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Abstract. Virtualization has become one of the most important secu-
rity enhancing techniques for embedded systems during the last years,
both for mobile devices and cyber-physical system (CPS). One of the
major security threats in this context is posed by side channel attacks.
In this work, Bernstein’s time-driven cache-based attack against AES is
revisited in a virtualization scenario based on an actual CPS using the
PikeOS microkernel virtualization framework. The attack is conducted
in the context of the implemented virtualization scenario using different
scheduler configurations. We provide experimental results which show
that using dedicated cores for crypto routines will have a high impact on
the vulnerability of such systems. We also compare the results to previ-
ous work in that field and our visualization directly shows the differences
between cache architectures of the ARM Cortex-A8 and Cortex-A9. Fur-
ther, a non-invasive countermeasure against timing attacks based on the
scheduler of PikeOS is devised, which in fact increases the system’s se-
curity against cache timing attacks.
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1 Introduction

Former single-core real-time embedded systems used in the avionics and auto-
motive industry are evolving to integrated ARM-based multi-core virtualized
platforms, nowadays denoted as cyber-physical systems (CPSs). To save weight
and costs of airplanes and vehicles, such systems run several user controlled
applications beside security and safety critical applications side by side on the
same physical system. Consider in-flight entertainment systems which provide
users with the ability to connect their own untrusted devices, e.g., smart phones
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and tablets. However, those systems also provide flight information which needs
a connection to safety critical systems. That is why for instance the ARNIC-653
standard [3] demands for strict isolation and real-time constraints by statically
configured partitions. A widely used real-time operating system framework in
the avionics industry which provides partition separation according to ARNIC-
653 is PikeOS [9]. It elaborates a microkernel and a user-space abstraction layer
for this purpose.

However, none of those real-time operating systems have been examined for
vulnerabilities to cache timing side channels circumventing the partition isola-
tion considering influences of multi-core. Previous work mainly focuses on x86
systems in shared cloud scenarios.

Cache-based side channel attacks make use of a simple model to correlate
the execution time of an algorithm with the state of the cache used by the CPU
in charge. It is assumed that the execution time is lower if the data needed by
the algorithm is already stored in a cache line (cache-hit). On the other hand,
if the required data is not present in the cache and hence has to be loaded from
the main memory (cache-miss), this will result in a longer execution time. This
model is simple, but reasonable and only relies on the cache architecture of the
CPU. Weiss et al. [23] provide a suitable attack scenario, however only on a
single-core system using an academic real-time framework, focusing on mobile
phone devices. We use this as base for our research on how actual CPSs running
in the cockpits and cabins of airplanes are vulnerable to cache-based timing side
channel attacks.

Our main contributions are:

1. We adapted the virtualization-based attack scenario from [23] to multi-core
embedded system using the microkernel-based operating system framework
PikeOS which has high relevance in avionic and also automotive industry.

2. We propose the discrete-time countermeasure which is based only on real-
time configuration of the PikeOS scheduler as a drop-in update to existing
systems and compare it to related approaches.

3. We elaborate different multi-core scheduler configurations and evaluate their
vulnerability against time-driven cache attacks.

4. By comparing the attack results between single- and multi-core configura-
tions, we are able to show that dedicated cores for crypto services leak the
most information about the key.

5. Further, we compare our Cortex-A9-based setup against the Cortex-A8-
based setup of [23], which leads to interesting patterns of key space reduction
directly showing differences of the underlying cache architecture.

The rest of the paper is structured as follows: We provide background on
cache based side-channels and related work in Section 2. In Section 3, the system
architecture and attack scenario including the attacker model is described. We
provide some more detailed background knowledge about the PikeOS scheduler
in Section 4, before we describe the discrete-time countermeasure in Section 5.
Experimental results of the attack performance under different scheduler config-
urations are evaluated in Section 6. Finally, the work is concluded in Section 7



