}}^{i}$ means the subscript σ appears at the i-th position and $u_{\lambda_{0} \ldots \hat{\alpha} \ldots \lambda_{p}}$ means the α-th subscript λ_{α} is omitted.

We denote by $\theta(\xi)$ the Lie derivative with respect to a vector field ξ^{λ}. For a 1 -form $\xi=\left(\xi_{\lambda}\right)$, identifying the covariant vector field with a contravariant vector field by the metric tensor, we also denote by $\theta(\xi)$ the Lie derivative of the vector field $\xi^{\lambda}=y^{\lambda_{\mu}} \xi_{\mu}$.

Let the space M^{n} be compact. Then the global inner product of any p-forms u and v is given by

$$
(u, v)=\int_{M^{n}} u \wedge * v
$$

where the notations * and \wedge represent the dual operator and exterior
product respectively. The dual operator * satisfies

$$
\begin{equation*}
* *=\text { identity. } \tag{1.13}
\end{equation*}
$$

A p form u on a Sasakian space is called to be C-harmonic if it satisfies

$$
\begin{equation*}
d u=0, \quad \delta u=e(\eta) \Lambda u \tag{1.14}
\end{equation*}
$$

Then clearly C-harmonic 1 -forms are harmonic, and the converse is true. On C-harmonic forms, the following results are known [3], [4].

Proposition 1.1. In a compact Sasakian space, any C-harmonic p-form $u(p \leqq(n-1) / 2)$ satisfies $i(\eta) u=0$.

Proposition 1.2. In a compact Sasakian space, for any C-harmonic p-form $u(p \leqq(n-1) / 2) \Lambda u$ is also C-harmonic.

Proposition 1.3. In a compact Sasakian space, a pform $u(p \leqq(n-1) / 2)$ is C-harmonic if and only if it satisfies $i(\eta) u=0$ and $\triangle u=L \Lambda u$, where \triangle is the Laplacian.
2. Integral formulas. In the following we consider a compact Sasakian space M^{n}. As for the operators Γ and D, we know the following relations.

Lemma 2.1. [4] In a Sasakian space, we have for any pform u
$D u=\delta \nabla_{\eta} u-\nabla_{\eta} \delta u+(n-p) i(\eta) u$,

$$
\begin{equation*}
\Gamma u=d \nabla_{\eta} u-\nabla_{\eta} d u-p e(\eta) u . \tag{2.1}
\end{equation*}
$$

Lemma 2.2. In a Sasakian space, we have for any p-form u and q form v

$$
\begin{equation*}
\Gamma(u \wedge v)=\Gamma u \wedge v+(-1)^{p} u \wedge \Gamma v \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
* \Gamma * v=(-1)^{p} D u . \tag{2.4}
\end{equation*}
$$

Proof. Since it holds good for forms $u=\left(u_{\lambda_{1} \ldots \lambda_{p}}\right)$ and $v=\left(v_{\lambda_{1} \ldots \lambda_{q}}\right)$

$$
(u \wedge v)_{\lambda_{1} \cdots \lambda_{p+8}}=\frac{1}{p!q!} \varepsilon_{1_{1} \ldots \sigma_{p} \cdots \cdots \lambda_{p+1}^{\tau_{1}^{\prime}} \cdots \sigma_{\sigma^{\prime}}}^{\sigma_{\sigma_{1}} \cdots \sigma_{p}} v_{\sigma_{1}^{\prime} \cdots \sigma_{q^{\prime}}} \quad\left(k^{\prime}=p+k, k \neq 1, \cdots q\right),
$$

we have

$$
(\Gamma(u \wedge v))_{\lambda_{0} \cdots \lambda_{p+4}}=\varphi_{\lambda_{0}^{\rho}}^{\rho} \nabla_{\rho}(u \wedge v)_{\lambda_{1} \ldots \lambda_{p+4}}-\sum_{i=1}^{p} \varphi_{\lambda_{t}^{\rho}}^{\rho} \nabla_{\rho}(u \wedge v){\lambda_{1} \ldots \hat{\lambda}_{0} \ldots \lambda_{\rho} \lambda_{1} \ldots \lambda_{q^{\prime}}}_{i}^{i}
$$

On the other hand we have

$$
\begin{aligned}
& \left.-\sum_{i=1}^{\rho} \varphi_{\sigma_{\mathrm{t}}}^{\mathrm{\rho}} \nabla_{\rho} u_{\sigma_{1} \ldots \hat{\sigma}_{0} \ldots \sigma_{\mathrm{q}}}^{i} v_{\sigma_{1} \ldots \sigma_{\nu}}\right\} \\
& =\frac{1}{p!q!} \varepsilon_{\lambda_{0} \ldots \lambda_{\sigma_{\rho}^{\prime}}^{\prime}}^{\sigma_{0}^{\prime}} \varphi_{\sigma_{0}}^{\rho} \nabla_{\rho} u_{\sigma_{1} \ldots \sigma_{p}} v_{\sigma_{1} \ldots \sigma_{q}} .
\end{aligned}
$$

In the same way, we get

Therefore we have

Thus we can obtain

$$
(\Gamma u \wedge v)_{\lambda_{0} \ldots \lambda_{p+e}}+(-1)^{p}(u \wedge \Gamma v)_{\lambda_{0} \ldots \lambda_{p+4}}=\frac{1}{p!q!} \varepsilon_{\lambda_{0}, \ldots \lambda_{p+4}}^{o g \sigma_{1} \ldots \sigma_{p+\infty}} \varphi_{\sigma_{\bullet}}^{\rho}
$$

$$
\begin{aligned}
& \times\left(\nabla_{\rho} u_{\sigma_{1} \ldots \sigma_{q}} v_{\sigma_{1} \ldots \sigma_{q}}+u_{\sigma_{1} \ldots \sigma_{p}} \nabla_{\rho} v_{\sigma_{1}} \ldots \sigma_{\boldsymbol{q}}\right) \\
& =\Gamma(u \wedge v)_{\lambda_{0} \ldots \lambda_{r+c}}
\end{aligned}
$$

Next we calculate (2.4). We write $g=\operatorname{det}\left(g_{\lambda_{\mu}}\right)$ and $\varepsilon_{\lambda_{1} \ldots \lambda_{n}}=\varepsilon_{\lambda_{1} \ldots \lambda_{n}}^{1 \cdots n}$. Then we have for any p form u

Since n is odd, we have $(-1)^{n p+n+1}=(-1)^{p}$, hence (2.4) is obtained.
Lemma 2.3. In a Sasakian space, we have for any forms u and v

$$
\begin{equation*}
\nabla_{\eta}(u \wedge v)=\nabla_{\eta} u \wedge v+u \wedge \nabla_{\eta} v \tag{2.5}
\end{equation*}
$$

$$
\text { (2. 6) } \quad * \nabla_{n} * u=\nabla_{n} u \text {. }
$$

PROOF. We take $u=\left(u_{\lambda_{1} \ldots \lambda_{p}}\right), v=\left(v_{\lambda_{1} \ldots \lambda_{g}}\right)$. Then
and

$$
\left(* \nabla_{\eta} * u\right)_{\lambda_{1} \ldots \lambda_{p}}=\frac{1}{(n-p)!} \sqrt{g} g^{\sigma_{1} \mu_{1}} \cdots g^{\sigma_{n-p} \mu_{n-p}} p^{\circ} \nabla_{\rho}(* u)_{\sigma_{1} \cdots \sigma_{n-}} \varepsilon_{\mu_{1} \cdots \mu_{n-} \lambda_{1} \ldots \lambda_{p}}
$$

$$
\begin{aligned}
& =\left(\nabla_{\eta} u \wedge v\right)_{\lambda_{1} \cdots \cdots_{p+Q}}+\left(u \wedge \nabla_{\eta} v\right)_{\lambda_{1} \ldots \lambda_{p+0}},
\end{aligned}
$$

$$
\begin{aligned}
& (* \Gamma * u)_{\lambda_{2} . . \lambda_{p}}=\frac{1}{(n-p+1)!} \sqrt{g} g^{\sigma_{u \mu_{0}}} \ldots g^{\sigma_{n-p} \mu_{n-p}}\left(\sum_{\alpha=0}^{n-p}(-1)^{\alpha} \varphi_{\sigma_{\alpha}}^{\rho} \nabla_{\rho}(* u)_{\sigma_{0} \cdots \hat{\sigma}_{\alpha} \cdots \sigma_{n-p}}\right) \varepsilon_{\mu_{0} \cdots \mu_{n-p} \lambda_{2} \ldots \lambda_{p}} \\
& =\frac{1}{(n-p)!}(-1)^{\alpha+\alpha-1} \sqrt{g} g^{\sigma_{0 \mu_{0}}} \cdots g^{\sigma_{n-p} \mu_{n-p}} \varphi_{\sigma_{0}}^{\rho} \nabla_{\rho}(* u)_{\sigma_{1} \ldots \sigma_{n-p}} \varepsilon_{\mu_{\alpha} \mu_{1}, \ldots \hat{\mu}_{0} \ldots \mu_{n-p} \lambda_{2} \ldots \lambda_{\rho}} \\
& =\frac{g}{(n-p)!p!} g^{\sigma_{1} \mu_{1}} \cdots g^{\sigma_{n-p} \mu_{n-p}} g^{\alpha_{1} \beta_{1}} \cdots g^{\alpha_{p} \beta_{p}} \varphi^{\mu_{\rho \rho} \rho} \nabla_{\rho} u_{\beta_{1} \ldots \beta_{p}} \varepsilon_{\alpha_{1} \cdots \alpha_{p} \sigma_{1} \ldots \sigma_{n-\nu}} \varepsilon_{\mu_{0} \ldots \mu_{n-p}} \lambda_{2} \ldots \lambda_{p} \\
& =\frac{1}{(n-p)!p!}(-1)^{(n-p)(p-1)} \varepsilon^{\beta_{1} \cdots \beta_{p} \mu_{1} \cdots \mu_{n-p}} \varepsilon_{\mu_{0} \lambda_{2} \cdots \lambda_{p} \mu_{1} \cdots \mu_{n-p}} \mu^{\mu_{\rho \rho}} \nabla_{\rho} u_{\beta_{1} \cdots \beta_{p}}
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{n p+n+1}(D u)_{\lambda_{2}} . . \lambda_{p} .
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{g}{(n-p)!p!} g^{\sigma_{1} \mu_{1}} \cdots g^{\sigma_{n-p} \mu_{n-p}} g^{\alpha_{1} \beta_{1}} \cdots g^{\alpha_{p} \beta_{p}} \eta^{\rho} \nabla_{\rho} u_{\beta_{1} \cdots \beta_{p}} \varepsilon_{\alpha_{1} \ldots \alpha_{p} \tau_{1} \ldots \sigma_{n-p}} \varepsilon_{\mu_{1} \cdots \mu_{n-p} \lambda_{1} \ldots \lambda_{p}} \\
& =\frac{1}{(n-p)!p!} \varepsilon^{\beta_{1} \cdots \beta_{p} \mu_{1} \cdots \mu_{n-p} \varepsilon_{\mu_{1} \cdots \mu_{n-p}} \ldots \ldots \lambda_{p}} \eta^{\rho} \nabla_{\rho} u_{\beta_{1} \ldots \beta_{p}} \\
& =(-1)^{p(n-p)}\left(\nabla_{\eta} u\right)_{\lambda_{1} \cdots \lambda_{p}} .
\end{aligned}
$$

As n is odd, $(-1)^{p(n-p)}=1$ for any p, thus we get (2.6).
Since η is a Killing form, the Lie derivative $\theta(\eta)$ with respect to η satisfies the following relations [4].

$$
\begin{align*}
& \theta(\eta)=-\delta e(\eta)-e(\eta) \delta, \tag{2.7}\\
& * \theta(\eta) *=\theta(\eta) .
\end{align*}
$$

The operator Φ satisfies for any u

$$
\begin{equation*}
\Phi u=\theta(\eta) u-\nabla_{\eta} u . \tag{2.8}
\end{equation*}
$$

Therefore by virtue of Lemma 2.3 and the fact that $\theta(\eta)$ is a derivation, we have

Lemma 2.4. [6] In a Sasakian space, we have for any forms u and v

$$
\begin{align*}
& \Phi(u \wedge v)=\Phi u \wedge v+u \wedge \Phi v, \tag{2.9}\\
& * \Phi * u=\Phi u .
\end{align*}
$$

Using these Lemmas, we study some integral formulas in compact case.
THEOREM 2.5. In a compact Sasakian space, we have for any p-forms u and v

$$
\begin{align*}
& \left(\nabla_{\eta} u, v\right)=-\left(u, \nabla_{\eta} v\right), \tag{2.10}\\
& (\theta(\eta) u, v)=-(u, \theta(\eta) v), \tag{2.11}\\
& (\Phi u, v)=-(u, \Phi v) . \tag{2.12}
\end{align*}
$$

Proof. From (2.5) and (2.6) we have

$$
\nabla_{\eta} u \wedge * v=\nabla_{\eta}(u \wedge * v)-u \wedge * \nabla_{\eta} v .
$$

As $u \wedge * v$ is an n - form, there exists a function f on M^{n} such that $u \wedge * v$ is
equal to $f \omega$, where ω is the volume element of M^{n}. It is known that ω is written as $c \eta \wedge(d \eta)^{m}(m=(n-1) / 2), c$ is a constant [5]. Since the relations

$$
\nabla_{\eta} \eta=0, \quad \nabla_{\eta} d_{\eta}=0
$$

hold good, we have

$$
\nabla_{\eta}(u \wedge * v)=\nabla_{\eta} f \omega=-\delta(f \eta) \omega .
$$

Hence we get

$$
\int_{M^{n}} \nabla_{\eta}(u \wedge * v)=0,
$$

which means (2.10) is true. (2.11) is the result of (2.7) and

$$
\theta(\eta)=d i(\eta)+i(\eta) d .
$$

(2.12) follows from (2.10), (2.11) and (2.8).