2 Background and Related Work

Cache-based attacks can be divided into three different categories, each having
a different attacker model. Time-driven attacks [4, 15, 14, 2, 5] make use of the
cache model in a very general way as they only require timing data of entire
runs of a cryptographic algorithm, e.g., an encryption using AES. This corre-
sponds to an attacker who has only very limited or coarse information about
the cache. Trace-driven attacks [1, 6] additionally require detailed information
about the cache activity during single runs of the encryption, in particular the
sequence of cache hits and misses caused by the memory accesses performed by
the encryption algorithm. A trace can for instance be captured by profiling the
power consumption while the encryption routine is running. This translates to
an attacker, who has gained a substantial level of knowledge about the runtime
cache behavior which in case of a power profile also requires physical access to
the device. Finally, access-driven attacks [15, 8] assume to have knowledge about
the cache-sets accessed by the algorithm. The underlying assumption is therefore
that the attacker can control the cache runtime behavior. In the Prime+Probe
attack [15], for example, those areas of the cache that also hold the lookup tables
of the attacked algorithm are filled by a spy process with own data before the
encryption is triggered (Prime). After the encryption, the spy process measures
the access time to its own data to see which parts have been evicted from the
cache by the encryption algorithm (Probe). Now the attacker can deduce which
parts of the lookup tables were accessed by the encryption and from this infer
some or all bits of the secret key. As can be seen from the above explanations,
time-driven attacks are the most widely applicable class of attacks since they do
not require a strong attacker with fine grained access to the cache.

In [4], Bernstein proposes a cache-based timing attack to recover the secret
key of an AES encryption on a remote server. Bernstein’s paper contained no
thorough analysis of the attack and no explanation why the attack is successful.
Neve et al. fill this gap in [14] by presenting a full analysis of Bernstein’s attack
methodology and explaining the correlation model. They argue that Bernstein’s
original technique cannot be used easily as a real remote-only attack where tim-
ings need to be measured by the attacker. Moreover, they improve Bernstein’s
attack by also considering second round information and thus lowering the num-
ber of required samples. To get accurate timings, Bernstein avoided the noisy
network channel between the attacked server and the attacker by measuring the
encryption time directly on the server, which is a rather unrealistic scenario
since the server needs to be modified. In virtualization environments, however,
the noise is negligible since local communication channels with only a small and
almost constant timing overhead are used, as shown in [23].

Ristenpart et al. [16] consider side-channel leakage in virtualization environ-
ments on the example of the Amazon EC2 cloud service. They show that there
is cross virtual machine (VM) side-channel leakage. They used the access-driven
Prime+Probe technique from [15] for analyzing the timing side-channel. How-
ever, Ristenpart et al. are not able to extract a secret encryption key from one
VM. In [23], Weiss et al. consider a virtualization-based system where the trusted



environment runs an AES server. Under the assumption that the untrusted en-
vironment could be hijacked by an attacker, they show that a man-in-the-middle
attack via an adapted version of the cache-timing attack by Bernstein [4] is gen-
erally able to significantly reduce the key space, thus making brute-force attacks
feasible. The impact of noise under realistic workloads is examined by Spreitzer
and Plos [18], who evaluate time-driven attacks on conventional mobile devices
(ARM Cortex A8 and A9). Unlike our approach, they consider noise induced by
the Android operating system and applications running simultaneously on the
device. However, they do so using a slightly unrealistic attacker model where the
attacker captures timings in the very same process where the AES encryption
routine is implemented and called, which likely reduces the effects of the OS and
concurrent processes.

There are several ways to defend against time-driven cache timing attacks:
One option is to switch to hardware-based implementations as provided by some
processor manufacturers, e.g. Intel with its AES-NI instruction set [7], thus en-
tirely avoiding cache-based attacks against the algorithm. If no hardware support
is available, it is possible to change the implementation of the algorithm itself
and get rid of the table lookups. While earlier software-based suggestions [13,
12] were generally slow compared to table-based implementations, Kasper et al.
[10] present an efficient constant-time implementation based on bit-slicing that
is suitable for stream and packet encryption.