THEOREM 2.6. In a compact n-dimensional Sasakian space, we have for any p-form u and ($p+1$)-form v

$$
\begin{equation*}
(\Gamma u, v)=(u, D v)-(n-1)(e(\eta) u, v) . \tag{2.13}
\end{equation*}
$$

Proof. By virtue of Lemma 2.1 and Theorem 2.5, we see

$$
\begin{aligned}
(\Gamma u, v) & =\left(\nabla_{\eta} u, \delta v\right)-\left(\nabla_{\eta} d u, v\right)-p(u, i(\eta) v) \\
& =\left(u,-\nabla_{\eta} \delta v+\delta \nabla_{\eta} v-p i(\eta) v\right) \\
& =(u, D v-(n-p-1) i(\eta) v-p i(\eta) v) \\
& =(u, D v)-(n-1)(u, i(\eta) v) .
\end{aligned}
$$

This is the required result.
3. \boldsymbol{C}-Killing forms. Let M^{n} be an n-dimensional Sasakian space. We call a 1 -form ξ of M^{n} to be C-Killing if it satisfies

$$
\begin{align*}
& \delta \xi=0, \tag{3.1}\\
& \theta(\xi)\left(g_{\lambda_{\mu}}-\eta_{\lambda} \eta_{\mu}\right)=0 . \tag{3.2}
\end{align*}
$$

Clearly the 1 -form η is C-Killing. The vector space of all vector fields identified
with C-Killing forms is a Lie algebra. Especially we call a C-Killing form ξ such that

$$
\begin{equation*}
\xi^{\prime} \equiv i(\eta) \xi=\text { const. } \tag{3.3}
\end{equation*}
$$

to be special C-Killing. η is a special C-Killing form. A Killing form which is at the same time a special C-Killing form is of the type $\xi^{\prime} \eta, \xi^{\prime}=$ const.

Lemma 3.1. In a Sasakian space, we have for a C-Killing form

$$
\begin{align*}
& \nabla_{\eta} \xi^{\prime}=0 \tag{3.4}\\
& \theta(\eta) \xi_{\lambda}=0
\end{align*}
$$

Proof. The equation (3.2) can be expressed as

$$
\begin{equation*}
\nabla_{\lambda} \xi_{\mu}+\nabla_{\mu} \xi_{\lambda}=2 \xi^{\rho}\left(\varphi_{\rho \lambda} \eta_{\mu}+\varphi_{\rho \mu} \eta_{\lambda}\right)+\nabla_{\lambda} \xi^{\prime} \eta_{\mu}+\nabla_{\mu} \xi^{\prime} \eta_{\lambda} \tag{3.6}
\end{equation*}
$$

Transvecting (3.6) with $g^{\lambda \mu}$, we obtain

$$
\delta \xi=-\nabla_{\eta} \xi^{\prime},
$$

hence (3.4) follows by virtue of (3.1). Next transvecting (3.6) with η^{λ}, we have

$$
\eta^{\lambda} \nabla_{\lambda} \xi_{\rho}+\varphi_{\rho}^{\lambda} \xi_{\lambda}=\left(\nabla_{\eta} \xi^{\prime}\right) \eta_{\rho}=0
$$

which means $\theta(\eta) \xi_{\lambda}=0$.
Let ξ be a special C-Killing form. Then by virtue of (3.3) and (3.6) it satisfies

$$
\begin{equation*}
\nabla_{\lambda} \xi_{\mu}+\nabla_{\mu} \xi_{\lambda}=2 \xi^{\rho}\left(\varphi_{\rho \lambda} \eta_{\mu}+\varphi_{\rho \mu} \eta_{\lambda}\right) . \tag{3.7}
\end{equation*}
$$

Conversely, we show that (3.7) is a sufficient condition for a 1 -form ξ to be special C-Killing, in a compact case. Evidently (3.1) follows from (3.7). Differentiating (3.7) by ∇^{λ}, we have

$$
\begin{equation*}
\nabla^{\lambda} \nabla_{\lambda} \xi_{\mu}+R_{\mu}^{\rho} \xi_{\rho}=-2 D \xi \eta_{\mu}+2 n \xi^{\prime} \eta_{\mu}-2 \xi_{\mu}+2 \eta^{\lambda} \nabla_{\lambda} \xi^{\rho} \varphi_{\rho \mu} . \tag{3.8}
\end{equation*}
$$

Lemma 3.2. In a compact Sasakian space, for a 1-form ξ satisfying (3.7) the scalar $\xi^{\prime}=i(\eta) \xi$ is a constant function.

Proof. Calculating the Laplacian of ξ^{\prime}, we have by virtue of (3.8)

$$
\begin{aligned}
\nabla^{\lambda} \nabla_{\lambda} \xi^{\prime} & =\eta^{u} \nabla^{\lambda} \nabla_{\lambda} \xi_{\mu}+2 D \xi-(n-1) \xi^{\prime} \\
& =-(n-1) \xi^{\prime}-2 D \xi+2 n \xi^{\prime}-2 \xi^{\prime}+2 D \xi-(n-1) \xi^{\prime} \\
& =0 .
\end{aligned}
$$

Therefore if M^{n} is compact, ξ^{\prime} must be constant.
From this Lemma 3.2, we see that the form ξ having the property (3.7) also satisfies (3.6), and therefore it is a C-Killing form. Again from Lemma 3.2 it must be special C-Killing. Thus we proved the following

THEOREM 3.3. A 1 -form ξ on a compact Sasakian space is stecial C-Killing if and only if it satisfies the relation (3.7).

Next we consider the relation between C-Killing and special C-Killing forms. Then

Theorem 3.4. For a C-Killing form ξ on a Sasakian space, a 1-form ζ defined by $\zeta=\xi-\xi^{\prime} \eta\left(\xi^{\prime}=i(\eta) \xi\right)$ is special C-Killing. Conversely for a special C-Killing form ζ and a scalar function f, $a_{0} 1$-form ξ defined by $\xi=\zeta+f \eta$ is C-Killing if and only if $\nabla_{\eta} f=0$.