Kim et al. [11] present a novel countermeasure against cache-based side chan-
nel attacks in a virtualization environment called STEALTHMEM. This coun-
termeasure works at hypervisor level by assigning dedicated cache lines to each
CPU in a group of CPUs with shared L3 cache. These so-called stealth cache
lines are never evicted; therefore, sensitive data, such as S-boxes in AES, can
be stored in these cache lines without introducing cache or timing side channels
for an attack. Stefan et al. [19] propose instruction-based scheduling to prevent
cache-based timing attacks on a single CPU. Instead of having a fixed amount of
time, a process has a fixed amount of instructions it can execute before the next
process is scheduled. The authors examine a simple timing attack and show that
this attack is prevented by the proposed scheduler with negligible increase in
the size of binaries and execution time. These countermeasures require consider-
able changes to the hardware, the hypervisor, or the cryptographic algorithms,
whereas neither of which is necessary for our approach. Lately, Varadarajan et
al. [20] have proposed a similar approach to our discrete-time scheduler scheme
for cloud systems which they call soft-isolation. In contrast to our approach for
real-time based schedulers, their approach relies on a feature of the Xen hyper-
visor scheduler called minimum run time (MRT) guarantee.

3 Attack Scenario and System Architecture

We assume a Trusted Execution Environment (TEE) which separates two com-
partments, a trusted environment which provides crypto services and an un-
trusted environment which runs user applications. The secret keys used for en-
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Fig. 1: Adapted virtualization based system security architecture

cryption have a high security value and thus are only accessible in the trusted
environment. A viable usage scenario is, e.g., to establish a VPN tunnel. The net-
work protocol stacks of a rich operating system kernel are used in the untrusted
environment while the payload is encrypted by a driver using an encryption ser-
vice inside the trusted environment. Hence, the secret session keys cannot be
compromised by an attacker in the rich OS.

For our work we adapted the virtualization based security architecture of [23],
which is a realization of a TEE to a microkernel system, to PikeOS. PikeOS dis-
tinguishes between resource and time partitions. A resource partition in PikeOS
denotes a separate address space protected by the microkernel, while time parti-
tions are used to assign computation time to threads. The microkernel itself only
implements the basic mechanism for IPC, scheduling, and separation of address
spaces in privileged processor mode. Device drivers, higher level abstraction for
inter-partition communication as well as virtual memory management are im-
plemented in the user-space abstraction layer, called PikeOS System Software
(PSSW). Native device drivers for secure devices can be implemented in their
own partition also in user-space. Figure 1 illustrates this architecture including
the attack scenario. In our scenario, the architecture comprises a rich environ-
ment which runs the untrusted user applications in one partition as well as a
trusted environment that hosts the security and safety relevant trusted applica-
tions each in their own partition. Both environments are allowed to communi-
cate with each other using protocol messages transmitted via the virtualization
layer, which in our case is the PikeOS microkernel and its user-space abstraction
layer PSSW. To exchange data between the trusted and untrusted applications,
shared memory is used. The user applications may use the trusted applications
via special device drivers integrated into the rich OS kernel.

The concrete attack scenario now assumes that an AES encryption server
runs in the trusted environment. To launch an encryption, a user application
simply stores the plaintext in shared memory and calls the AES server through



IPC. The ciphertext is then written back to the shared memory. In this scenario,
an attacker has compromised the rich OS and wants to determine the key used by
the AES server. As he has full access to the rich OS in the untrusted environment,
he is able to launch as many encryptions as he likes with chosen plaintexts. This
he could do either by hijacking running processes or deploying own code that
directly uses the kernel of the rich OS. The attacker is therefore able to launch
a time-driven attack as it was discussed above.

4 Scheduling in PikeOS

PikeOS features a special scheduler that uses a combination of time-driven and
priority-based scheduling to account for the different needs of the applications.
To allow for deterministic real-time responsiveness, the scheduler uses a time-
driven approach. Every real-time application is statically assigned to a time slot
of a defined length. The length of these time slots can vary between applications
but has to stay within a certain relation to the length of the other time slots.
Every application is periodically scheduled for the length of the slot it is assigned
to. As every partition gets assigned a defined amount of CPU time at defined
points in time, they are able to schedule real-time processes themselves. This,
so far, is a standard approach for scheduling real-time applications. To also
support non real-time applications, a straightforward extension of this approach
is to just create a new time slot and assign all applications without timing
constraints to it. Within this slot, a standard round robin scheduling scheme
can be applied. However, this approach is inefficient since it wastes a lot of CPU
time. The PikeOS scheduler refines this approach to a more efficient strategy.
It might occur that the processes of a real-time application finish before its
time slot end or that it does not have any processes to run at all. As it would
harm the temporal determinism, the scheduler cannot simply switch to the next
application in this situation. Rather than wasting this time, the PikeOS scheduler
uses this excess CPU time to schedule applications with no real-time constraints.
For this purpose, it leverages priority-based scheduling. All real-time applications
are assigned the same mid-level priority number while low priority numbers are
assigned to the other applications. Now, the scheduler continues to schedule
the real-time applications periodically but uses the excess time to schedule the
low-priority non real-time applications in a round robin fashion. In this way, no
computing time is wasted and the overall amount of time needed to execute all
applications decreases drastically when compared to a standard RTOS scheduler.