Proof. The first half. Since $\zeta^{\prime}=i(\eta) \zeta=0$, (3.6) coincides with (3.7) for ζ, hence we have only to show that ζ satisfies (3.7). Calculating directly, we get

$$
\begin{aligned}
\nabla_{\lambda} \xi_{\mu}+\nabla_{\mu} \xi_{\lambda} & =\nabla_{\lambda} \xi_{\mu}+\nabla_{\mu} \xi_{\lambda}-\nabla_{\lambda} \xi^{\prime} \eta_{\mu}-\nabla_{\mu} \xi^{\prime} \eta_{\lambda}-\xi^{\prime} \varphi_{\lambda_{\mu}}-\xi^{\prime} \varphi_{\mu \lambda} \\
& =2 \xi^{\rho}\left(\varphi_{\rho \lambda} \eta_{\mu}+\varphi_{\rho \mu} \eta_{\lambda}\right) \\
& =2 \zeta^{\rho}\left(\varphi_{\rho \lambda} \eta_{\mu}+\varphi_{\rho_{\mu}} \eta_{\lambda}\right) .
\end{aligned}
$$

For the latter half, we look for the condition that the 1 -form $f \eta$ to be C Killing, and get

$$
\begin{aligned}
& \delta(f \eta)=-\nabla_{\eta} f \\
& \theta(f \eta)\left(g_{\lambda \mu}-\eta_{\lambda} \eta_{\mu}\right)=0 .
\end{aligned}
$$

Therefore if the 1 -form ξ_{λ} is C-Killing, then $\nabla_{\eta} f=0$, and the converse is true.
4. Special C-Killing forms. In this section, we show that a C-harmonic p-form $(p \leqq(n-1) / 2)$ is invariant by a C-Killing form in a compact Sasakian
space. Let ξ be a special C-Killing form. Then we have from (3.8) and (3.5)

$$
\begin{equation*}
\nabla^{\lambda} \nabla_{\lambda} \xi_{\mu}+R_{\mu \mu} \xi^{\rho}=-2(D \xi-(n+1) \xi) \eta_{\mu}-4 \xi_{\mu} \tag{4.1}
\end{equation*}
$$

where we put $\xi^{\prime}=i(\eta) \xi$. Differentiating (3.7) by ∇_{ν} and adding cyclicly with respect to the subscript λ, μ, ν, we have

$$
\begin{align*}
\nabla_{\lambda} \nabla_{\mu} \xi_{\nu} & =R_{\mu \nu \lambda}{ }^{〔} \xi_{\varepsilon}+\eta_{\lambda}\left(\nabla_{\mu} \xi^{\rho} \varphi_{\rho \nu}-\nabla_{\nu} \xi^{\rho} \varphi_{\rho \mu}\right)+\eta_{\mu}\left(\nabla_{\lambda} \xi^{\rho} \varphi_{\rho \nu}-\nabla_{\nu} \xi^{\rho} \varphi_{\rho \lambda}\right) \tag{4.2}\\
& +\eta_{\nu}\left(\nabla_{\lambda} \xi^{\rho} \varphi_{\rho \mu}+\nabla_{\mu} \xi^{\rho} \varphi_{\rho \lambda}\right)+2 \xi^{\rho}\left(\varphi_{\rho \lambda} \varphi_{\mu \nu}+\varphi_{\rho \mu} \varphi_{\lambda \nu}\right) \\
& +2 \xi^{\prime} g_{\lambda \mu} \eta_{\nu}+2\left(\eta_{\lambda} \eta_{\mu} \xi_{\nu}-\eta_{\mu} \eta_{\nu} \xi_{\lambda}-\eta_{\lambda} \eta_{v} \xi_{\mu}\right),
\end{align*}
$$

which will be used in the proof of Lemma 4.2.
By virtue of (2.8) and (3.5) we obtain

$$
\Phi \xi=-\nabla_{\eta} \xi(\equiv \bar{\xi})
$$

Then making use of (3.7), we have

$$
\begin{aligned}
(d \bar{\xi})_{\lambda_{\mu}} & =\nabla_{\lambda}\left(\varphi_{\mu \rho} \xi^{\rho}\right)-\nabla_{\mu}\left(\varphi_{\lambda_{\rho}} \xi^{\rho}\right) \\
& =\left(\eta_{\lambda} \xi_{\mu}-\eta_{\mu} \xi_{\lambda}\right)+\left(q_{\lambda}^{\rho} \nabla_{\rho} \xi_{\mu}-\varphi_{\mu}^{\rho} \nabla_{\rho} \xi_{\lambda}\right) \\
& =(e(\eta) \xi)_{\lambda_{\mu}}+(\Gamma \xi)_{\lambda_{\mu}} .
\end{aligned}
$$

Thus we can get

$$
\begin{equation*}
\overline{d \xi}=e(\eta) \xi+\Gamma \xi \tag{4.3}
\end{equation*}
$$

Lemma 4.1. In a compact Sasakian space, for any 1-form satisfying $\xi^{\prime} \equiv i(\eta) \xi=$ constant we have

$$
\begin{equation*}
(\Gamma \xi, e(\eta) \xi)=-(e(\eta) \xi, e(\eta) \xi) . \tag{4.4}
\end{equation*}
$$

Proof. In a Sasakian space, for any p-form u the following

$$
\begin{equation*}
\Gamma i(\eta) u+i(\eta) \Gamma u=-p u+e(\eta) i(\eta) u \tag{4.5}
\end{equation*}
$$

holds good. In fact, owing to (2.2) we have

$$
\begin{aligned}
\Gamma i(\eta) u+i(\eta) \Gamma u & =d i(\eta) \nabla_{\eta} u-\nabla_{\eta} d i(\eta) u-(p-1) e(\eta) i(\eta) u \\
& +i(\eta) d \nabla_{\eta} u-\nabla_{\eta} i(\eta) d u-p i(\eta) e(\eta) u
\end{aligned}
$$

$$
\begin{aligned}
& =\theta(\eta) \nabla_{\eta} u-\nabla_{\eta} \theta(\eta) u-p u+e(\eta) i(\eta) u \\
& =-p u+e(\eta) i(\eta) u,
\end{aligned}
$$

since ∇_{η} commutes with $i(\eta)$ and $\theta(\eta)$. Hence it follows for a 1 -form ξ

$$
\begin{aligned}
(e(\eta) \xi, \Gamma \eta) & =(\xi, i(\eta) \Gamma \xi) \\
& =(\xi,-\Gamma i(\eta) \xi-\xi+e(\eta) i(\eta) \xi) \\
& =(\xi,-\Gamma i(\eta) \xi-i(\eta) e(\eta) \xi) \\
& =\left(\xi, \Gamma \xi^{\prime}\right)-\left(e^{\prime}(\eta) \xi, e(\eta) \xi\right) .
\end{aligned}
$$

If ξ^{\prime} is constant, then we have $\Gamma \xi^{\prime}=0$. This proves the lemma.
Lemma 4.2. In a compact Sasakian space, we have for a special CKilling form ξ

$$
\begin{equation*}
(\Gamma \xi, \Gamma \xi)=(e(\eta) \xi, e(\eta) \xi) . \tag{4.6}
\end{equation*}
$$

Proof. Calculating $D \Gamma \xi$ for a special C-Killing form ξ, we first see from (4.2)

$$
\begin{aligned}
& \eta^{\rho} \eta^{\sigma} \nabla_{\rho} \nabla_{\sigma} \xi_{\lambda}=-\xi_{\lambda}+\xi^{\prime} \eta_{\lambda}, \\
& \varphi^{\rho \sigma} \nabla_{\rho} \nabla_{\tau} \xi_{\sigma}=\left(\varphi_{\rho}{ }^{\sigma} R_{\sigma \tau}+(n+2) \varphi_{\rho \tau}\right) \xi^{\rho} .
\end{aligned}
$$