5 Discrete-Time Countermeasure

One main pitfall of novel countermeasures is that some of them require changes to
already established systems that are too substantial to be easily implemented,
hence making these countermeasures practically irrelevant. The discrete-time
countermeasure that is presented in the following therefore aims at making
cache based time-driven attacks infeasible for attackers while demanding as few



changes and inducing as little overhead as possible. Assume the rich OS and
the trusted environment are implemented as partitions in PikeOS and are hence
handled by the scheduler. Now assume the attacker has compromised the rich
OS and is able to launch the timing attack against the AES server that runs in a
trusted partition. In order for the attacker to successfully carry out the attack,
two conditions must be fulfilled:

1. He must be able to retrieve enough samples from the AES server, in the
order of several hundred millions.

2. The samples must leak enough information for the correct hypothesis on the
key to yield a higher correlation on average than all wrong hypotheses.

The discrete-time countermeasure aims at these two points. It works straight-
forward in that both applications, the rich OS and the AES server in the trusted
domain, are treated as real-time applications such that each is assigned an own
time slot. Note, that it is not necessary for either of the two applications to
have any real-time time constraints in order for the scheduler to be configured
as described above. Using this configuration of the scheduler the time measured
by the attack for one encryption tenc is now given by Equation 1.

tenc = n · tOS + m · tserv (1)

with tOS being the length of the time slot of the rich OS and tserv being the
length of the time slot of the AES server. The two variables n and m represent
the number of executions of the two time slots. Note that we ignore negligible
timing quantities that are independent of the AES server, such as the remaining
time in the slot of the rich OS after the encryption was requested and the time
passing in the first slot of the rich OS after the encryption is done before the
attacker’s process is scheduled. As it can be easily verified the time is always a
multiple of the two time slot lengths which gives rise to the countermeasure’s
name. This has two major effects on the attack. Firstly, as the scheduling for
these two applications is strictly time-driven, the rich OS will be scheduled a
number of times while still waiting for the encryption to finish and hence being
idle. This will increase the time needed by an encryption in a way that, given
carefully chosen values for tOS and tserv, a single encryption as it is needed for
benign purposes can still be done without noticeable delay. However, a number
of encryptions as needed for an attack will take a significantly larger amount
of time. This already will make an attack time-wise more difficult. Secondly, as
the information that can be gained by one sample is now very coarse-grained,
there is only a very small correlation left between the timing information and
occurring cache-misses or hits. This will make it very hard for the attacker
to distinguish the correct key hypothesis from false ones and will increase the
number of necessary samples. Therefore, the discrete-time countermeasure is
a strong shield against the kind of attacks considered here. Furthermore, the
countermeasure requires no change of any kind in the code and also causes
arguably only little timing overhead. It is also straightforward to implement,
can be extended to multiple applications and is most likely also applicable to



other RTOS schedulers working in a similar manner as the PikeOS scheduler.
Although not in the focus of this paper, access-driven attacks can be prevented
similarly by a simple configuration in the scheduler to flush the cache when
switching partitions.

6 Evaluation

To practically analyze the scenario presented in Section 3, we elaborated the fol-
lowing testbed. The untrusted runtime is implemented using the para-virtualized
Linux distribution ELinOS including the necessary code for the attacker to con-
duct the timing attack. The AES server in the trusted runtime is implemented
as an application based on the native PikeOS API. Obviously, both applications
have their own partition. To enable the communication between the two parti-
tions, two unidirectional queuing ports and a shared memory page were set up.
The rich OS and the AES server use these ports to communicate via a simple
handshake protocol and use the shared page as buffer for plain- and cipher-
texts. Queuing ports are unidirectional communication channels defined in the
ARNIC-653 [3] standard that can be set up between two partitions statically at
compile-time and then initialized at run-time by the applications.