Then making use of these relations and (4.1) we have

$$
\begin{aligned}
(D \Gamma \xi)_{\lambda} & =\varphi^{\rho \sigma} \nabla_{\rho}\left(\varphi_{\sigma}^{\tau} \nabla_{\tau} \xi_{\lambda}-\varphi_{\lambda}^{\tau} \nabla_{\tau} \xi_{\sigma}\right) \\
& =-\nabla^{\rho} \nabla_{\rho} \xi^{\lambda}+\eta^{\rho} \eta^{\sigma} \nabla_{\rho} \nabla_{\sigma} \xi_{\lambda}-D \xi \eta_{\lambda}+\varphi_{\lambda}^{\rho} \eta^{\sigma} \nabla_{\rho} \xi_{\sigma}-\varphi_{\lambda}^{\tau} \varphi^{\prime \sigma} \nabla_{\rho} \nabla_{\tau} \xi_{\sigma} \\
& =-\nabla^{\rho} \nabla_{\rho} \xi_{\lambda}-R_{\lambda \rho} \xi^{\rho}-D \xi_{\lambda}-(n+2) \xi_{\lambda}+(2 n+1) \xi^{\prime} \eta_{\lambda} \\
& =D \xi \eta_{\lambda}-\xi^{\prime} \eta_{\lambda}-(n-2) \xi_{\lambda} .
\end{aligned}
$$

On the other hand, since $\Gamma \xi^{\prime}=0$ for a special C-Killing form ξ_{λ}, we have by virtue of (2.13)
(4. 7)

$$
\left(D \xi, \xi^{\prime}\right)-(n-1)\left(\xi^{\prime}, \xi^{\prime}\right)=0
$$

Integrating $i(\xi)(D \Gamma \xi)$ on M^{n}, we have

$$
(\xi, D \Gamma \xi)=\left(\xi^{\prime}, D \xi\right)-\left(\xi^{\prime}, \xi^{\prime}\right)-(n-2)(\xi, \xi)
$$

$$
=-(n-2)(e(\eta) \xi, e(\eta) \xi) .
$$

Taking account of (2.13) again and considering Lemma 4.1, it follows that

$$
\begin{aligned}
(\Gamma \xi, \Gamma \xi) & =(\xi, D \Gamma \xi)-(n-1)(e(\eta) \xi, \Gamma \xi) \\
& =-(n-2)(e(\eta) \xi, e(\eta) \xi)+(n-1)(e(\eta) \xi, e(\eta) \xi) \\
& =(e(\eta) \xi, e(\eta) \xi),
\end{aligned}
$$

and the lemma is proved.
Theorem 4.3. In a compact Sasakian space, $\bar{\xi}=\Phi \xi$ is a closed 1-form for any C-Killing form ξ.

Proof. By virtue of Theorem 3.4, a 1 -form $\xi=\xi-\xi^{\prime} \eta$ is a special C-Killing form for a C-Killing form ξ. Moreover the relation

$$
\Phi \xi=\Phi \zeta
$$

holds good. Therefore it is sufficient to prove the theorem for a special C Killing form ξ. From (4.3), (4.4) and (4.6), we have

$$
\begin{aligned}
(d \bar{\xi}, d \bar{\xi}) & =(\Gamma \xi, \Gamma \xi)+2(\Gamma \xi, e(\eta) \xi)+(e(\eta) \xi, e(\eta) \xi) \\
& =(e(\eta) \xi, e(\eta) \xi)-2(e(\eta) \xi, e(\eta) \xi)+(e(\eta) \xi, e(\eta) \xi) \\
& =0,
\end{aligned}
$$

which shows $d \bar{\xi}=0$.
From this Theorem 4.3 and (4.3), we have for a special C-Killing form ξ

$$
\begin{equation*}
\nabla_{\lambda} \bar{\xi}_{\mu}=\nabla_{\mu} \bar{\xi}_{\lambda}, \tag{4.8}
\end{equation*}
$$

$$
\begin{equation*}
\Gamma \xi=-e(\eta) \xi \tag{4.8}
\end{equation*}
$$

Making use of (4.8), (4.2) becomes a simpler form as follows.
COROLLARY 4.4. In a compact Sasakian space, we have for a special C-Killing form ξ

$$
\begin{equation*}
\nabla_{\lambda} \nabla_{\mu} \xi_{\nu}=R_{\mu \nu \lambda}{ }^{\rho} \xi_{\rho}-2 \nabla_{\lambda} \bar{\xi}_{\mu} \eta_{\nu}+2 \xi^{\rho}\left(\boldsymbol{\rho}_{\rho \lambda} \varphi_{\mu \nu}+\varphi_{\rho \mu} \varphi_{\lambda \nu}\right) . \tag{4.10}
\end{equation*}
$$

Corollary 4.5. In a compact Sasakian space, d ξ is hybrid for a special C-Killing form ξ, that is, $d \xi$ satisfies the relations

$$
\eta^{\rho}(d \xi)_{\rho \lambda}=0, \quad \varphi_{\lambda}{ }^{\rho} \varphi_{\mu}^{\sigma}(d \xi)_{\rho \sigma}=(d \xi)_{\lambda \mu} .
$$

Proof. Since $i(\eta) d \xi=\theta(\eta) \xi-d i(\eta) \xi=0$, the first relation is evident. Next, (4.9) is written explicitely as follows

$$
\boldsymbol{\varphi}_{\lambda}^{\sigma} \nabla_{\sigma} \xi_{\mu}-\boldsymbol{\varphi}_{\mu}^{\sigma} \nabla_{\sigma} \xi_{\lambda}=-\eta_{\lambda} \xi_{\mu}+\eta_{\mu} \xi_{\lambda} .
$$

Transvecting it with ϕ_{v}^{λ}, we have

$$
\varphi_{\lambda}{ }^{\rho} \phi_{\mu}{ }^{\sigma} \nabla_{\sigma} \xi_{\rho}=\left(\nabla_{\mu} \xi_{\lambda}-\nabla_{\lambda} \xi_{\mu}\right) / 2 .
$$

Exchanging the indices λ and μ in this relation, and subtracting them, we get

$$
\varphi_{\lambda}{ }^{\rho} \varphi_{\mu}{ }^{\sigma}\left(\nabla_{\sigma} \xi_{\rho}-\nabla_{\rho} \xi_{\sigma}\right)=\nabla_{\mu} \xi_{\lambda}-\nabla_{\lambda} \xi_{\mu} .
$$

This is equivalent to

$$
\varphi_{\lambda}{ }^{\rho} \varphi_{\mu}^{\sigma}(d \xi)_{\rho \sigma}=(d \xi)_{\lambda_{\mu}} .
$$

Lemma 4.6. In a Sasakian space, we have for a 1 -form ξ

$$
\begin{align*}
& i(\xi) L-L i(\xi)=-2 e(\bar{\xi}), \quad \bar{\xi}=\Phi \xi, \tag{4.11}\\
& i(\xi) \Lambda=\Lambda i(\xi), \quad i(\eta) \Lambda_{\xi}=\Lambda_{\xi} i(\eta) . \tag{4.12}
\end{align*}
$$