As hardware platform, we chose the Freescale i.MX6 SabreLite board which
comprises a Quad-Core ARM Cortex-A9 CPU with 1.2GHz. The cache archi-
tecture consist of a 32KB I- and D-Cache (L1) per Core and a 1MB shared L2
cache. The L1 cache is 4-way associative and has a cache line size of 32 byte. For
precise timing measurements, the ARM CCNT register was utilized as stated
in [23] and [18].

To analyze the success rate of Bernstein’s timing attack, the effect of a broad
range of parameters was examined. For the comparison between different values
for these parameters, two criteria were used.

1. The number of different candidates for each key byte

2. The average position of the correct candidates in the ordered output lists

The first one directly gives information about how much the key space could be
reduced by the attack. To quantitatively measure the effectiveness of the attack,
this is therefore the best parameter. In the best case only one candidate, namely
the correct one, remains for each byte and the key is hence revealed completely.
But even only a significant reduction of the number of candidate bytes is already
valuable to the attacker as he then can launch a brute-force attack in the reduced
key space with the remaining possible values. However, this score does not use
all information of the output of the attack. As the list of possible candidates for
each key byte is ordered, it is interesting to know at which positions in these lists
the correct values can be found. This is a measure for the ability of the attack
to separate the correct hypotheses from the other remaining ones. In the best
case, the correct value for each key byte always has the highest correlation and
is therefore at first position in the list. That information is also of high interest



Table 1: Summary of results for different scheduler configurations

No. Utilized
Cores

Scheduler Configuration Average
Position

Remaining
Key-space

1 2 1 Core dedicated each (Single) 4.0 272

2 4 4 Cores shared (Quad) 4.25 ≈ 282

3 4 4 Cores Server, 1 core shared rich OS (Server) 4.0 ≈ 282

4 4 2 Cores dedicated each 4.375 ≈ 273

5 1 1 Core shared 4.3125 ≈ 280

to an attacker as he can use this information to significantly speed up his brute-
force attack. Since he knows the correlation of all remaining possible byte values,
he can order the possible keys by the correlation and then test for candidates
with higher correlation first. This will usually require much less than the average
n
2 guesses, n being the number of key candidates. Another approache to reduce
brute-force complexity could be to use recently proposed key-rank estimation
procedures [22], [21] as shown by Spreitzer et al. [17].

For all the experiments summarized in Table 1, normal priority-based schedul-
ing was used and the profiling and attack phase were done on the same device.
This might not always be possible in a real-world setting, but was done to have
an optimal setting for the evaluation. If not stated otherwise the attacked key
was

0x21 53 fc 73 d4 f3 4a 98 17 33 bb 3f 18 92 00 8b

and both profiling and attack phase were conducted with 512 million samples to
have approximately 2 million samples for each possible key candidate.

6.1 Identifying and Tuning of Attack Parameters

To reduce the noise in the measurements, Bernstein disregards all measure-
ments above a certain threshold. In the original code, this threshold was set
to a value fitting the timing behavior of his implementation. This value was
therefore changed in this implementation. To evaluate the effect of this clipping,
two different thresholds were investigated both with 512 million samples for at-
tack and profiling phase. The threshold that was initially set to about 30,000
clock cycles higher than the average of the timing samples was compared to
the threshold 20,000 above average. The results are displayed in Figure 2a and
Table 2a. The results clearly show that the lower threshold leads to a signif-
icant lower reduction of the key space. This implies that the timings lying in
the interval between the two thresholds indeed contained information about the
key. This also complies to the findings in [17], which shows that minimal timing
attack of [?] does not leak any information on ARM.