Proof. For any p-form $u=\left(u_{\lambda_{1} \ldots \lambda_{p}}\right)$, we have

$$
\begin{aligned}
& \frac{1}{2}(i(\xi) L u)_{\lambda_{0} \ldots \lambda_{p}}=\xi^{\sigma}\left(\phi_{\sigma \lambda_{0}} u_{\lambda_{1} \ldots \lambda_{p}}-\sum_{i} \phi_{\sigma \lambda_{t}} u_{\lambda_{1} \ldots \hat{\lambda}_{0} \ldots \lambda_{p}}^{i}-\sum_{i} \varphi_{\lambda_{t} \lambda_{0}} u_{\lambda_{1} \ldots \hat{\sigma} \ldots \lambda_{p}}^{i}\right. \\
& \left.+\sum_{i<j} \varphi_{\lambda_{1} \lambda_{j}} u_{\lambda_{1} \ldots \hat{\sigma} \ldots \hat{\lambda}_{0} \ldots \lambda_{p}}^{i} \stackrel{j}{j}\right)=-\left(\bar{\xi}_{\lambda_{0}} u_{\lambda_{1} \ldots \lambda_{p}}-\sum_{i} \bar{\xi}_{\lambda_{1}} u_{\lambda_{1}, \ldots \hat{\lambda}_{0} \ldots \lambda_{p}}^{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\sum_{2 \leq i<j} \phi_{\lambda_{t} \lambda_{j}, \xi^{\sigma}} u_{o \lambda_{2} \ldots \ldots \lambda_{0} \ldots \lambda_{1} \ldots \lambda_{p}}^{i}\right)=-(e(\bar{\xi}) u)_{\lambda_{0} \cdots \lambda_{p}}^{j}+\frac{1}{2}(L i(\xi) u)_{\lambda_{0} \ldots \lambda_{p}} .
\end{aligned}
$$

(4.12) is evident.

Lemma 4.7. In a Sasakian space, we have for a 1 -form ξ

$$
\begin{equation*}
\triangle i(\xi)-i(\xi) \triangle=d \Lambda_{\xi}-\Lambda_{\xi} d+\delta \theta(\xi)-\theta(\xi) \delta \tag{4.13}
\end{equation*}
$$

This is easily obtained from (1.8).
Lemma 4.8. In a compact Sasakian space, we have for a special CKilling form ξ and for any p-form u,

$$
\begin{align*}
(\delta \theta(\xi) & -\theta(\xi) \delta) u=2 e(\bar{\xi}) \wedge u+2 i(\bar{\xi}) i(\eta) d u-2 d i(\bar{\xi}) u^{\prime} \tag{4.14}\\
& +4 \overline{\xi^{\rho}} \nabla_{\rho} u^{\prime}+2\left(D \xi-(n-1) \xi^{\prime}\right) u^{\prime}
\end{align*}
$$

where we put $\bar{\xi}=\Phi \xi, \xi^{\prime}=i(\eta) \xi, u^{\prime}=i(\eta) u$,
Proof. (4.14) is a result of a little complicated but straightforward calculation. We sketch the outline. For a p-form $u=\left(u_{\lambda_{1} \ldots \lambda_{p}}\right)$, we have

$$
\begin{gathered}
(\delta \theta(\xi) u)_{\lambda_{2} \ldots \lambda_{p}}=-\nabla^{\rho}\left(\xi^{\sigma} \nabla_{\sigma} u_{\rho \lambda_{2} \ldots \lambda_{p}}+\nabla_{\rho} \xi^{\sigma} u_{\sigma \lambda_{2} \ldots \lambda_{\rho}}+\sum_{i \geqq 2} \nabla_{\lambda_{t}} \xi^{\sigma} u_{\sigma \lambda_{2} \ldots}^{i} \ldots, \ldots \lambda_{p}\right) \\
=A+B+C+D,
\end{gathered}
$$

where we put

$$
\begin{aligned}
& A=-\left(\nabla^{\rho} \xi^{\sigma}+\nabla^{\sigma} \xi^{\rho}\right) \nabla_{\rho} u_{\sigma \lambda_{2} \ldots \lambda_{p}}, \\
& B=-\nabla^{\rho} \nabla_{\rho} \xi^{\sigma} u_{\sigma \lambda_{2} \ldots \lambda_{p}}, \quad C=-\sum_{j \geq 2} \nabla^{\rho} \nabla_{\lambda_{j}} \xi^{\sigma} u_{\rho \lambda_{2} \ldots} \ldots \hat{\sigma} \ldots \lambda_{p}, \\
& D=-\xi^{\sigma} \nabla^{\rho} \nabla_{\sigma} u_{\rho \lambda_{2} \ldots \lambda_{p}}-\sum_{j \geq 2} \nabla_{\lambda_{j},} \xi^{\sigma} \nabla^{\rho} \nabla_{\rho} u_{\lambda_{2} \ldots \hat{\sigma} \ldots \lambda_{p} .}^{j}
\end{aligned}
$$

Taking account of (3.7), we have

$$
\begin{aligned}
A & =-2 \xi^{\tau}\left(\varphi_{\tau}^{\rho} \eta^{\tau}+\varphi_{\tau}^{\sigma} \eta^{\sigma}\right) \nabla_{\rho} u_{\sigma \lambda_{2} \ldots \lambda_{p}} \\
& =2\left(i(\bar{\xi}) \nabla_{\eta} u\right)_{\lambda_{2} \ldots \lambda_{p}}+2 \overline{\xi^{\sigma}} \eta^{\rho} \nabla_{\sigma} u_{\rho \lambda_{2} \ldots \lambda_{p}} \\
& =2\left(i(\bar{\xi}) \nabla_{\eta} u\right)_{\lambda_{2} \ldots \lambda_{p}}+2 \overline{\xi^{\rho}} \nabla_{\rho} u_{\lambda_{2}}^{\prime} \ldots \lambda_{p}+2 \xi^{\prime} u_{\lambda_{2}}^{\prime} \ldots \lambda_{p}-2 \xi^{\sigma} u_{\sigma \lambda_{2} \ldots \lambda_{p}}
\end{aligned}
$$

and from (4.1) we obtain

$$
B=R_{\rho}^{\sigma} \xi^{\rho} u_{\sigma \lambda_{2} \ldots \lambda_{p}}+2\left(D \xi-(n+1) \xi^{\prime}\right) u_{\lambda_{2} \ldots \lambda_{p}}+4 \xi^{\sigma} u_{\sigma \lambda_{2} \ldots \lambda_{p}}
$$

By virtue of Corollary 4.4 and (4.8), C can be calculated as

$$
\begin{aligned}
& =\sum_{j \geqq 2} R_{\lambda_{j} \rho \varepsilon}^{\sigma \rho} \xi_{\varepsilon} u_{\rho \lambda_{2} \ldots \hat{\sigma} \ldots \lambda_{p}}+2 \sum_{j \geq 2} \bar{\xi}_{\lambda_{j}} \varphi^{\rho \sigma} u_{\rho \lambda_{2} \ldots \hat{\sigma} \ldots \lambda_{p}}{ }^{j} \\
& +2 \sum_{j \geqq 2}\left(\nabla_{\lambda} \bar{\xi}^{\rho} \eta^{\sigma}+\bar{\xi}^{\rho} \nabla_{\lambda}, \eta^{\sigma}\right) u_{\rho \lambda_{2} \ldots \ldots \hat{c} \ldots \lambda_{\rho}} \\
& =\sum_{j \geqslant 2} R_{\lambda_{j}}^{\sigma}{ }_{\lambda}^{\rho \varepsilon} \xi_{\varepsilon} u_{\rho \lambda_{2}} \ldots \hat{\sigma}^{j} \ldots \lambda_{\mathrm{p}}+2(e(\bar{\xi}) \Lambda u)_{\lambda_{2} \ldots \lambda_{p}}+2\left(d i(\bar{\xi}) u^{\prime}\right)_{\lambda_{2} \ldots \lambda_{\mathrm{p}}} \\
& +2(i(\bar{\xi}) i(\eta) d u)_{\lambda_{2} \ldots \lambda_{p}}-2\left(i(\bar{\xi}) \nabla_{\eta} u\right)_{\lambda_{2} \ldots \lambda_{p}}+2 \eta^{\sigma} \bar{\xi}^{\rho} \nabla_{\rho} u_{\sigma \lambda_{2} \ldots \lambda_{p}} .
\end{aligned}
$$

Lastly applying the Ricci's identity, we get

$$
\begin{aligned}
D= & -\xi^{\sigma}\left(\nabla_{\sigma} \nabla^{\rho} u_{\rho \lambda_{2} \ldots \lambda_{p}}+R_{\sigma}^{\varepsilon} u_{\varepsilon \lambda_{2} \ldots \lambda_{p}}-\sum_{j \geq 2} R_{\sigma \lambda_{j}}^{\rho} u_{\rho \lambda_{\rho} \ldots \hat{\varepsilon} \ldots \lambda_{p}}\right)+\sum_{j \geqq 2} \nabla_{\lambda_{j}} \xi^{\sigma}(\delta u)_{\lambda_{2} \ldots \hat{\sigma} \ldots \lambda_{p}}^{j} \\
& =(e(\xi) \delta u)_{\lambda_{2} \ldots \lambda_{p}}-\xi^{\sigma} R_{\sigma}^{\varepsilon} u_{\varepsilon \lambda_{2} \ldots \lambda_{p}}-\sum_{j \geqq 2} \xi_{\varepsilon} R^{\varepsilon \rho} \lambda_{j}^{\sigma} u_{\rho \lambda_{2} \ldots \hat{\sigma} \ldots \lambda_{p}}^{j} .
\end{aligned}
$$

Adding these four relations, we can obtain (4.14).
Let u be a C-harmonic p form $(p \leqq(n-1) / 2)$, and ξ be a special C-Killing form. Suppose that our Sasakian space is compact. Then by virtue of Proposition 1.1 and (4.14) we have

$$
(\delta \theta(\xi)-\theta(\xi) \delta) u=2 e(\bar{\xi}) \Lambda u
$$

Taking account of Proposition 1.3 and Lemma 4.6, we get

$$
\begin{aligned}
i(\xi) \triangle u & =i(\xi) L \Lambda u=L i(\xi) \Lambda u-2 e(\bar{\xi}) \Lambda u \\
& =L \Lambda i(\xi) u-2 e(\bar{\xi}) \Lambda u
\end{aligned}
$$

Since

$$
\begin{align*}
\delta i(\xi) u & =\Lambda_{\xi} u-i(\xi) e(\eta) \Lambda u \tag{4.15}\\
& =\Lambda_{\xi} u-\xi^{\prime} \Lambda u+e(\eta) i(\xi) \Lambda u
\end{align*}
$$

is valid and ξ^{\prime} is constant, we have

$$
\begin{aligned}
\left(i(\xi) u, d \Lambda_{\xi} u\right) & =\left(\delta i(\xi) u, \Lambda_{\xi} u\right) \\
& =\left(\Lambda_{\xi} u, \Lambda_{\xi} u\right)-\xi^{\prime}\left(\Lambda u, \Lambda_{\xi} u\right) .
\end{aligned}
$$

Hence it follows from (4.13) that

$$
\begin{aligned}
(i(\xi) u, \triangle i(\xi) u) & =(i(\xi) u, i(\xi) \Delta u)+\left(i(\xi) u, d \Lambda_{\xi} u\right)+(i(\xi) u, 2 e(\xi) \Lambda u) \\
& =(\Lambda i(\xi) u, \Lambda i(\xi) u)+\left(\Lambda_{\xi} u, \Lambda_{\xi} u\right)-\xi^{\prime}\left(\Lambda u, \Lambda_{\xi} u\right)
\end{aligned}
$$

On the other hand, Λu is also C-harmonic from Proposition 1.2 and therefore

$$
d \Lambda u=0, \quad i(\eta) \Lambda u=0
$$

hold good. Hence we have

$$
\begin{aligned}
\left(\Lambda u, \Lambda_{\xi} u\right)= & (\Lambda u, \delta i(\xi) u+i(\xi) e(\eta) \Lambda u) \\
& =\left(\Lambda u, \xi^{\prime} \Lambda u-e(\eta) i(\xi) \Lambda u\right)=\xi^{\prime}(\Lambda u, \Lambda u)
\end{aligned}
$$

Using this relation and (4.15), it follows that

$$
\begin{aligned}
(\delta i(\xi) u, \delta i(\xi) u) & =\left(\Lambda_{\xi} u, \Lambda_{\xi} u\right)+\xi^{\prime 2}(\Lambda u, \Lambda u)+(\Lambda i(\xi) u, \Lambda i(\xi) u)-2 \xi^{\prime}\left(\Lambda u, \Lambda_{\xi} u\right) \\
& =\left(\Lambda_{\xi} u, \Lambda_{\xi} u\right)+(\Lambda i(\xi) u, \Lambda i(\xi) u)-\xi^{\prime}\left(\Lambda u, \Lambda_{\xi} u\right) .
\end{aligned}
$$

Therefore we can obtain

$$
(i(\xi) u, \Delta i(\xi) u)=(\delta i(\xi) u, \delta i(\xi) u)
$$

which shows that $d i(\xi) u=0$. Hence we have $\theta(\xi) u=0$.
For an arbitrary scalar function f, the Lie derivative of any C-harmonic p-form u ($p \leqq(n-1) / 2$) with respect to $f \eta$ vanishes. In fact, we have

$$
\theta(f \eta) u=f \theta(\eta) u+e(d f) i(\eta) u=0
$$

if $p \leqq(n-1) / 2$. Taking account of Theorem 3.4, we decompose a C-Killing form ξ as the sum of a special C-Killing form ζ and $\xi^{\prime} \eta$. Then we have

$$
\theta(\xi) u=\theta(\zeta) u+\theta\left(\xi^{\prime} \eta\right) u=0
$$

for any C-harmonic p-form u. Consequently we attained to the following
THEOREM 4.9. In a compact n-dimensional Sasakian space, let u be a
C-harmonic pform $(p \leqq(n-1) / 2)$ and ξ be a C-Killing form, then we have

$$
\theta(\xi) u=0 .
$$

Especially, a harmonic p-form ($p \equiv(n-1) / 2$) is C-harmonic in compact case. Further the fundamental 2 -form $d \eta$ is C-harmonic. Thus we have the following corollaries.