One parameter that comes to mind very quickly when thinking about ana-
lyzing a side channel attack is the number of samples. One would assume that
an increasing number of samples automatically results in a higher success rate



(a) Clipping Thresholds (b) Increasing Samples

Fig. 2: Histograms describing the numbers of possible candidates for all bytes of
the key and for varying clipping thresholds and samples

as the noise gets averaged out more and more, leaving only the relevant infor-
mation behind. To verify this assumption, we conducted the attack with 256,
512 and 1024 million samples. The results are displayed in Figure 2b. Table 2b
shows the average position of the correct key byte candidates. As expected, in-
creasing the number of samples does in fact also increase the success rate of the
attack. However, the increase of the success rate shows a logarithmic behavior.
This behavior is derived directly from the cache architecture. As only the upper
k bits of a data word are used to index the cache lines, the timing behavior is
independent of the lower bits. In the best case, the attack could therefore only
reveal the upper k bits of each key byte. This explains the observed boundary
of the reduction of the key space. It furthermore explains why the remaining
number of possible values per byte is in almost all cases a power of 2. A simi-
lar behavior was described by Neve et al. [14]. This limitation only applies for
aligned T-tables. In the case of disaligned T-tables, which is not the case in our
setup, even more information might leak.

6.2 Single Core vs. Quad Core

The PikeOS scheduler allows the use of a CPU mask to specifically select the
cores that shall run a partition. As each core has its own L1 cache but all cores
share the L2 cache, it is interesting to examine how the success rate of the
attack changes when only one or all cores are used. To do this, three different
configurations were regarded. For the first one both partitions were run by a
single core (configuration 1) while for the second one both partitions were run
on all four cores (configuration 2). The third configuration involved the AES
server running on all four cores (configuration 3) while ELinOS was assigned
only one core. The results are depicted in Figure 3a and Table 1.



Table 2: The average position of the correct key byte candidates for the different
clipping thresholds and numbers of samples

(a)

Clipping Threshold Average Position

+30k 4.3125

+20k 4.375

Measurements conducted with 512M
Sampales in configuration 4, see Table 1

(b)

Number of Samples Average Position

256M 5.5625

512M 4.0

1024M 3.875

Measurements conducted in configura-
tion 1, see Table 1

It can be seen that configuration 1 gave the best results for both criteria, and
scenario 2 yielded the worst. This is understandable since in the first scenario,
the T-tables are stored in a single L1 cache and the L2 cache, whereas in scenario
2 the T-tables are most likely scattered over the four L1 caches and the L2 cache.
This decreases the signal to noise ratio with high certainty and thus lowers the
success rate. Additionally, when both the rich OS and the AES server use the
same core, their cache usage will interfere which also reduces the quality of the
timing samples. This effect is visible in the difference between scenarios 2 and 3.
Although the AES server uses four cores in scenario 3 as well, it only interferes
with the other application in one of them which leads to an overall better success
rate of the attack.

Using a dedicated core for the AES server might not be a good idea as it
reduces the noise. Therefore, it was investigated how the success rate of the
attack is affected when the two partitions have one or two cores for their own in
comparison to the configuration where both partitions share only one core. The
results are shown in Figure 3b.
The use of dedicated cores leads to a significantly better success rate in terms
of the total number of remaining key candidates. The setup with one dedicated
core also shows a slight decrease in the average position of the correct key byte
values. As it can be seen, assigning one core to each partition (configuration
1) thereby results in a slightly better attack result than using two dedicated
cores (configuration 4). This can be explained by the already discussed effect of
using multiple L1 caches. However, the slight increase of the average position
compared to the scenarios where 4 cores are utilized seems to be caused by
measurement inaccuracies. In summary, when using an ordinary priority based
scheduling scheme on a multi-core system without any countermeasures, it is
not recommended to use a dedicated core for the cryptographic algorithm as
this would reduce the noise significantly.

6.3 Comparison to Fiasco Setup

In [23], Weiss et al. present results for Bernstein’s attack carried out in a very
similar virtualization setting. In contrast to the hardware presented above, Weiss
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Fig. 3: Histograms describing the numbers of possible candidates for all bytes of
the key and for varying scheduler configurations.

et al. used a beagleboard that is based on a Cortex-A8 with 720 MHz. To imple-
ment the virtualization scenario, the Fiasco.OC microkernel together with L4Re
was utilized. Note that we use the same key as in [23] to provide comparable
results. Weiss et al. report for the OpenSSL implementation of AES that they
were able to reduce the byte value space of almost all bytes to 16 possibilities.
For the fourth byte, no reduction was possible while the eighth and sixteenth
byte could only be reduced to 32 possible values. This result was achieved with
2 million samples for each byte value, translating to the overall number of 512
million samples that was also used in this work. Data about the position of the
correct key byte values in the output lists was not provided.