COROLLARY 4.10. Let u be a harmonic p-form $(p \leqq(n-1) / 2)$ and ξ be a C-Killing form. Then we have

$$
\theta(\xi) u=0 .
$$

Corollary 4.11. Let ξ be a C-Killing form. Then it satisfies

$$
\theta(\xi) d \eta=0
$$

5. Regular Sasakian structure. We consider the meaning of C-Killing forms on a compact Sasakian space which has regular structure. Let (M^{n}, p, B^{n-1}) be a fibration of Boothby-Wang, where $B^{n-1}=M^{n} /(\eta)$ is the base space and $p: M^{n} \rightarrow B^{n-1}$ is the projection. We denote by ∇, ∇^{\prime} the covariant differentiations with respect to the Riemann metric $g_{\lambda \mu}$ on M^{n} and $g^{\prime}{ }_{a 0}{ }^{1)}$ on B^{n-1} defined naturally by $g_{\lambda_{\mu}}$. We fix a point $x \in M^{n}$ and set $y=p(x)$. Taking local coordinates systems $\left(x^{\lambda}\right)$ and $\left(y^{a}\right)$ arround x and y, we represent the projection mapping as

$$
y^{a}=p^{a}\left(x^{1}, \cdots, x^{n}\right)
$$

We put $p^{\lambda}{ }_{\lambda}=\partial p^{\tau} / \partial x^{\lambda}$, and $\bar{u}=p^{*} u=\left(\bar{u}_{\lambda_{1} \ldots \lambda_{p}}\right)$ for a p-form $u=\left(u_{a_{1} \cdots a_{p}}\right)$ on B^{n-1}. Then we know that the following relation

$$
\begin{equation*}
\nabla_{\mu} \bar{u}_{\lambda_{1} \ldots \lambda_{p}}=p_{\lambda_{1}}^{a_{1}} \cdots p_{\lambda_{p}}^{a_{p}} p_{\mu}^{b} \nabla^{\prime}{ }_{b} u_{a_{1} \ldots a_{p}}-\sum_{i}\left(\phi_{\mu}{ }^{\rho} \eta_{\lambda_{t}}+\varphi_{\lambda_{i}}{ }^{\rho} \eta_{\mu}\right) \bar{u}_{\lambda_{1} \ldots \hat{\rho}} \stackrel{i}{i} \ldots \lambda_{p} \tag{5.1}
\end{equation*}
$$

is valid [4]. Applying (5.1) to a 1 -form u_{a}, we have

$$
\begin{equation*}
\nabla_{\mu} \bar{u}_{\lambda}=p^{a} \lambda p_{\mu}^{\prime}{ }_{\mu} \nabla_{b}^{\prime} u_{a}-\left(\varphi_{\mu}{ }^{\rho} \eta_{\lambda}+\varphi_{\lambda}{ }^{\rho} \eta_{\mu}\right) \bar{u}_{\rho} . \tag{5.2}
\end{equation*}
$$

Now suppose that the 1 -form u_{a} is a Killing form on B^{n-1}. Then (5.2) shows

[^0]\[

$$
\begin{aligned}
\nabla_{\mu} \bar{u}_{\lambda}+\nabla_{\lambda} \bar{u}_{\mu} & =p^{a}{ }_{\lambda} p^{b}{ }_{\mu}\left(\nabla^{\prime}{ }_{a} u_{b}+\nabla^{\prime}{ }_{b} u_{a}\right)-2\left(\varphi_{\mu}{ }^{\rho} \eta_{\lambda}+\varphi_{\lambda}{ }^{\rho} \eta_{\mu}\right) \bar{u}_{\rho} \\
& =2 \bar{u}^{\rho}\left(\varphi_{\rho \lambda} \eta_{\mu}+\varphi_{\rho \mu} \eta_{\lambda}\right) .
\end{aligned}
$$
\]

Thus the form $\bar{u}=p^{*} u$ satisfies (3.7) and as the space is compact, u is a special C-Killing form.

Conversely we consider a C-Killing form ξ which satisfies $i(\eta) \xi=0$. Since $\theta(\eta) \xi_{\lambda}=0$ from Lemma 3.1, there exists a 1 -form u on B^{n-1} such that $\xi=p^{*} u$. Then we have by virtue of (3.7) and (5.2)

$$
\begin{aligned}
p^{\prime}{ }_{\mu} p^{a}{ }_{\lambda}\left(\nabla_{a}^{\prime} u_{b}+\nabla_{b}^{\prime} u_{a}\right) & =\nabla_{\mu} \xi_{\lambda}+\nabla_{\lambda} \xi_{\mu}-2 \xi^{\rho}\left(\varphi_{\rho} \eta_{\mu}+\varphi_{\rho \mu} \eta_{\lambda}\right) \\
& =0 .
\end{aligned}
$$

Therefore we see

$$
\nabla_{b}^{\prime} u_{a}+\nabla_{a}^{\prime} u_{b}=0,
$$

which shows that u_{a} is a Killing form on B^{n-1}. Thus we have the following
THEOREM 5.1. Let M^{n} be a compact regular Sasakian space, and B^{n-1} be the base space of the fibration of Boothby-Wang. Then the vector space of Killing 1-forms on B^{n-1} is isomorphic to the vectcr space of C-Killing forms on M^{n} which are orthogonal to η.

Bibliography

[1] W. M. Boothby and H. C. Wang, On contact manifolds, Ann. Math., 68(1958), 721734.
[2] S. Tachibana, On harmonic tensors in compact Sasakian spaces, Tôhoku Math. Journ., 17(1965), 271-284.
[3] S. Tachibana, On a decomposition of C-harmonic forms in a compact Sasakian space, Tôhoku Math. Journ., 19(1967), 198-212.
[4] Y. OgAwA, On C-harmonic forms in a compact Sasakian space, Tôhoku Math Journ. 19 (1967), 267-296.
[5] S. SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure, I, Tôhoku Math. Journ., 12(1960), 459-476.
[6] T. Fujitani, Complex valued differential forms on normal contact Riemannian manifolds, Tôhoku Math. Journ., 18(1966), 349-361.
[7] S. I. Goldberg, Curvature and Homology, Academic Press, New York, 1962.
Department of Mathematics
Ochanomizu University
TOKYo, Japan

[^0]: 1) The Latin indices a, b, \ldots, run from 1 to $n-1$.