The best result achieved in terms of the reduction of the key space in this
work draws a very different picture. For one dedicated core for the ELinOS and
the AES partition respectively, the highest reduction found was a reduction down
to 8 possible values for the bytes 3,4,7,8,11,12,15,16. For the remaining bytes a
reduction was possible only down to 64 different values. This pattern is interest-
ing in itself as every consecutive 2-byte tuple seems to be highly correlated in
the reduction capability. However, it is also very different from the result stated
above. For this implementation, the maximally achieved reduction is twice as
high as for the implementation of Weiss et al. Nevertheless, only half of the
bytes could be reduced that far while for the implementation of [23], nearly all
byte spaces could be reduced to the respective minimum. Then again, in the
implementation of this work all bytes could be reduced to at least 64 different
values. This was not the case for the implementation using the Fiasco.OC ker-
nel. Both implementations have in common that there seems to be a limit for
the reduction of the key space that depends on the implementation. This was
already mentioned above and is also stated in [23]. The two results are compared
in Figure 4. The difference of the reduction pattern reflects the different cache
architectures in terms of the cache line size. On the Cortex A8 with a 64 Byte



Fig. 4: Results for the implementation of this work compared to [23]

cache line size every fourth key byte is harder to reduce, while on the Cortex A9
with 32 Byte cache line size every first 2 bytes are harder to reduce. Both pattern
repeat every 4 bytes, this is due to both caches are 4-way associative.

The total number of possible keys was reduced to 272 for the worst PikeOS
setup and to roughly 270 for the Fiasco setup showing a slight advantage for the
PikeOS setup. However, compared to the setup utilizing only one core with a
reduction of key space to ≈ 280 the PikeOS setup is ≈ 7 orders of magnitude
harder to attack.

6.4 Evaluation of the Countermeasure

To evaluate the effectiveness of the discrete-time countermeasure, a range of
different scheduler configurations was tested. The ELinOS and the AES server
partition were assigned one time slot each and the length of these slots was then
varied. It was quickly found that the length of both slots would have to be in
a certain relation in order to ensure that the rich OS and the AES server work
correctly. One configuration that led to a behavior of the system indistinguish-
able from the behavior with simple priority-based scheduling was found to be to
set the slot length to 5 ticks for both partitions. The default duration of one tick
was set to 1 ms. Using this configuration, the delay of single AES encryptions
increases significantly by roughly about 70% while in contrast the encryption of
a whole buffer with the size of a memory page may be conducted with only a
small overhead of less than 30%, see table 3. This configuration was therefore
chosen for the attack. Both partitions were assigned one dedicated core and the
rest of the setup remained unchanged from previous experiments.

After running the profiling phase for one day we were able to retrieve ≈ 34
million samples. To capture the whole amount of 512 million samples for both
phases, this means a total run-time of about one month for the above config-
uration of the scheduler. Remember that due to the different timing behavior
induced by the countermeasure an even higher number of samples is needed in
order to recover the key as good as possible. Therefore, it is reasonable to as-



Table 3: Performance comparison of the countermeasure

Scheduling Scheme Average Clock Cycles per AES-block
one block (16 Byte) one page (4 KByte)

Priority-Based ≈ 125, 000 ≈ 1770

Discrete-Time ≈ 210, 000 ≈ 2286

sume that for the attack to produce a useful output at least twice the number of
samples and hence, with the overhead caused by our countermeasure, even more
than twice the time is needed. Even if the attacker would do the profiling phase
off-line, he would still need to be able to access the system for about one month.
It is very unlikely that such a computational intensive attack would remain un-
noticed for the entire time frame. Furthermore, depending on the actual use of
the AES server, a rescheduling of the key might occur during that time, too. It
can be seen from this that the proposed countermeasure indeed protects a device
very well while simultaneously requiring almost no effort to be set in place. Also,
the user experience does not change with the countermeasure which might be
an important factor for the mobile device market. The different run-times of one
encryption for priority-based scheduling and the countermeasure are shown in
Table 3. For a more thorough evaluation of the discrete-time countermeasure,
additional experiments need to be conducted.

Comparison to other Countermeasures In [11] and [19], two novel counter-
measures against cache-based attacks are introduced. Since these countermea-
sures target the same class of attacks as the discrete-time countermeasure, it is
interesting to compare their approaches with ours. As the focus of this work was
put on time-driven attacks, the comparison will focus on this aspect as well.

The STEALTHMEM countermeasure [11] tries to prevent both active and
passive time- and access-driven attacks in virtualization environments. To that
end, it uses dedicated cache lines in the shared cache for each CPU. Depending
on the variant of STEALTHMEM used, this either reduces the total available
amount of memory and shared cache, or it takes extra time to ensure that
the stealth cache lines are not evicted from the cache. Both variants imply a
small penalty in performance of about 5.9% and 7.2% respectively, and AES
encryptions of 50,000 bytes are about 5% slower with the first variant. Unlike
the STEALTHMEM approach, the discrete-time countermeasure has no impact
on the available cache and system memory. However, due to the larger time slots
in our countermeasure, the overall performance degrades by about 30% for AES
encryptions on 4 KB of data, as explained above. To use STEALTHMEM, the
hypervisor is extended with a special driver offering an API to the VMs that
manages access to the dedicated cache lines. For Windows Server 2008 R2 with
Hyper-V, this amounts to 5,000 lines of C code to be added to the hypervisor and
500 lines of C code added to the Windows boot loader modules. Furthermore,
the implementations of cryptographic algorithms have to be modified to make



use of the stealth cache lines via the provided API. For using our discrete-time
countermeasure on the contrary, only a reconfiguration of the scheduler is needed.
Neither the system nor the implementation of the cryptographic algorithm has to
be changed. Also note that the required modification of the algorithm presents a
potential pitfall. If not done correctly, some leakage remains and therefore breaks
the countermeasure. Moreover, the amount of available cache lines that can be
reserved for a core is limited so it has to be made sure that all relevant lookup
tables fit inside to prevent information leakage.

The instruction-based scheduling scheme suggested in [19] aims at prevent-
ing cache-based attacks that exploit certain scheduling-induced race conditions
between processes that arise due to the dependency of the execution time on the
cache content. Both methods are similar in that they use a fixed value as their
criterion for the scheduling. As the name implies, instruction-based scheduling
uses a specified number of executed instructions as scheduling criterion. This
prevents only those attacks that try to exploit the mentioned race conditions
– but only when the processes are run on a single core. Furthermore, it is not
sufficient to prevent time-driven attacks such as Bernstein’s, since an attacker
can still measure the total execution time which still depends on the cache.
The discrete-time countermeasure on the other hand prevents this kind of race
conditions even with multiple cores, and masks the overall execution time of
an AES encryption. Also, instruction-based scheduling is a novel approach and
hence not widely supported by current micro kernels. Therefore, extra effort has
to be done to integrate it into existing systems or implement a new one which
supports instruction-based scheduling. This is not the case for the discrete-time
method, where our countermeasure can be readily configured. With respect to
the overhead, both methods are fairly similar as they do not need any adaption
of the applications and only induce a small time overhead.

7 Conclusion

In this work, we stated an attack scenario using a time-driven cache attack
against embedded devices used in cyber-physical systems (CPSs) on the exam-
ple of PikeOS, a microkernel-based operating system framework compliant to
the ARNIC standard. We evaluated the attack with different scheduler config-
urations showing that dedicated cores for the crypto routine provide the most
timing leakage.Further, we compared the results to a similar setup [23] for virtu-
alization based Trusted Execution Environments (TEEs). We showed that using
a shared core similar to the microkernel configuration in [23], the PikeOS setup of
this work is about 7 order of magnitude less vulnerable in reduction of key space,
but at least one order of magnitude in the worst configuration using dedicated
cores. Furthermore, we provided the scheduler based discrete-time countermea-
sure against time-driven cache attacks. Compared to other novel countermea-
sures, it does not depend on any hardware, software architecture or algorithm
changes. Thus, our approach can be used as a drop-in configuration update for
running CPSs, or other embedded platforms using a configurable scheduler.
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